Chandralekha Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2986126/publications.pdf

Version: 2024-02-01

76031 120465 6,057 227 42 65 citations h-index g-index papers 230 230 230 2103 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Challenges in addressing student difficulties with time-development of two-state quantum systems using a multiple-choice question sequence in virtual and in-person classes. European Journal of Physics, 2022, 43, 025704.	0.3	5
2	Investigating and improving student understanding of the basics for a system of identical particles. American Journal of Physics, 2022, 90, 110-117.	0.3	1
3	Gender differences in test anxiety and self-efficacy: why instructors should emphasize low-stakes formative assessments in physics courses. European Journal of Physics, 2022, 43, 035701.	0.3	15
4	Framework for unpacking students' mindsets in physics by gender. Physical Review Physics Education Research, 2022, 18, .	1.4	6
5	Whose ability and growth matter? Gender, mindset and performance in physics. International Journal of STEM Education, 2022, 9, .	2.7	7
6	Share It, Don't Split It: Can Equitable Group Work Improve Student Outcomes?. Physics Teacher, 2022, 60, 166-168.	0.2	8
7	Not feeling recognized as a physics person by instructors and teaching assistants is correlated with female students' lower grades. Physical Review Physics Education Research, 2022, 18, .	1.4	20
8	Students' sense of belonging in introductory physics course for bioscience majors predicts their grade. Physical Review Physics Education Research, 2022, 18, .	1.4	21
9	Do female and male students' physics motivational beliefs change in a two-semester introductory physics course sequence?. Physical Review Physics Education Research, 2022, 18, .	1.4	10
10	Additional unexpected benefits of rewarding students for effective problem solving strategies: supporting gender equity in physics. Physics Education, 2022, 57, 055005.	0.3	3
11	Student understanding of thermodynamic processes, variables and systems. European Journal of Physics, 2022, 43, 055705.	0.3	4
12	Development and validation of a conceptual survey instrument to evaluate students' understanding of thermodynamics. Physical Review Physics Education Research, 2021, 17, .	1.4	11
13	Views of female students who played the role of group leaders in introductory physics labs. European Journal of Physics, 2021, 42, 035702.	0.3	5
14	Underrepresented minority students receive lower grades and have higher rates of attrition across STEM disciplines: A sign of inequity?. International Journal of Science Education, 2021, 43, 1054-1089.	1.0	33
15	Improving accuracy in measuring the impact of online instruction on students' ability to transfer physics problem-solving skills. Physical Review Physics Education Research, 2021, 17, .	1.4	5
16	Effect of gender, self-efficacy, and interest on perception of the learning environment and outcomes in calculus-based introductory physics courses. Physical Review Physics Education Research, 2021, 17, .	1.4	33
17	Student understanding of the first law and second law of thermodynamics. European Journal of Physics, 2021, 42, 065702.	0.3	8
18	"Everyone is new to this― Student reflections on different aspects of online learning. American Journal of Physics, 2021, 89, 1042-1047.	0.3	7

#	Article	IF	CITATIONS
19	Damage caused by societal stereotypes: Women have lower physics self-efficacy controlling for grade even in courses in which they outnumber men. Physical Review Physics Education Research, 2021, 17, .	1.4	19
20	How perception of learning environment predicts male and female students' grades and motivational outcomes in algebra-based introductory physics courses. Physical Review Physics Education Research, 2021, 17, .	1.4	19
21	How Perception of Being Recognized or Not Recognized by Instructors as a "Physics Person―Impacts Male and Female Students' Self-Efficacy and Performance. Physics Teacher, 2020, 58, 484-487.	0.2	18
22	Lessons from transforming second-year honors physics lab. American Journal of Physics, 2020, 88, 838-844.	0.3	7
