Guangjin Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2986066/publications.pdf

Version: 2024-02-01

83 5,159 37 70
papers citations h-index g-index

83 83 83 6881 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing. Journal of Materials Chemistry, 2012, 22, 8525.	6.7	484
2	Atomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous Janus-like carbon frameworks for bifunctional oxygen electrocatalysis. Applied Catalysis B: Environmental, 2019, 240, 112-121.	10.8	334
3	Facile Synthesis of Auâ€Nanoparticle/Polyoxometalate/Graphene Tricomponent Nanohybrids: An Enzymeâ€Free Electrochemical Biosensor for Hydrogen Peroxide. Small, 2012, 8, 1398-1406.	5.2	228
4	Facile synthesis of single-nickel-atomic dispersed N-doped carbon framework for efficient electrochemical CO2 reduction. Applied Catalysis B: Environmental, 2019, 241, 113-119.	10.8	227
5	Unveiling Electrochemical Urea Synthesis by Coâ€Activation of CO ₂ and N ₂ with Mott–Schottky Heterostructure Catalysts. Angewandte Chemie - International Edition, 2021, 60, 10910-10918.	7.2	182
6	Polyoxometalate-Based Radiosensitization Platform for Treating Hypoxic Tumors by Attenuating Radioresistance and Enhancing Radiation Response. ACS Nano, 2017, 11, 7164-7176.	7.3	168
7	Bottomâ€Up Construction of Triazineâ€Based Frameworks as Metalâ€Free Electrocatalysts for Oxygen Reduction Reaction. Advanced Materials, 2015, 27, 3190-3195.	11.1	167
8	Heteroatom doped graphdiyne as efficient metal-free electrocatalyst for oxygen reduction reaction in alkaline medium. Journal of Materials Chemistry A, 2016, 4, 4738-4744.	5. 2	139
9	Enhanced proton and electron reservoir abilities of polyoxometalate grafted on graphene for high-performance hydrogen evolution. Energy and Environmental Science, 2016, 9, 1012-1023.	15.6	138
10	Electrochemical C–N coupling with perovskite hybrids toward efficient urea synthesis. Chemical Science, 2021, 12, 6048-6058.	3.7	138
11	Tumor microenvironment-manipulated radiocatalytic sensitizer based on bismuth heteropolytungstate for radiotherapy enhancement. Biomaterials, 2019, 189, 11-22.	5.7	132
12	Highly selective electroreduction of N ₂ and CO ₂ to urea over artificial frustrated Lewis pairs. Energy and Environmental Science, 2021, 14, 6605-6615.	15.6	130
13	Atomically Dispersed Indium Sites for Selective CO ₂ Electroreduction to Formic Acid. ACS Nano, 2021, 15, 5671-5678.	7.3	121
14	Molecular Interactions between Wellsâ^'Dawson Type Polyoxometalates and Human Serum Albumin. Biomacromolecules, 2008, 9, 812-817.	2.6	103
15	CdS nanorods/reduced graphene oxide nanocomposites for photocatalysis and electrochemical sensing. Journal of Materials Chemistry A, 2013, 1, 5158.	5.2	101
16	Polyoxometalate-assisted formation of CoSe/MoSe ₂ heterostructures with enhanced oxygen evolution activity. Journal of Materials Chemistry A, 2019, 7, 3317-3326.	5. 2	94
17	Cobalt Single Atoms Immobilized N-Doped Carbon Nanotubes for Enhanced Bifunctional Catalysis toward Oxygen Reduction and Oxygen Evolution Reactions. ACS Applied Energy Materials, 2018, 1, 3283-3291.	2.5	90
18	Artificial frustrated Lewis pairs facilitating the electrochemical N2 and CO2 conversion to urea. Chem Catalysis, 2022, 2, 309-320.	2.9	89

