
Mahtab Asadian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/298633/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Level of Heavy Metal in Fresh and Processed Fruits: A Study Meta-analysis, Systematic Review, and Health Risk Assessment. Biological Trace Element Research, 2023, 201, 2582-2596.	1.9	7
2	Composite yarns with antibacterial nanofibrous sheaths produced by collectorless alternating urrent electrospinning for suture applications. Journal of Applied Polymer Science, 2022, 139, .	1.3	7
3	Biological activity and antimicrobial property of Cu/a-C:H nanocomposites and nanolayered coatings on titanium substrates. Materials Science and Engineering C, 2021, 119, 111513.	3.8	19
4	Combinatorial effects of coral addition and plasma treatment on the properties of chitosan/polyethylene oxide nanofibers intended for bone tissue engineering. Carbohydrate Polymers, 2021, 253, 117211.	5.1	26
5	Comparing medium pressure dielectric barrier discharge (DBD) plasmas and classic methods of surface cleaning/activation of pure Mg for biomedical applications. Surface and Coatings Technology, 2021, 410, 126934.	2.2	3
6	Engineering microvasculature by 3D bioprinting of prevascularized spheroids in photo-crosslinkable gelatin. Biofabrication, 2021, 13, 045021.	3.7	32
7	Acrylic acid plasma polymerization and post-plasma ethylene diamine grafting for enhanced bone marrow mesenchymal stem cell behaviour on polycaprolactone nanofibers. Applied Surface Science, 2021, 563, 150363.	3.1	12
8	Water-Stable Plasma-Polymerized <i>N</i> , <i>N</i> -Dimethylacrylamide Coatings to Control Cellular Adhesion. ACS Applied Materials & Interfaces, 2020, 12, 2116-2128.	4.0	19
9	Plasma treatment effects on bulk properties of polycaprolactone nanofibrous mats fabricated by uncommon AC electrospinning: A comparative study. Surface and Coatings Technology, 2020, 399, 126203.	2.2	27
10	Non-thermal plasma activation of BPDA-PPD polyimide for improved cell-material interaction. Polymer, 2020, 205, 122831.	1.8	12
11	Investigation of Ag/a-C:H Nanocomposite Coatings on Titanium for Orthopedic Applications. ACS Applied Materials & Interfaces, 2020, 12, 23655-23666.	4.0	24
12	Fabrication of Microporous Coatings on Titanium Implants with Improved Mechanical, Antibacterial, and Cell-Interactive Properties. ACS Applied Materials & amp; Interfaces, 2020, 12, 30155-30169.	4.0	27
13	Hybrid Bioprinting of Chondrogenically Induced Human Mesenchymal Stem Cell Spheroids. Frontiers in Bioengineering and Biotechnology, 2020, 8, 484.	2.0	66
14	Aging effect of atmospheric pressure plasma jet treated polycaprolactone polymer solutions on electrospinning properties. Journal of Applied Polymer Science, 2020, 137, 48914.	1.3	5
15	Fabrication and Plasma Modification of Nanofibrous Tissue Engineering Scaffolds. Nanomaterials, 2020, 10, 119.	1.9	77
16	Investigating the stability of cyclopropylamine-based plasma polymers in water. Applied Surface Science, 2020, 517, 146167.	3.1	8
17	Influence of the Aliphatic Side Chain on the Near Atmospheric Pressure Plasma Polymerization of 2-Alkyl-2-oxazolines for Biomedical Applications. ACS Applied Materials & amp; Interfaces, 2019, 11, 31356-31366.	4.0	17
18	Development of 1-propanethiol-based thiol-rich plasma polymerized coatings using a medium pressure dielectric barrier discharge. Applied Surface Science, 2019, 495, 143484.	3.1	3

