
Bridget R Scanlon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2986063/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ground water and climate change. Nature Climate Change, 2013, 3, 322-329.	8.1	1,513
2	Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeology Journal, 2002, 10, 18-39.	0.9	1,231
3	Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9320-9325.	3.3	951
4	Global synthesis of groundwater recharge in semiarid and arid regions. Hydrological Processes, 2006, 20, 3335-3370.	1.1	862
5	Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality. Water Resources Research, 2007, 43, .	1.7	530
6	Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Global Change Biology, 2005, 11, 1577-1593.	4.2	510
7	Impact of water withdrawals from groundwater and surface water on continental water storage variations. Journal of Geodynamics, 2012, 59-60, 143-156.	0.7	477
8	Water Use for Shale-Gas Production in Texas, U.S Environmental Science & Technology, 2012, 46, 3580-3586.	4.6	419
9	Ecohydrology of water-limited environments: A scientific vision. Water Resources Research, 2006, 42, .	1.7	397
10	Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites. Water Resources Research, 2014, 50, 1131-1151.	1.7	394
11	Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1080-E1089.	3.3	376
12	Global evaluation of new <scp>GRACE</scp> mascon products for hydrologic applications. Water Resources Research, 2016, 52, 9412-9429.	1.7	344
13	Can we simulate regional groundwater flow in a karst system using equivalent porous media models? Case study, Barton Springs Edwards aquifer, USA. Journal of Hydrology, 2003, 276, 137-158.	2.3	338
14	Daily gridded meteorological variables in Brazil (1980–2013). International Journal of Climatology, 2016, 36, 2644-2659.	1.5	324
15	Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA. Water Resources Research, 2012, 48, .	1.7	317
16	GRACE satellite monitoring of large depletion in water storage in response to the 2011 drought in Texas. Geophysical Research Letters, 2013, 40, 3395-3401.	1.5	315
17	대ĩ~ĩ̀µ í•̃ī−'ế €ë¦¬ì•̃ 60ë"ê°" ì"계ì•ì§"ë³′. Hydrogeology Journal, 2019, 27, 1-30.	0.9	304
18	A global data set of the extent of irrigated land from 1900 to 2005. Hydrology and Earth System Sciences, 2015, 19, 1521-1545.	1.9	301

#	Article	IF	CITATIONS
19	Implications of projected climate change for groundwater recharge in the western United States. Journal of Hydrology, 2016, 534, 124-138.	2.3	299
20	Use of flow modeling to assess sustainability of groundwater resources in the North China Plain. Water Resources Research, 2013, 49, 159-175.	1.7	274
21	GRACE Hydrological estimates for small basins: Evaluating processing approaches on the High Plains Aquifer, USA. Water Resources Research, 2010, 46, .	1.7	258
22	South-to-North Water Diversion stabilizing Beijing's groundwater levels. Nature Communications, 2020, 11, 3665.	5.8	254
23	How can Big Data and machine learning benefit environment and water management: a survey of methods, applications, and future directions. Environmental Research Letters, 2019, 14, 073001.	2.2	233
24	Comparison of Water Use for Hydraulic Fracturing for Unconventional Oil and Gas versus Conventional Oil. Environmental Science & Technology, 2014, 48, 12386-12393.	4.6	225
25	Global analysis of spatiotemporal variability in merged total water storage changes using multiple GRACE products and global hydrological models. Remote Sensing of Environment, 2017, 192, 198-216.	4.6	223
26	Local and global factors controlling waterâ€energy balances within the Budyko framework. Geophysical Research Letters, 2013, 40, 6123-6129.	1.5	214
27	Have GRACE satellites overestimated groundwater depletion in the Northwest India Aquifer?. Scientific Reports, 2016, 6, 24398.	1.6	202
28	Source and Fate of Hydraulic Fracturing Water in the Barnett Shale: A Historical Perspective. Environmental Science & Technology, 2014, 48, 2464-2471.	4.6	188
29	The foodâ€energyâ€water nexus: Transforming science for society. Water Resources Research, 2017, 53, 3550-3556.	1.7	180
30	Global analysis of approaches for deriving total water storage changes from GRACE satellites. Water Resources Research, 2015, 51, 2574-2594.	1.7	179