#	Article	lF	Citations
19	Controlled synthesis of CdS micro/nano leaves with (0001) facets exposed: enhanced photocatalytic activity toward hydrogen evolution. Journal of Materials Chemistry, 2012, 22, 23815.	6.7	83
20	Green chemical decoration of multiwalled carbon nanotubes with polyoxometalate-encapsulated gold nanoparticles: visible light photocatalytic activities. Journal of Materials Chemistry, 2011, 21, 2282-2287.	6.7	82
21	Facile synthesis of a bismuth nanostructure with enhanced selectivity for electrochemical conversion of CO ₂ to formate. Nanoscale, 2019, 11, 7805-7812.	2.8	80
22	Facile synthesis of a Ag nanoparticle/polyoxometalate/carbon nanotube tri-component hybrid and its activity in the electrocatalysis of oxygen reduction. Journal of Materials Chemistry, 2011, 21, 14917.	6.7	78
23	Polyoxometalate-mediated green synthesis of a 2D silver nanonet/graphene nanohybrid as a synergistic catalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2013, 1, 11961.	5. 2	75
24	Gadolinium polytungstate nanoclusters: a new theranostic with ultrasmall size and versatile properties for dual-modal MR/CT imaging and photothermal therapy/radiotherapy of cancer. NPG Asia Materials, 2016, 8, e273-e273.	3.8	75
25	A general green strategy for fabricating metal nanoparticles/polyoxometalate/graphene tri-component nanohybrids: enhanced electrocatalytic properties. Journal of Materials Chemistry, 2012, 22, 3319.	6.7	73
26	Host–guest molecular interaction promoted urea electrosynthesis over a precisely designed conductive metal–organic framework. Energy and Environmental Science, 2022, 15, 2084-2095.	15.6	73
27	ZnO@ZnS hollow dumbbells–graphene composites as high-performance photocatalysts and alcohol sensors. New Journal of Chemistry, 2012, 36, 2593.	1.4	67
28	Self-assembly of CdS quantum dots with polyoxometalate encapsulated gold nanoparticles: enhanced photocatalytic activities. Journal of Materials Chemistry A, 2013, 1, 1488-1494.	5.2	64
29	Manganese Vanadium Oxide–N-Doped Reduced Graphene Oxide Composites as Oxygen Reduction and Oxygen Evolution Electrocatalysts. ACS Applied Materials & Samp; Interfaces, 2018, 10, 44511-44517.	4.0	62
30	Cu ₂ ZnSnS ₄ –Ag ₂ S Nanoscale p–n Heterostructures as Sensitizers for Photoelectrochemical Water Splitting. Langmuir, 2015, 31, 10555-10561.	1.6	55
31	Molecular Interaction between a Gadolinium–Polyoxometalate and Human Serum Albumin. European Journal of Inorganic Chemistry, 2009, 2009, 5189-5193.	1.0	49
32	High Oxygen Reduction Reaction Performances of Cathode Materials Combining Polyoxometalates, Coordination Complexes, and Carboneous Supports. ACS Applied Materials & Enterfaces, 2017, 9, 38486-38498.	4.0	48
33	Br/Co/N Co-doped porous carbon frameworks with enriched defects for high-performance electrocatalysis. Journal of Materials Chemistry A, 2020, 8, 10865-10874.	5.2	47
34	Multinuclear Cobalt(II)-Containing Heteropolytungstates: Structure, Magnetism, and Electrochemistry. Inorganic Chemistry, 2014, 53, 5179-5188.	1.9	42
35	Engineering Surface Atomic Architecture of NiTe Nanocrystals Toward Efficient Electrochemical N ₂ Fixation. Advanced Functional Materials, 2020, 30, 2004208.	7.8	42
36	Design and optical investigations of a spironaphthoxazine/polyoxometalate/spiropyran triad. Journal of Materials Chemistry C, 2014, 2, 4748-4758.	2.7	41