Mahtab Asadian

#	Article	IF	CITATIONS
19	Biocompatibility of Cyclopropylamine-Based Plasma Polymers Deposited at Sub-Atmospheric Pressure on Poly (Îμ-caprolactone) Nanofiber Meshes. Nanomaterials, 2019, 9, 1215.	1.9	19
20	Synergetic effect of electrospun PCL fiber size, orientation and plasma-modified surface chemistry on stem cell behavior. Applied Surface Science, 2019, 485, 204-221.	3.1	46
21	Thiolation of polycaprolactone (PCL) nanofibers by inductively coupled plasma (ICP) polymerization: Physical, chemical and biological properties. Applied Surface Science, 2019, 479, 942-952.	3.1	33
22	A comparative study on pre- and post-production plasma treatments of PCL films and nanofibers for improved cell-material interactions. Applied Surface Science, 2019, 481, 1554-1565.	3.1	28
23	Micropatterning of beta tricalcium phosphate bioceramic surfaces, by femtosecond laser, for bone marrow stem cells behavior assessment. Materials Science and Engineering C, 2019, 95, 371-380.	3.8	12
24	Properties, ageing behavior and stability of bipolar films containing nano-layers of allylamine and acrylic acid plasma polymers. Applied Surface Science, 2018, 442, 517-524.	3.1	6
25	Local plasma activation of PS films with a defined design for biomedical use. Surface and Coatings Technology, 2018, 350, 985-996.	2.2	8
26	Plasma Functionalization of Polycaprolactone Nanofibers Changes Protein Interactions with Cells, Resulting in Increased Cell Viability. ACS Applied Materials & Interfaces, 2018, 10, 41962-41977.	4.0	37
27	Wide-ranging diameter scale of random and highly aligned PCL fibers electrospun using controlled working parameters. Polymer, 2018, 157, 19-31.	1.8	46
28	Fabrication of PEOT/PBT Nanofibers by Atmospheric Pressure Plasma Jet Treatment of Electrospinning Solutions for Tissue Engineering. Macromolecular Bioscience, 2018, 18, e1800309.	2.1	18
29	Surface Treatment of PEOT/PBT (55/45) with a Dielectric Barrier Discharge in Air, Helium, Argon and Nitrogen at Medium Pressure. Materials, 2018, 11, 391.	1.3	41
30	Effects of a dielectric barrier discharge (DBD) treatment on chitosan/polyethylene oxide nanofibers and their cellular interactions. Carbohydrate Polymers, 2018, 201, 402-415.	5.1	26
31	Plasma-modified 3D additive manufactured scaffolds for cartilage/bone interfacial tissue engineering. , 2018, , .		Ο
32	Atmospheric Pressure Plasma Jet Treatment of Poly-Îμ-caprolactone Polymer Solutions To Improve Electrospinning. ACS Applied Materials & Interfaces, 2017, 9, 33080-33090.	4.0	24
33	Nanoparticle Surface Functionality Dictates Cellular and Systemic Toxicity. Chemistry of Materials, 2017, 29, 6578-6595.	3.2	99
34	Complete Static Repopulation of Decellularized Porcine Tissues for Heart Valve Engineering: An in vitro Study. Cells Tissues Organs, 2017, 204, 270-282.	1.3	7
35	Microstructure-Property Relationship in Nanocomposite Fibers Prepared by Continuous Melt Compounding. Asian Journal of Chemistry, 2016, 28, 151-156.	0.1	0
36	Nanofiber protein adsorption affected by electrospinning physical processing parameters. Journal of the Iranian Chemical Society, 2015, 12, 1089-1097.	1.2	26

1

#	Article	IF	CITATIONS
37	Nanolipodendrosome-loaded glatiramer acetate and myogenic differentiation 1 as augmentation therapeutic strategy approaches in muscular dystrophy. International Journal of Nanomedicine, 2013, 8, 2943.	3.3	8

³⁸ Effects of a Dielectric Barrier Discharge (DBD) Treatment on Chitosan/Polyethylene Oxide Nanofibers and Their Cellular Interactions., 0,,.