31	Evaluation of groundwater storage monitoring with the GRACE satellite: Case study of the High Plains aquifer, central United States. Water Resources Research, 2009, 45, .	1.7	168
32	Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa. Nature, 2019, 572, 230-234.	13.7	168
33	Comparison of seasonal terrestrial water storage variations from GRACE with groundwaterâ€level measurements from the High Plains Aquifer (USA). Geophysical Research Letters, 2007, 34, .	1.5	166
34	Potential climate change effects on groundwater recharge in the High Plains Aquifer, USA. Water Resources Research, 2013, 49, 3936-3951.	1.7	156
35	Widespread Natural Perchlorate in Unsaturated Zones of the Southwest United States. Environmental Science & Technology, 2007, 41, 4522-4528.	4.6	147
36	Hydrogeochemical comparison and effects of overlapping redox zones on groundwater arsenic near the Western (Bhagirathi sub-basin, India) and Eastern (Meghna sub-basin, Bangladesh) margins of the Bengal Basin. Journal of Contaminant Hydrology, 2008, 99, 31-48.	1.6	145

#	Article	IF	CITATIONS
37	Evaluation of moisture flux from chloride data in desert soils. Journal of Hydrology, 1991, 128, 137-156.	2.3	144
38	Field study of spatial variability in unsaturated flow beneath and adjacent to playas. Water Resources Research, 1997, 33, 2239-2252.	1.7	134
39	Variations in flow and transport in thick desert vadose zones in response to paleoclimatic forcing (0-90 kyr): Field measurements, modeling, and uncertainties. Water Resources Research, 2003, 39, .	1.7	134
40	Elevated arsenic in deeper groundwater of the western Bengal basin, India: Extent and controls from regional to local scale. Applied Geochemistry, 2011, 26, 600-613.	1.4	134
41	Groundwater Storage Changes: Present Status from GRACE Observations. Surveys in Geophysics, 2016, 37, 397-417.	2.1	133
42	Combining Physically Based Modeling and Deep Learning for Fusing GRACE Satellite Data: Can We Learn From Mismatch?. Water Resources Research, 2019, 55, 1179-1195.	1.7	131
43	Ecological controls on water-cycle response to climate variability in deserts. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6033-6038.	3.3	129
44	Water Issues Related to Transitioning from Conventional to Unconventional Oil Production in the Permian Basin. Environmental Science & Technology, 2017, 51, 10903-10912.	4.6	129
45	Estimating groundwater recharge in a cold desert environment in northern China using chloride. Hydrogeology Journal, 2008, 16, 893-910.	0.9	125
46	Impacts of soil conservation on groundwater recharge in the semi-arid Loess Plateau, China. Hydrogeology Journal, 2011, 19, 865-875.	0.9	123
47	Water and heat fluxes in desert soils: 2. Numerical simulations. Water Resources Research, 1994, 30, 721-733.	1.7	121
48	Hydrologic issues in arid, unsaturated systems and implications for contaminant transport. Reviews of Geophysics, 1997, 35, 461-490.	9.0	120
49	Assessing controls on diffuse groundwater recharge using unsaturated flow modeling. Water Resources Research, 2005, 41, .	1.7	118
50	GRACE satellite observed hydrological controls on interannual and seasonal variability in surface greenness over mainland Australia. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 2245-2260.	1.3	118
51	Enhancing drought resilience with conjunctive use and managed aquifer recharge in California and Arizona. Environmental Research Letters, 2016, 11, 035013.	2.2	116
52	Intercode comparisons for simulating water balance of surficial sediments in semiarid regions. Water Resources Research, 2002, 38, 59-1-59-16.	1.7	111
53	Can we beneficially reuse produced water from oil and gas extraction in the U.S.?. Science of the Total Environment, 2020, 717, 137085.	3.9	111
54	Uncertainties in estimating water fluxes and residence times using environmental tracers in an arid unsaturated zone. Water Resources Research, 2000, 36, 395-409.	1.7	107

#	Article	IF	CITATIONS
55	GRACE water storage estimates for the Middle East and other regions with significant reservoir and lake storage. Hydrology and Earth System Sciences, 2013, 17, 4817-4830.	1.9	106