#	Article	IF	CITATIONS
37	Tuning carbon nanotube-grafted core-shell-structured cobalt selenide@carbon hybrids for efficient oxygen evolution reaction. Journal of Colloid and Interface Science, 2019, 533, 503-512.	5.0	40
38	Crâ€Doped Pd Metallene Endows a Practical Formaldehyde Sensor New Limit and High Selectivity. Advanced Materials, 2022, 34, e2105276.	11.1	40
39	Controlled synthesis of double-shelled CeO2 hollow spheres and enzyme-free electrochemical bio-sensing properties for uric acid. Journal of Materials Chemistry, 2012, 22, 17079.	6.7	38
40	Electrochemical-reduction-assisted assembly of ternary Ag nanoparticles/polyoxometalate/graphene nanohybrids and their activity in the electrocatalysis of oxygen reduction. RSC Advances, 2015, 5, 74447-74456.	1.7	38
41	Synthesis of polyoxometalates derived bifunctional catalyst towards efficient overall water splitting in neutral and alkaline medium. Journal of Colloid and Interface Science, 2018, 532, 774-781.	5.0	38
42	Unveiling Electrochemical Urea Synthesis by Coâ€Activation of CO ₂ and N ₂ with Mott–Schottky Heterostructure Catalysts. Angewandte Chemie, 2021, 133, 11005-11013.	1.6	38
43	Metalâ€Free Photochemical Degradation of Ligninâ€Derived Aryl Ethers and Lignin by Autologous Radicals through Ionic Liquid Induction. ChemSusChem, 2019, 12, 4005-4013.	3.6	37
44	Polyoxometalate-Assisted Galvanic Replacement Synthesis of Silver Hierarchical Dendritic Structures. Crystal Growth and Design, 2011, 11, 3424-3431.	1.4	34
45	Bottomâ€up Design of Bimetallic Cobalt–Molybdenum Carbides/Oxides for Overall Water Splitting. Chemistry - A European Journal, 2020, 26, 4157-4164.	1.7	33
46	Support effect boosting the electrocatalytic N ₂ reduction activity of Ni ₂ P/N,P-codoped carbon nanosheet hybrids. Journal of Materials Chemistry A, 2020, 8, 2691-2700.	5.2	32
47	Work function regulation of nitrogen-doped carbon nanotubes triggered by metal nanoparticles for efficient electrocatalytic nitrogen fixation. Journal of Materials Chemistry A, 2020, 8, 26066-26074.	5.2	32
48	PdO@Polyoxometalate Nanostructures as Green Electrocatalysts: Illustrative Example of Hydrogen Production. Materials, 2010, 3, 741-754.	1.3	31
49	Cu-incorporated PtBi intermetallic nanofiber bundles enhance alcohol oxidation electrocatalysis with high CO tolerance. Journal of Materials Chemistry A, 2021, 9, 20676-20684.	5.2	31
50	A flavone-based turn-on fluorescent probe for intracellular cysteine/homocysteine sensing with high selectivity. Talanta, 2016, 146, 41-48.	2.9	29
51	Polyoxometalate-Mediated Green Synthesis of Graphene and Metal Nanohybrids: High-Performance Electrocatalysts. Journal of Cluster Science, 2014, 25, 711-740.	1.7	28
52	An overall water-splitting polyoxometalate catalyst for the electromicrobial conversion of CO ₂ in neutral water. Journal of Materials Chemistry A, 2018, 6, 9915-9921.	5.2	27
53	Emerging investigator series: dispersed transition metals on a nitrogen-doped carbon nanoframework for environmental hydrogen peroxide detection. Environmental Science: Nano, 2018, 5, 1834-1843.	2.2	27

Sequential Synthesis of 3 d–3 d, 3 d–4 d, and 3 d–5 d Hybrid Polyoxometalates and Application to the Electrocatalytic Oxygen Reduction Reactions. Chemistry - A European Journal, 2015, 21, 12153-12160.

#	Article	IF	Citations
55	Mixed-Valent Mn16-Containing Heteropolyanions: Tuning of Oxidation State and Associated Physicochemical Properties. Inorganic Chemistry, 2016, 55, 2755-2764.	1.9	25
56	Boron Doped ZIFâ€67@Graphene Derived Carbon Electrocatalyst for Highly Efficient Enzymeâ€Free Hydrogen Peroxide Biosensor. Advanced Materials Technologies, 2017, 2, 1700224.	3.0	22
57	Top-down synthesis of polyoxometalate-like sub-nanometer molybdenum-oxo clusters as high-performance electrocatalysts. Chemical Science, 2020, 11, 1043-1051.	3.7	21
58	Boosted polysulfides regulation by iron carbide nanoparticles-embedded porous biomass-derived carbon toward superior lithium–sulfur batteries. Journal of Colloid and Interface Science, 2022, 605, 129-137.	5.0	21
59	Artificial photosynthesis for solar hydrogen generation over transition-metal substituted Keggin-type titanium tungstate. New Journal of Chemistry, 2014, 38, 1315-1320.	1.4	17
60	Cu ₂ ZnSnS ₄ Nanocrystals as Highly Active and Stable Electrocatalysts for the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2016, 120, 24265-24270.	1.5	17
61	15-Copper(<scp>ii</scp>)-containing 36-tungsto-4-silicates(<scp>iv</scp>) [Cu ₁₅ O ₃₄ (OH) ₁₀ X(A-α-SiW ₉ O ₃₄) _{4<td>0>]²</td><td>25â^³</td>}	0>] ²	25â^³
62	CoNi nano-alloy anchored on biomass-derived N-doped carbon frameworks for enhanced oxygen reduction and evolution reactions. Electrochimica Acta, 2022, 402, 139555.	2.6	17
63	Ti ₂ -Containing 18-Tungsto-2-Arsenate(III) Monolacunary Host and the Incorporation of a Phenylantimony(III) Guest. Inorganic Chemistry, 2015, 54, 10530-10532.	1.9	16
64	Nitrogen-rich core-shell structured particles consisting of carbonized zeolitic imidazolate frameworks and reduced graphene oxide for amperometric determination of hydrogen peroxide. Mikrochimica Acta, 2018, 185, 501.	2.5	15
65	Polyoxometalate–CdS quantum dots co-sensitized TiO2 nanorods array: enhanced charge separation and light to electricity conversion efficiency. RSC Advances, 2013, 3, 8351.	1.7	14
66	A Colorimetric Fluorescent Probe for SO2 Derivatives-Bisulfite and Sulfite at Nanomolar Level. Journal of Fluorescence, 2017, 27, 1767-1775.	1.3	14
67	Simple and efficient polyoxomolybdate-mediated synthesis of novel graphene and metal nanohybrids for versatile applications. Journal of Colloid and Interface Science, 2018, 514, 507-516.	5.0	14
68	Trimetallic synergy in dendritic intermetallic PtSnBi nanoalloys for promoting electrocatalytic alcohol oxidation. Journal of Colloid and Interface Science, 2021, 602, 504-512.	5.0	13
69	First Examples of Hybrids Based on Graphene and a Ringâ€Shaped Macrocyclic Polyoxometalate: Synthesis, Characterization, and Properties. European Journal of Inorganic Chemistry, 2013, 2013, 1882-1889.	1.0	12
70	Photocatalytic Reduction Synthesis of Ternary Ag Nanoparticles/Polyoxometalate/Graphene Nanohybrids and Its Activity in the Electrocatalysis of Oxygen Reduction. Journal of Cluster Science, 2016, 27, 241-256.	1.7	12
71	Iron and Iodine Co-doped Triazine-Based Frameworks with Efficient Oxygen Reduction Reaction in Alkaline and Acidic Media. ACS Sustainable Chemistry and Engineering, 2019, 7, 11787-11794.	3.2	12
72	Boosting oxygen evolution reactivity by modulating electronic structure and honeycomb-like architecture in Ni2P/N,P-codoped carbon hybrids. Green Energy and Environment, 2021, 6, 866-874.	4.7	12