23	Changing Social Contexts to Foster Equity in College Science Courses: An Ecological-Belonging Intervention. Psychological Science, 2020, 31, 1059-1070.	1.8	70
24	Active Learning in an Inequitable Learning Environment Can Increase the Gender Performance Gap: The Negative Impact of Stereotype Threat. Physics Teacher, 2020, 58, 430-433.	0.2	22
25	Physics postgraduate teaching assistants' grading approaches: conflicting goals and practices. European Journal of Physics, 2020, 41, 055701.	0.3	3
26	Why Are There So Few Women in Physics? Reflections on the Experiences of Two Women. Physics Teacher, 2020, 58, 297-300.	0.2	25
27	Can students apply the concept of "which-path―information learned in the context of Mach–Zehnder interferometer to the double-slit experiment?. American Journal of Physics, 2020, 88, 542-550.	0.3	6
28	Hermione and the Secretary: how gendered task division in introductory physics labs can disrupt equitable learning. European Journal of Physics, 2020, 41, 035702.	0.3	48
29	Student understanding of Fermi energy, the Fermi–Dirac distribution and total electronic energy of a free electron gas. European Journal of Physics, 2020, 41, 015704.	0.3	9
30	For physics majors, gender differences in introductory physics do not inform future physics performance. European Journal of Physics, 2020, 41, 065701.	0.3	9
31	Damage caused by women's lower self-efficacy on physics learning. Physical Review Physics Education Research, 2020, 16, .	1.4	57
32	Interactive learning tutorial on quantum key distribution. Physical Review Physics Education Research, 2020, 16, .	1.4	9
33	Graduate teaching assistants' views of broken-into-parts physics problems: Preference for guidance overshadows development of self-reliance in problem solving. Physical Review Physics Education Research, 2020, 16, .	1.4	4
34	Professional development combining cognitive apprenticeship and expectancy-value theories improves lab teaching assistants' instructional views and practices. Physical Review Physics Education Research, 2020, 16, .	1.4	9
35	Holistic framework to help students learn effectively from research-validated self-paced learning tools. Physical Review Physics Education Research, 2020, 16, .	1.4	13
36	Women in physics in the United States: Reaching toward equity and inclusion. AIP Conference Proceedings, 2019, , .	0.3	5

#	Article	IF	CITATIONS
37	Workshop report: Intersecting identitiesâ€"gender and intersectionality in physics. AIP Conference Proceedings, 2019, , .	0.3	8
38	Does stereotype threat affect female students' performance in introductory physics?. AIP Conference Proceedings, 2019, , .	0.3	4
39	Exploring pedagogical content knowledge of physics instructors using the force concept inventory. AIP Conference Proceedings, 2019, , .	0.3	1
40	Improving student understanding of a system of identical particles with a fixed total energy. American Journal of Physics, 2019, 87, 583-593.	0.3	8
41	Improving student understanding of fine structure corrections to the energy spectrum of the hydrogen atom. American Journal of Physics, 2019, 87, 594-605.	0.3	10
42	Improving student understanding of quantum mechanics underlying the Stern–Gerlach experiment using a research-validated multiple-choice question sequence. European Journal of Physics, 2019, 40, 055702.	0.3	11
43	Improving student understanding of corrections to the energy spectrum of the hydrogen atom for the Zeeman effect. Physical Review Physics Education Research, 2019, 15, .	1.4	10
44	Gendered patterns in the construction of physics identity from motivational factors. Physical Review Physics Education Research, 2019, 15, .	1.4	60
45	Validation and administration of a conceptual survey on the formalism and postulates of quantum mechanics. Physical Review Physics Education Research, 2019, 15, .	1.4	23
46	Impact of traditional or evidence-based active-engagement instruction on introductory female and male studentsâ \in^{TM} attitudes and approaches to physics problem solving. Physical Review Physics Education Research, 2019, 15, .	1.4	19