56	Elevated naturally occurring arsenic in a semiarid oxidizing system, Southern High Plains aquifer, Texas, USA. Applied Geochemistry, 2009, 24, 2061-2071.	1.4	103
57	Introduction to special section on Impacts of Land Use Change on Water Resources. Water Resources Research, 2009, 45, .	1.7	101
58	Solute chemistry and arsenic fate in aquifers between the Himalayan foothills and Indian craton (including central Gangetic plain): Influence of geology and geomorphology. Geochimica Et Cosmochimica Acta, 2012, 90, 283-302.	1.6	98
59	Impacts of thickening unsaturated zone on groundwater recharge in the North China Plain. Journal of Hydrology, 2016, 537, 260-270.	2.3	95
60	Long-term groundwater storage change in Victoria, Australia from satellite gravity and in situ observations. Global and Planetary Change, 2016, 139, 56-65.	1.6	95
61	Evaluation of liquid and vapor water flow in desert soils based on chlorine 36 and tritium tracers and nonisothermal flow simulations. Water Resources Research, 1992, 28, 285-297.	1.7	93
62	Recent La Plata basin drought conditions observed by satellite gravimetry. Journal of Geophysical Research, 2010, 115, .	3.3	91
63	Drought and the water–energy nexus in Texas. Environmental Research Letters, 2013, 8, 045033.	2.2	91
64	Soil Water Content Monitoring Using Electromagnetic Induction. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2003, 129, 1028-1039.	1.5	90
65	Energy/water budgets and productivity of the typical croplands irrigated with groundwater and surface water in the North China Plain. Agricultural and Forest Meteorology, 2013, 181, 133-142.	1.9	88
66	Evapotranspiration Estimation for Tibetan Plateau Headwaters Using Conjoint Terrestrial and Atmospheric Water Balances and Multisource Remote Sensing. Water Resources Research, 2019, 55, 8608-8630.	1.7	87
67	Tracking Seasonal Fluctuations in Land Water Storage Using Global Models and GRACE Satellites. Geophysical Research Letters, 2019, 46, 5254-5264.	1.5	84
68	Will water scarcity in semiarid regions limit hydraulic fracturing of shale plays?. Environmental Research Letters, 2014, 9, 124011.	2.2	83
69	Semiarid unsaturated zone chloride profiles: Archives of past land use change impacts on water resources in the southern High Plains, United States. Water Resources Research, 2007, 43, .	1.7	79
70	Hydrologic implications of <scp>GRACE</scp> satellite data in the <scp>C</scp> olorado <scp>R</scp> iver <scp>B</scp> asin. Water Resources Research, 2015, 51, 9891-9903.	1.7	79
71	Evaluation of Evapotranspirative Covers for Waste Containment in Arid and Semiarid Regions in the Southwestern USA. Vadose Zone Journal, 2005, 4, 55-71.	1.3	78
72	Relative importance of climate and land surface changes on hydrologic changes in the US Midwest since the 1930s: Implications for biofuel production. Journal of Hydrology, 2013, 497, 110-120.	2.3	77

#	Article	IF	CITATIONS
73	Probabilistic analysis of the effects of climate change on groundwater recharge. Water Resources Research, 2010, 46, .	1.7	73
74	Comparison of Groundwater Storage Changes From GRACE Satellites With Monitoring and Modeling of Major U.S. Aquifers. Water Resources Research, 2020, 56, e2020WR027556.	1.7	73
75	Performance evaluation of rainfall estimates by TRMM Multiâ€satellite Precipitation Analysis 3B42V6 and V7 over Brazil. Journal of Geophysical Research D: Atmospheres, 2015, 120, 9426-9436.	1.2	72
76	Water and heat fluxes in desert soils: 1. Field studies. Water Resources Research, 1994, 30, 709-719.	1.7	71
77	Single-well push–pull test for assessing potential impacts of CO2 leakage on groundwater quality in a shallow Gulf Coast aquifer in Cranfield, Mississippi. International Journal of Greenhouse Gas Control, 2013, 18, 375-387.	2.3	70
78	Relationship between geomorphic settings and unsaturated flow in an arid setting. Water Resources Research, 1999, 35, 983-999.	1.7	69
79	El Niño–Southern Oscillation and Pacific Decadal Oscillation impacts on precipitation in the southern and central United States: Evaluation of spatial distribution and predictions. Water Resources Research, 2007, 43, .	1.7	69