#	Article	IF	CITATIONS
73	Efficient Tetra-Functional Electrocatalyst with Synergetic Effect of Different Active Sites for Multi-Model Energy Conversion and Storage. ACS Applied Materials & Samp; Interfaces, 2020, 12, 23017-23027.	4.0	12
74	Iron/nickel nano-alloy encapsulated in nitrogen-doped carbon framework for CO2 electrochemical conversion with prominent CO selectivity. Journal of Power Sources, 2020, 449, 227496.	4.0	10
75	Local charge rearrangement to boost the chemical adsorption and catalytic conversion of polysulfides for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2021, 9, 7566-7574.	5.2	10
76	Polyoxometalate-like sub-nanometer molybdenum(<scp>vi</scp>)-oxo clusters for sensitive, selective and stable H ₂ O ₂ sensing. Chemical Communications, 2020, 56, 9465-9468.	2.2	8
77	InOOH as an efficient bidirectional catalyst for accelerated polysulfides conversion to enable high-performance lithium–sulfur batteries. Journal of Colloid and Interface Science, 2022, 610, 418-426.	5.0	7
78	Electrocatalysts: Bottomâ€Up Construction of Triazineâ€Based Frameworks as Metalâ€Free Electrocatalysts for Oxygen Reduction Reaction (Adv. Mater. 20/2015). Advanced Materials, 2015, 27, 3189-3189.	11.1	6
79	CoO _x /UiO-66 and NiO/UiO-66 heterostructures with UiO-66 frameworks for enhanced oxygen evolution reactions. New Journal of Chemistry, 2021, 45, 14822-14830.	1.4	6
80	Synthesis, structure, electrochemistry and magnetism of cobalt-, nickel- and zinc-containing [M4(OH)3(H2O)2(α-SiW10O36.5)2]13â^' (M = Co2+, Ni2+, and Zn2+). Dalton Transactions, 2021, 50, 3923-393	3 d .6	5
81	Biosensors: Boron Doped ZIFâ€67@Graphene Derived Carbon Electrocatalyst for Highly Efficient Enzymeâ€Free Hydrogen Peroxide Biosensor (Adv. Mater. Technol. 12/2017). Advanced Materials Technologies, 2017, 2, 1770058.	3.0	4
82	Controlled Synthesis of Silver Micro/Nano Leaves for Oxygen Reduction and CO2 Reduction. Journal of Nanoscience and Nanotechnology, 2018, 18, 5763-5769.	0.9	0
83	Surface Atomic Architecture: Engineering Surface Atomic Architecture of NiTe Nanocrystals Toward Efficient Electrochemical N ₂ Fixation (Adv. Funct. Mater. 39/2020). Advanced Functional Materials, 2020, 30, 2070263.	7.8	0