47	Why female science, technology, engineering, and mathematics majors do not identify with physics: They do not think others see them that way. Physical Review Physics Education Research, 2019, 15, .	1.4	55
48	Investigating and improving introductory physics students' understanding of electric field and the superposition principle: The case of a continuous charge distribution. Physical Review Physics Education Research, 2019, 15, .	1.4	7
49	Impact of evidence-based flipped or active-engagement non-flipped courses on student performance in introductory physics. Canadian Journal of Physics, 2018, 96, 411-419.	0.4	11
50	Investigating and improving student understanding of quantum mechanical observables and their corresponding operators in Dirac notation. European Journal of Physics, 2018, 39, 015707.	0.3	16
51	Investigating and improving introductory physics students' understanding of symmetry and Gauss's law. European Journal of Physics, 2018, 39, 015702.	0.3	16
52	A longitudinal analysis of students' motivational characteristics in introductory physics courses: Gender differences. Canadian Journal of Physics, 2018, 96, 391-405.	0.4	59
53	Do students benefit from drawing productive diagrams themselves while solving introductory physics problems? The case of two electrostatics problems. European Journal of Physics, 2018, 39, 015703.	0.3	22
54	The challenges of changing teaching assistants' grading practices: Requiring students to show evidence of understanding. Canadian Journal of Physics, 2018, 96, 420-437.	0.4	12

#	Article	IF	Citations
55	Comparing introductory physics and astronomy students' attitudes and approaches to problem solving. European Journal of Physics, 2018, 39, 065702.	0.3	3
56	Do evidence-based active-engagement courses reduce the gender gap in introductory physics?. European Journal of Physics, 2018, 39, 025701.	0.3	44
57	Investigating and addressing student difficulties with the corrections to the energies of the hydrogen atom for the strong and weak field Zeeman effect. European Journal of Physics, 2018, 39, 045701.	0.3	11
58	Investigating and improving introductory physics students' understanding of electric flux. European Journal of Physics, 2018, 39, 045711.	0.3	8
59	Challenge of Helping Introductory Physics Students Transfer Their Learning by Engaging with a Self-Paced Learning Tutorial. Frontiers in ICT, 2018, 5, .	3.6	3
60	Investigating and addressing student difficulties with a <i>good</i> basis for finding perturbative corrections in the context of degenerate perturbation theory. European Journal of Physics, 2018, 39, 055701.	0.3	10
61	Case of two electrostatics problems: Can providing a diagram adversely impact introductory physics students' problem solving performance?. Physical Review Physics Education Research, 2018, 14, .	1.4	17
62	Exploring one aspect of pedagogical content knowledge of teaching assistants using the Conceptual Survey of Electricity and Magnetism. Physical Review Physics Education Research, 2018, 14, .	1.4	12
63	Is agreeing with a gender stereotype correlated with the performance of female students in introductory physics?. Physical Review Physics Education Research, 2018, 14, .	1.4	30
64	Physics teaching assistants' views of different types of introductory problems: Challenge of perceiving the instructional benefits of context-rich and multiple-choice problems. Physical Review Physics Education Research, 2018, 14, .	1.4	7
65	Female students with A's have similar physics self-efficacy as male students with C's in introductory courses: A cause for alarm?. Physical Review Physics Education Research, 2018, 14, .	1.4	105
66	How diverse are physics instructors' attitudes and approaches to teaching undergraduate level quantum mechanics?. European Journal of Physics, 2017, 38, 035703.	0.3	28
67	Investigating and improving student understanding of the expectation values of observables in quantum mechanics. European Journal of Physics, 2017, 38, 045701.	0.3	27
68	Investigating and improving student understanding of the probability distributions for measuring physical observables in quantum mechanics. European Journal of Physics, 2017, 38, 025705.	0.3	29