80	Will Water Issues Constrain Oil and Gas Production in the United States?. Environmental Science & Technology, 2020, 54, 3510-3519.	4.6	65
81	Theme issue on groundwater recharge. Hydrogeology Journal, 2002, 10, 3-4.	0.9	61
82	A new drought index that considers the joint effects of climate and land surface change. Water Resources Research, 2017, 53, 3262-3278.	1.7	60
83	Inventories and mobilization of unsaturated zone sulfate, fluoride, and chloride related to land use change in semiarid regions, southwestern United States and Australia. Water Resources Research, 2009, 45, .	1.7	59
84	Impacts of varying agricultural intensification on crop yield and groundwater resources: comparison of the North China Plain and US High Plains. Environmental Research Letters, 2015, 10, 044013.	2.2	58
85	Groundwater Recharge through Vertisols: Irrigated Cropland vs. Natural Land, Israel. Vadose Zone Journal, 2011, 10, 662-674.	1.3	57
86	Chemical similarities among physically distinct spring types in a karst terrain. Journal of Hydrology, 1987, 89, 259-279.	2.3	56
87	Recarga de aguas subterrÃ;neas en sistemas de dunas naturales y ecosistemas agrÃcolas en la región del desierto de Thar, Rajasthan, India. Hydrogeology Journal, 2010, 18, 959-972.	0.9	56
88	Reservoir storage and hydrologic responses to droughts in the ParanÃ; River basin, south-eastern Brazil. Hydrology and Earth System Sciences, 2016, 20, 4673-4688.	1.9	56
89	Impacts of Land Use Change on Nitrogen Cycling Archived in Semiarid Unsaturated Zone Nitrate Profiles, Southern High Plains, Texas. Environmental Science & Technology, 2008, 42, 7566-7572.	4.6	55
90	Mapping groundwater recharge in Africa from ground observations and implications for water security. Environmental Research Letters, 2021, 16, 034012.	2.2	55

#	Article	IF	CITATIONS
91	Calibration and evaluation of a semi-distributed watershed model of Sub-Saharan Africa using GRACE data. Hydrology and Earth System Sciences, 2012, 16, 3083-3099.	1.9	54
92	Impact of agroecosystems on groundwater resources in the Central High Plains, USA. Agriculture, Ecosystems and Environment, 2010, 139, 700-713.	2.5	51
93	Deriving theoretical boundaries to address scale dependencies of triangle models for evapotranspiration estimation. Journal of Geophysical Research, 2012, 117, .	3.3	51
94	Sugarcane land use and water resources assessment in the expansion area in Brazil. Journal of Cleaner Production, 2016, 133, 1318-1327.	4.6	51
95	Reconstruction of GRACE Total Water Storage Through Automated Machine Learning. Water Resources Research, 2021, 57, e2020WR028666.	1.7	50
96	Mobilization of Arsenic and Other Naturally Occurring Contaminants during Managed Aquifer Recharge: A Critical Review. Environmental Science & Technology, 2021, 55, 2208-2223.	4.6	46
97	Long-term groundwater recharge rates across India by in situ measurements. Hydrology and Earth System Sciences, 2019, 23, 711-722.	1.9	43
98	Controls on high and low groundwater arsenic on the opposite banks of the lower reaches of River Ganges, Bengal basin, India. Science of the Total Environment, 2018, 645, 1371-1387.	3.9	40
99	Managing Basin cale Fluid Budgets to Reduce Injectionâ€Induced Seismicity from the Recent U.S. Shale Oil Revolution. Seismological Research Letters, 2019, 90, 171-182.	0.8	40
100	Evaluation of Electromagnetic Induction as a Reconnaissance Technique to Characterize Unsaturated Flow in an Arid Setting. Ground Water, 1999, 37, 296-304.	0.7	39
101	GMD perspective: The quest to improve the evaluation of groundwater representation in continental- to global-scale models. Geoscientific Model Development, 2021, 14, 7545-7571.	1.3	38
102	Managing the Increasing Water Footprint of Hydraulic Fracturing in the Bakken Play, United States. Environmental Science & Technology, 2016, 50, 10273-10281.	4.6	37
103	Basinâ€5cale River Runoff Estimation From GRACE Gravity Satellites, Climate Models, and In Situ Observations: A Case Study in the Amazon Basin. Water Resources Research, 2020, 56, e2020WR028032.	1.7	36
104	What caused the spring intensification and winter demise of the 2011 drought over Texas?. Climate Dynamics, 2016, 47, 3077-3090.	1.7	35