69	Developing and validating a conceptual survey to assess introductory physics students' understanding of magnetism. European Journal of Physics, 2017, 38, 025702.	0.3	31
70	Investigating and improving student understanding of quantum mechanics in the context of single photon interference. Physical Review Physics Education Research, 2017, 13, .	1.4	34
71	Contrasting grading approaches in introductory physics and quantum mechanics: The case of graduate teaching assistants. Physical Review Physics Education Research, 2017, 13, .	1.4	15
72	Quantum interactive learning tutorial on the double-slit experiment to improve student understanding of quantum mechanics. Physical Review Physics Education Research, 2017, 13, .	1.4	33

#	Article	IF	CITATIONS
73	Challenge of engaging all students via self-paced interactive electronic learning tutorials for introductory physics. Physical Review Physics Education Research, 2017, 13, .	1.4	19
74	Challenges in designing appropriate scaffolding to improve students' representational consistency: The case of a Gauss's law problem. Physical Review Physics Education Research, 2017, 13, .	1.4	30
75	Effectiveness of interactive tutorials in promoting "which-path―information reasoning in advanced quantum mechanics. Physical Review Physics Education Research, 2017, 13, .	1.4	17
76	Interactive tutorial to improve student understanding of single photon experiments involving a Mach–Zehnder interferometer. European Journal of Physics, 2016, 37, 024001.	0.3	46
77	Learning from Mistakes: The Effect of Students' Written Self-Diagnoses on Subsequent Problem Solving. Physics Teacher, 2016, 54, 87-90.	0.2	14
78	Improving student understanding of lock-in amplifiers. American Journal of Physics, 2016, 84, 52-56.	0.3	14
79	Impact of Guided Reflection with Peers on the Development of Effective Problem Solving Strategies and Physics Learning. Physics Teacher, 2016, 54, 295-299.	0.2	27
80	Surveying college introductory physics students' attitudes and approaches to problem solving. European Journal of Physics, 2016, 37, 055704.	0.3	26
81	Using categorization of problems as an instructional tool to help introductory students learn physics. Physics Education, 2016, 51, 025009.	0.3	33
82	Improving performance in quantum mechanics with explicit incentives to correct mistakes. Physical Review Physics Education Research, 2016, 12, .	1.4	37
83	Surveying Turkish high school and university students' attitudes and approaches to physics problem solving. Physical Review Physics Education Research, 2016, 12, .	1.4	22
84	Teaching assistants' performance at identifying common introductory student difficulties in mechanics revealed by the Force Concept Inventory. Physical Review Physics Education Research, 2016, 12, .	1.4	25
85	Development and evaluation of a tutorial to improve students' understanding of a lock-in amplifier. Physical Review Physics Education Research, 2016, 12, .	1.4	12
86	Case study evaluating Just-In-Time Teaching and Peer Instruction using clickers in a quantum mechanics course. Physical Review Physics Education Research, 2016, 12, .	1.4	31
87	Stereotype threat? Effects of inquiring about test takers $\hat{a} \in \mathbb{N}$ gender on conceptual test performance in physics. AIP Conference Proceedings, 2015, , .	0.3	9
88	Women in physics in the United States: Recruitment and retention. AIP Conference Proceedings, 2015, , .	0.3	9
89	Effect of scaffolding on helping introductory physics students solve quantitative problems involving strong alternative conceptions. Physical Review Physics Education Research, 2015, 11, .	1.7	39
90	Review of student difficulties in upper-level quantum mechanics. Physical Review Physics Education Research, 2015, 11, .	1.7	96

#	Article	IF	Citations
91	Framework for understanding the patterns of student difficulties in quantum mechanics. Physical Review Physics Education Research, 2015, 11, .	1.7	68
92	What can we learn from PER: Physics Education Research?. Physics Teacher, 2014, 52, 568-569.	0.2	14
93	Improving student understanding of addition of angular momentum in quantum mechanics. Physical Review Physics Education Research, 2013, 9, .	1.7	59