105	Impact of Artificial Recharge on Dissolved Noble Gases in Groundwater in California. Environmental Science & Technology, 2008, 42, 1017-1023.	4.6	34
106	Controls on Water Use for Thermoelectric Generation: Case Study Texas, U.S Environmental Science & Technology, 2013, 47, 11326-11334.	4.6	34
107	Human Intervention Will Stabilize Groundwater Storage Across the North China Plain. Water Resources Research, 2022, 58, .	1.7	34
108	Using GRACE Satellite Gravimetry for Assessing Large-Scale Hydrologic Extremes. Remote Sensing, 2017, 9, 1287.	1.8	33

#	Article	IF	CITATIONS
109	Moisture and solute flux along preferred pathways characterized by fissured sediments in desert soils. Journal of Contaminant Hydrology, 1992, 10, 19-46.	1.6	32
110	Role of Groundwater in Sustaining Northern Himalayan Rivers. Geophysical Research Letters, 2021, 48, e2020GL092354.	1.5	32
111	Effects of climate and irrigation on GRACE-based estimates of water storage changes in major US aquifers. Environmental Research Letters, 2021, 16, 094009.	2.2	31
112	Managed aquifer recharge as a drought mitigation strategy in heavily-stressed aquifers. Environmental Research Letters, 2021, 16, 014046.	2.2	31
113	Evaluation of Noble Gas Recharge Temperatures in a Shallow Unconfined Aquifer. Ground Water, 2009, 47, 646-659.	0.7	30
114	Global groundwater: from scarcity to security through sustainability and solutions. , 2021, , 3-20.		30
115	Physical Controls on Hydrochemical Variability in the Inner Bluegrass Karst Region of Central Kentuckya. Ground Water, 1989, 27, 639-646.	0.7	29
116	Using data assimilation to identify diffuse recharge mechanisms from chemical and physical data in the unsaturated zone. Water Resources Research, 2009, 45, .	1.7	29
117	Long-term increase in diffuse groundwater recharge following expansion of rainfed cultivation in the Sahel, West Africa. Hydrogeology Journal, 2014, 22, 1293-1305.	0.9	29
118	Projecting the Water Footprint Associated with Shale Resource Production: Eagle Ford Shale Case Study. Environmental Science & Technology, 2017, 51, 14453-14461.	4.6	29
119	The Texas Soil Observation Network:A Comprehensive Soil Moisture Dataset for Remote Sensing and Land Surface Model Validation. Vadose Zone Journal, 2019, 18, 1-20.	1.3	28
120	Linkages between GRACE water storage, hydrologic extremes, and climate teleconnections in major African aquifers. Environmental Research Letters, 2022, 17, 014046.	2.2	28
121	Unsaturated Zone Arsenic Distribution and Implications for Groundwater Contamination. Environmental Science & Technology, 2007, 41, 6914-6919.	4.6	27
122	Representing water scarcity in future agricultural assessments. Anthropocene, 2017, 18, 15-26.	1.6	27
123	Field Test of the Superconducting Gravimeter as a Hydrologic Sensor. Ground Water, 2012, 50, 442-449.	0.7	24
124	New improved Brazilian daily weather gridded data (1961–2020). International Journal of Climatology, 2022, 42, 8390-8404.	1.5	24
125	Relationships between groundwater contamination and major-ion chemistry in a karst aquifer. Journal of Hydrology, 1990, 119, 271-291.	2.3	23
126	Effects of irrigated agroecosystems: 1. Quantity of soil water and groundwater in the southern High Plains, Texas. Water Resources Research, 2010, 46, .	1.7	23

#	Article	IF	CITATIONS
127	Biofuel-water-land nexus in the last agricultural frontier region of the Brazilian Cerrado. Applied Energy, 2018, 231, 1330-1345.	5.1	23
128	Groundwater Storage Changes: Present Status from GRACE Observations. Space Sciences Series of ISSI, 2016, , 207-227.	0.0	22
129	Fingerprinting groundwater salinity sources in the Gulf Coast Aquifer System, USA. Hydrogeology Journal, 2018, 26, 197-213.	0.9	22
130	Residual soil nitrate in irrigated Southern High Plains cotton fields and Ogallala groundwater nitrate. Journal of Soils and Water Conservation, 2009, 64, 98-104.	0.8	19
131	Impact of deep plowing on groundwater recharge in a semiarid region: Case study, High Plains, Texas. Water Resources Research, 2008, 44, .	1.7	18
132	Effects of irrigated agroecosystems: 2. Quality of soil water and groundwater in the southern High Plains, Texas. Water Resources Research, 2010, 46, .	1.7	18