94	To use or not to use diagrams: The effect of drawing a diagram in solving introductory physics problems. , 2013, , .		15
95	Student difficulties in translating between mathematical and graphical representations in introductory physics. , 2013, , .		9
96	Core graduate courses: A missed learning opportunity?. AIP Conference Proceedings, 2013, , .	0.3	17
97	Exploring one aspect of pedagogical content knowledge of teaching assistants using the test of understanding graphs in kinematics. Physical Review Physics Education Research, 2013, 9, .	1.7	34
98	Using an isomorphic problem pair to learn introductory physics: Transferring from a two-step problem to a three-step problem. Physical Review Physics Education Research, 2013, 9, .	1.7	33
99	Teaching assistants $\hat{a} \in \mathbb{N}$ beliefs regarding example solutions in introductory physics. Physical Review Physics Education Research, 2013, 9, .	1.7	14
100	FCI normalized gain, scientific reasoning ability, thinking in physics, and gender effects. , 2012, , .		23
101	The group administered interactive questionnaire: An alternative to individual interviews. , 2012, , .		5
102	Development of a mechanics reasoning inventory. , 2012, , .		2
103	Developing a magnetism conceptual survey and assessing gender differences in student understanding of magnetism. AIP Conference Proceedings, 2012, , .	0.3	14
104	Representations for a spins-first approach to quantum mechanics. , 2012, , .		15
105	Improving students' understanding of quantum mechanics by using peer instruction tools. AIP Conference Proceedings, 2012, , .	0.3	21
106	Making sense of quantum operators, eigenstates and quantum measurements., 2012,,.		13
107	Students' difficulties with equations involving circuit elements. , 2012, , .		12
108	Using analogical problem solving with different scaffolding supports to learn about friction. , 2012, , .		2

#	Article	IF	CITATIONS
109	Should students be provided diagrams or asked to draw them while solving introductory physics problems?., 2012,,.		11
110	Students' understanding of the addition of angular momentum. , 2012, , .		8
111	Students' difficulties with quantum measurement. , 2012, , .		10
112	Improving students' understanding of quantum measurement. II. Development of research-based learning tools. Physical Review Physics Education Research, 2012, 8, .	1.7	53
113	What do students do when asked to diagnose their mistakes? Does it help them? I. An atypical quiz context. Physical Review Physics Education Research, 2012, 8, .	1.7	29
114	What do students do when asked to diagnose their mistakes? Does it help them? II. A more typical quiz context. Physical Review Physics Education Research, 2012, 8, .	1.7	33
115	Improving students' understanding of quantum measurement. I. Investigation of difficulties. Physical Review Physics Education Research, 2012, 8, .	1.7	72
116	Surveying students' understanding of quantum mechanics in one spatial dimension. American Journal of Physics, 2012, 80, 252-259.	0.3	87
117	Can multiple-choice questions simulate free-response questions?. AIP Conference Proceedings, 2012, , .	0.3	6
118	Challenges in Using Analogies. Physics Teacher, 2011, 49, 512-513.	0.2	21
119	Improving students' understanding of quantum mechanics via the Stern–Gerlach experiment. American Journal of Physics, 2011, 79, 499-507.	0.3	64
120	Assessing expertise in introductory physics using categorization task. Physical Review Physics Education Research, $2011, 7, \ldots$	1.7	44
121	Using isomorphic problems to learn introductory physics. Physical Review Physics Education Research, 2011, 7, .	1.7	43
122	Surveying Instructors' Attitudes and Approaches to Teaching Quantum Mechanics. , 2010, , .		10
123	Development of a Survey Instrument to Gauge Students' Problem-Solving Abilities. AIP Conference Proceedings, 2010, , .	0.3	4
124	Developing Thinking & Problem Solving Skills in Introductory Mechanics. , 2010, , .		6
125	Using Analogy to Solve a Three-Step Physics Problem. AIP Conference Proceedings, 2010, , .	0.3	3
126	TA Beliefs in a SCALE-UP Style Classroom. , 2010, , .		8

#	Article	IF	CITATIONS
127	Surveying Students' Understanding of Quantum Mechanics. AIP Conference Proceedings, 2010, , .	0.3	4
128	Improving Students' Understanding of Quantum Measurement. , 2010, , .		8
129	Categorization of quantum mechanics problems by professors and students. European Journal of Physics, 2010, 31, 57-68.	0.3	60
130	Surveying graduate students' attitudes and approaches to problem solving. Physical Review Physics Education Research, 2010, 6, .	1.7	37
131	Introduction to the Theme Issue on Experiments and Laboratories in Physics Education. American Journal of Physics, 2010, 78, 453-454.	0.3	2
132	Helping students learn effective problem solving strategies by reflecting with peers. American Journal of Physics, 2010, 78, 748-754.	0.3	51
133	Categorization of problems to assess and improve proficiency as teachers and learners. American Journal of Physics, 2009, 77, 73-80.	0.3	39
134	Self-Diagnosis, Scaffolding and Transfer: A Tale of Two Problems. , 2009, , .		4
135	Cognitive Issues in Learning Advanced Physics: An Example from Quantum Mechanics. AIP Conference Proceedings, 2009, , .	0.3	32
136	Problem Solving and Learning., 2009,,.		17
137	Students' Understanding of Stern Gerlach Experiment. AIP Conference Proceedings, 2009, , .	0.3	15
138	Observations Of General Learning Patterns In An Upper-Level Thermal Physics Course. AIP Conference Proceedings, 2009, , .	0.3	9
139	Assessing Expertise in Quantum Mechanics using Categorization Task., 2009,,.		11
140	Reflection and Self-Monitoring in Quantum Mechanics. , 2009, , .		9
141	Self-Diagnosis, Scaffolding and Transfer in a More Conventional Introductory Physics Problem. , 2009, , .		3
142	Rethinking Tools for Training Teaching Assistants. , 2009, , .		6
143	Centripetal acceleration: often forgotten or misinterpreted. Physics Education, 2009, 44, 464-468.	0.3	7
144	Interactive learning tutorials on quantum mechanics. American Journal of Physics, 2008, 76, 400-405.	0.3	94

#	Article	IF	CITATIONS
145	Coupling Conceptual and Quantitative Problems to Develop Expertise in Introductory Physics Students., 2008,,.		6
146	Effect of Self Diagnosis on Subsequent Problem Solving Performance., 2008,,.		9
147	Assessing student expertise in introductory physics with isomorphic problems. I. Performance on nonintuitive problem pair from introductory physics. Physical Review Physics Education Research, 2008, 4, .	1.7	45
148	Assessing student expertise in introductory physics with isomorphic problems. II. Effect of some potential factors on problem solving and transfer. Physical Review Physics Education Research, 2008, 4, .	1.7	65
149	Helping Students Learn Quantum Mechanics for Quantum Computing. AIP Conference Proceedings, 2007, , .	0.3	30
150	Improving Student Understanding of Coulomb's Law and Gauss's Law. AIP Conference Proceedings, 2007, , .	0.3	12
151	Student Difficulties with Quantum Mechanics Formalism. AIP Conference Proceedings, 2007, , .	0.3	41
152	Improving Students' Conceptual Understanding of Conductors and Insulators., 2007,,.		12
153	Physics Learning In The Context Of Scaffolded Diagnostic Tasks (I): The Experimental Setup., 2007, , .		10
154	Physics Learning in the Context of Scaffolded Diagnostic Tasks (II): Preliminary Results., 2007,,.		11
155	Student understanding of symmetry and Gauss's law of electricity. American Journal of Physics, 2006, 74, 923-936.	0.3	60
156	Improving students' understanding of quantum mechanics. Physics Today, 2006, 59, 43-49.	0.3	101
157	Assessing and improving student understanding of quantum mechanics. AIP Conference Proceedings, 2006, , .	0.3	32
158	Transfer of Learning in Quantum Mechanics. AIP Conference Proceedings, 2005, , .	0.3	34
159	Student understanding of Symmetry and Gauss's law. AIP Conference Proceedings, 2005, , .	0.3	16
160	Student understanding of rotational and rolling motion concepts. Physical Review Physics Education Research, 2005, 1 , .	1.7	68
161	Impact of peer interaction on conceptual test performance. American Journal of Physics, 2005, 73, 446-451.	0.3	49