133	Spatiotemporal and stratigraphic trends in salt-water disposal practices of the Permian Basin, Texas and New Mexico, United States. Environmental Geosciences, 2019, 26, 107-124.	0.6	18
134	Exploring groundwater and soil water storage changes across the CONUS at 12.5Åkm resolution by a Bayesian integration of GRACE data into W3RA. Science of the Total Environment, 2021, 758, 143579.	3.9	18
135	Evaluation of methods of estimating recharge in semiarid and arid regions in the southwestern U.S Water Science and Application, 2004, , 235-254.	0.3	17
136	Mobilization of Naturally Occurring Perchlorate Related to Land-Use Change in the Southern High Plains, Texas. Environmental Science & Technology, 2008, 42, 8648-8653.	4.6	17
137	Postâ€Drought Groundwater Storage Recovery in California's Central Valley. Water Resources Research, 2021, 57, e2021WR030352.	1.7	17
138	Sources of groundwater pumpage in a layered aquifer system in the Upper Gulf Coastal Plain, USA. Hydrogeology Journal, 2012, 20, 783-796.	0.9	16
139	Long-Term Changes in Soil Organic Carbon and Nitrogen under Semiarid Tillage and Cropping Practices. Soil Science Society of America Journal, 2015, 79, 1771-1781.	1.2	16
140	A comparative study of historical droughts over Texas, USA and Murray-Darling Basin, Australia: Factors influencing initialization and cessation. Global and Planetary Change, 2017, 149, 123-138.	1.6	16
141	How much water can be captured from flood flows to store in depleted aquifers for mitigating floods and droughts? A case study from Texas, US. Environmental Research Letters, 2019, 14, 054011.	2.2	16
142	Spring discharge and thermal regime of a groundwater dependent ecosystem in an arid karst environment. Journal of Hydrology, 2020, 587, 124947.	2.3	16
143	Soil Gas Movement in Unsaturated Systems. , 2001, , 297-341.		16
144	Recent Trends in Water Use and Production for California Oil Production. Environmental Science & Technology, 2016, 50, 7904-7912.	4.6	15

#	Article	IF	CITATIONS
145	Integrating groundwater irrigation into hydrological simulation of India: Case of improving model representation of anthropogenic water use impact using GRACE. Journal of Hydrology: Regional Studies, 2020, 29, 100681.	1.0	15
146	Potential Impacts of CO ₂ Leakage on Groundwater Chemistry from Laboratory Batch Experiments and Field Push–pull Tests. Environmental Science & Technology, 2013, 47, 130905130052009.	4.6	14
147	Longâ€Term Conventional and Noâ€Tillage Effects on Field Hydrology and Yields of a Dryland Crop Rotation. Soil Science Society of America Journal, 2017, 81, 200-209.	1.2	14
148	Topical Collection: Determining groundwater sustainability from long-term piezometry in Sub-Saharan Africa. Hydrogeology Journal, 2019, 27, 443-446.	0.9	14
149	Bomb chlorine-36 analysis in the characterization of unsaturated flow at a proposed radioactive waste disposal facility, Chihuahuan Desert, Texas. Nuclear Instruments & Methods in Physics Research B, 1990, 52, 489-492.	0.6	13
150	Energy Intensity and Greenhouse Gas Emissions from Oil Production in the Eagle Ford Shale. Energy & Fuels, 2017, 31, 1440-1449.	2.5	13
151	Analysis of focused unsaturated flow beneath fissures in the Chihuahuan Desert, Texas, USA. Journal of Hydrology, 1997, 203, 58-78.	2.3	12
152	Arsenic enrichment in unconfined sections of the southern Gulf Coast aquifer system, Texas. Applied Geochemistry, 2011, 26, 421-431.	1.4	12
153	Peak grain forecasts for the US High Plains amid withering waters. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26145-26150.	3.3	12
154	Origin of low salinity, high volume produced waters in the Wolfcamp Shale (Permian), Delaware Basin, USA. Applied Geochemistry, 2020, 122, 104771.	1.4	11
155	Assessing cumulative water impacts from shale oil and gas production: Permian Basin case study. Science of the Total Environment, 2022, 811, 152306.	3.9	11
156	Hydrologic processes in deep vadose zones in interdrainage arid environments. Water Science and Application, 2004, , 15-28.	0.3	10
157	Multi-decadal assessment of water budget and hydrological extremes in the Tigris-Euphrates Basin using satellites, modeling, and in-situ data. Science of the Total Environment, 2021, 766, 144337.	3.9	10