162	Interactive video tutorials for enhancing problem-solving, reasoning, and meta-cognitive skills of introductory physics students. AIP Conference Proceedings, 2004, , .	0.3	14

#	Article	IF	Citations
163	Multiple-choice test of energy and momentum concepts. American Journal of Physics, 2003, 71, 607-617.	0.3	103
164	When physical intuition fails. American Journal of Physics, 2002, 70, 1103-1109.	0.3	93
165	Student understanding of quantum mechanics. American Journal of Physics, 2001, 69, 885-895.	0.3	160
166	Exploration center for large introductory physics courses. Physics Teacher, 2000, 38, 189-190.	0.2	4
167	Effect of polymer architecture on the miscibility of polymer/clay mixtures. Polymer International, 2000, 49, 469-471.	1.6	57
168	Theoretical Phase Diagrams of Polymer/Clay Composites:Â The Role of Grafted Organic Modifiers. Macromolecules, 2000, 33, 1089-1099.	2.2	187
169	Attraction between Surfaces in a Polymer Melt Containing Telechelic Chains:Â Guidelines for Controlling the Surface Separation in Intercalated Polymerâ'Clay Composites. Langmuir, 1999, 15, 3935-3943.	1.6	63
170	Modeling the Phase Behavior of Polymer/Clay Nanocomposites. Accounts of Chemical Research, 1999, 32, 651-657.	7.6	170
171	Stabilizing Properties of Copolymers Adsorbed on Heterogeneous Surfaces:Â A Model for the Interactions between a Polymer-Coated Influenza Virus and a Cell. Macromolecules, 1998, 31, 6369-6379.	2.2	18
172	Modeling the Interactions between Polymers and Clay Surfaces through Self-Consistent Field Theory. Macromolecules, 1998, 31, 8370-8381.	2.2	329
173	Behavior of tethered polyelectrolytes in poor solvents. Journal of Chemical Physics, 1998, 108, 1175-1183.	1.2	33
174	Attraction and Novel Phase Behavior between Like-Charged Polymer Layers. Macromolecules, 1997, 30, 7004-7007.	2.2	7
175	Coupled Enthalpic-Packing Effects on the Miscibility of Conformationally Asymmetric Polymer Blends. Macromolecules, 1997, 30, 1490-1508.	2.2	26
176	Modeling the Interactions between Polymer-Coated Surfaces. Journal of Physical Chemistry B, 1997, 101, 10614-10624.	1.2	53
177	Self-Assembly of Tethered Diblocks in Selective Solvents. Macromolecules, 1996, 29, 8254-8259.	2.2	90
178	A "Jumping Micelle―Phase Transition. Macromolecules, 1996, 29, 7637-7640.	2.2	25
179	Interactions between Polymer-Coated Surfaces in Poor Solvents. 1. Surfaces Grafted with A and B Homopolymers. Macromolecules, 1996, 29, 7559-7570.	2.2	43
180	Interactions between Polymer-Coated Surfaces in Poor Solvents. 2. Surfaces Coated with AB Diblock Copolymers. Macromolecules, 1996, 29, 8904-8911.	2.2	22

#	Article	IF	Citations
181	Compression of two polymerâ€coated surfaces in poor solvents. Journal of Chemical Physics, 1996, 105, 706-713.	1.2	28
182	Forming Patterned Films with Tethered Diblock Copolymers. Macromolecules, 1996, 29, 6338-6348.	2.2	123
183	Correlation effects and entropyâ€driven phase separation in athermal polymer blends. Journal of Chemical Physics, 1995, 103, 5814-5832.	1.2	43
184	Molecular Theory of the Miscibility of Hydrocarbon Blends. Macromolecules, 1995, 28, 8692-8695.	2.2	18
185	Microscopic Solubility-Parameter Theory of Polymer Blends: General Predictions. Macromolecules, 1995, 28, 2063-2080.	2.2	55
186	Fluctuation phenomena in structurally symmetric polymer blends. Journal of Chemical Physics, 1995, 102, 2187-2208.	1.2	28
187	Athermal stiffness blends: A comparison of Monte Carlo simulations and integral equation theory. Journal of Chemical Physics, 1995, 103, 9460-9474.	1.2	30
188	Phase Behavior of Semiflexible Diblock Copolymers. Macromolecules, 1994, 27, 2974-2986.	2.2	73
189	Temperature-dependent behavior of conjugated polymers in solution. Synthetic Metals, 1994, 62, 61-70.	2.1	7
190	Random disorder and nonlinear susceptibility of conjugated polymers. Synthetic Metals, 1993, 59, 43-57.	2.1	1
191	Strong disorder and the nonlinear susceptibility of conjugated polymers. Physical Review B, 1992, 45, 3455-3460.	1.1	8
192	Students' Conceptual Knowledge of Energy and Momentum. , 0, , .		3
193	Effectiveness of Group Interaction on Conceptual Standardized Test Performance., 0,,.		7
194	A good diagram is valuable despite the choice of a mathematical approach to problem solving. , 0, , .		6
195	Analogous Patterns of Student Reasoning Difficulties in Introductory Physics and Upper-Level Quantum Mechanics. , 0, , .		6
196	Investigating Student Difficulties with Time dependence of Expectation Values in Quantum Mechanics. , 0, , .		9
197	Investigating Student Difficulties with Dirac Notation. , 0, , .		11
198	Development and Evaluation of a Quantum Interactive Learning Tutorial on Larmor Precession Of Spin. , 0 , , .		16

#	Article	IF	Citations
199	Development of an Interactive Tutorial on Quantum Key Distribution. , 0, , .		18
200	Developing an Interactive Tutorial on a Quantum Eraser. , 0, , .		10
201	Developing an interactive tutorial on a Mach-Zehnder Interferometer with single photons. , 0, , .		10
202	Grading Practices and Considerations of Graduate Students at the Beginning of their Teaching Assignment. , 0, , .		4
203	The effect of giving explicit incentives to correct mistakes on subsequent problem solving in quantum mechanics. , 0, , .		5
204	Investigating transfer of learning in advanced quantum mechanics. , 0, , .		6
205	Student difficulties with quantum states while translating state vectors in Dirac notation to wave functions in position and momentum representations. , 0 , , .		8
206	Developing and evaluating a tutorial on the double-slit experiment. , 0, , .		8
207	Developing and evaluating an interactive tutorial on degenerate perturbation theory. , 0, , .		7
208	The impact of students' epistemological framing on a task requiring representational consistency. , 0, , .		8
209	Student difficulties with representations of quantum operators corresponding to observables. , 0, , .		6
210	The impact of peer interaction on the responses to clicker questions in an upper-level quantum mechanics course. , 0 , , .		9
211	Student difficulties with determining expectation values in quantum mechanics. , 0, , .		4
212	Physics graduate teaching assistants' beliefs about a grading rubric: Lessons learned., 0,,.		7
213	Motivational characteristics of underrepresented ethnic and racial minority students in introductory physics courses. , 0 , , .		6
214	Investigation of male and female students $\hat{a} \in \mathbb{T}^M$ motivational characteristics throughout an introductory physics course sequence. , 0, , .		8
215	Measuring the effectiveness of online problem-solving tutorials by multi-level knowledge transfer. , 0, , .		2
216	Large gender differences in physics self-efficacy at equal performance levels: A warning sign?., 0,,.		6

#	Article	IF	CITATIONS
217	Prior preparation and motivational characteristics mediate relations between gender and learning outcomes in introductory physics. , 0, , .		8
218	Evaluating the effectiveness of two methods to improve students' problem solving performance after studying an online tutorial. , 0 , , .		1
219	How the learning environment predicts male and female students $\hat{a}\in \mathbb{N}$ motivational beliefs in algebra-based introductory physics. , 0, , .		1
220	How learning environment predicts male and female students $\hat{a} \in \mathbb{T}^M$ physics motivational beliefs in introductory physics courses. , 0, , .		1
221	Performance of graduate students at identifying introductory students' difficulties related to kinematics graphs., 0,,.		4
222	Instructional Goals and Grading Practices of Graduate Students after One Semester of Teaching Experience. , 0, , .		5
223	Development and validation of a sequence of clicker questions for helping students learn addition of angular momentum in quantum mechanics., 0,,.		3
224	What $\widehat{a}\in^{TM}$ s happening in traditional and inquiry-based introductory labs? An integrative analysis at a large research university. , 0, , .		2
225	All aboard! Challenges and successes in professional development for physics lab TAs. , 0, , .		1
226	Development, validation and in-class evaluation of a sequence of clicker questions on Larmor precession of spin in quantum mechanics., 0,,.		3
227	What Makes a Good Physics Lab Partner?., 0, , .		1