158	Electrical Conductivity and Gamma-Ray Response to Clay, Water, and Chloride Content in Fissured Sediments, Trans-Pecos Texas. Environmental and Engineering Geoscience, 1998, IV, 225-239.	0.3	9
159	Response to Comment on "Comparison of Water Use for Hydraulic Fracturing for Unconventional Oil and Gas versus Conventional Oil― Environmental Science & Technology, 2015, 49, 6360-6361.	4.6	9
160	A multistep constant-head borehole test to determine field saturated hydraulic conductivity of layered soils. Advances in Water Resources, 1997, 20, 45-57.	1.7	8
161	Are Temperature and Precipitation Extremes Increasing over the U.S. High Plains?. Earth Interactions, 2012, 16, 1-20.	0.7	8
162	Trace Element Behavior in Methaneâ€Rich and Methaneâ€Free Groundwater in North and East Texas. Ground Water, 2018, 56, 705-718.	0.7	8

#	Article	IF	CITATIONS
163	Correction to "Deriving theoretical boundaries to address scale dependencies of triangle models for evapotranspiration estimationâ€. Journal of Geophysical Research, 2012, 117, n/a-n/a.	3.3	7
164	Food-Energy-Water Nexus for Multi-scale Sustainable Development. Resources, Conservation and Recycling, 2020, 154, 104565.	5.3	7
165	The annual cycle of terrestrial water storage anomalies in CMIP6 models evaluated against GRACE data. Journal of Climate, 2021, , 1-40.	1.2	7
166	A screening approach to improve water management practices in undeveloped shale plays, with application to the transboundary Eagle Ford Formation in northeast Mexico. Journal of Environmental Management, 2019, 236, 146-162.	3.8	7
167	Reconstruction of GRACE Mass Change Time Series Using a Bayesian Framework. Earth and Space Science, 2022, 9, .	1.1	7
168	Realizing the Potential of Satellite Gravimetry for Hydrology: Second GRACE Hydrology Workshop; Austin, Texas, 4 November 2009. Eos, 2010, 91, 96.	0.1	6
169	Potential Economic Impacts of Environmental Flows Following a Possible Listing of Endangered Texas Freshwater Mussels. Journal of the American Water Resources Association, 2014, 50, 1081-1101.	1.0	6
170	Baseflow recession analysis in a large shale play: Climate variability and anthropogenic alterations mask effects of hydraulic fracturing. Journal of Hydrology, 2017, 553, 160-171.	2.3	6
171	A Modified Evaporation Model Indicates That the Effects of Air Warming on Global Drying Trends Have Been Overestimated. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035153.	1.2	4
172	Reply [to "Comment on â€~Field study of spatial variability in unsaturated flow beneath and adjacent to playas' by Bridget R. Scanlon and Richard S. Goldsmithâ€]. Water Resources Research, 1999, 35, 603-604.	1.7	3
173	How Severe is Water Stress in the MENA Region? Insights from GRACE and GRACE-FO Satellites and Global Hydrological Modeling. , 2022, , 51-65.		3
174	Response to "Comments on â€ [~] Evaluation of Evapotranspirative Covers for Waste Containment in Arid and Semiarid Regions in the Southwestern USA'― Vadose Zone Journal, 2006, 5, 813-814.	1.3	2
175	Focus on water storage for managing climate extremes and change. Environmental Research Letters, 2016, 11, 120208.	2.2	2
176	Datasets associated with investigating the potential for beneficial reuse of produced water from oil and gas extraction outside of the energy sector. Data in Brief, 2020, 30, 105406.	0.5	2
177	Combining GRACE and satellite altimetry data to detect change in sediment load to the Bohai Sea. Science of the Total Environment, 2021, , 151677.	3.9	2
178	Machine Learning Analysis of Satellite Imagery for Detection of Permian Basin Water Impoundments. , 2018, , .		1
179	GRACE Satellites Enable Long-Lead Forecasts of Mountain Contributions to Streamflow in the Low-Flow Season. Remote Sensing, 2021, 13, 1993.	1.8	1
180	Analysis of wastewater injection and prospect regions for induced seismicity in the Texas panhandle, United States. AAPG Bulletin, 2022, 106, 679-699.	0.7	1

#	Article	IF	CITATIONS
181	The Superconducting Gravimeter as a Field Instrument Applied to Hydrology. International Association of Geodesy Symposia, 2012, , 291-295.	0.2	0