## Wei Chen

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2985819/publications.pdf Version: 2024-02-01



WELCHEN

| #  | Article                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Materials, 2013, 1, .                                                                                                                                   | 5.1  | 6,913     |
| 2  | Evidence for the Active Species Involved in the Photodegradation Process of Methyl Orange on TiO <sub>2</sub> . Journal of Physical Chemistry C, 2012, 116, 3552-3560.                                                                                           | 3.1  | 314       |
| 3  | Novel mesoporous P-doped graphitic carbon nitride nanosheets coupled with<br>ZnIn <sub>2</sub> S <sub>4</sub> nanosheets as efficient visible light driven heterostructures with<br>remarkably enhanced photo-reduction activity. Nanoscale, 2016, 8, 3711-3719. | 5.6  | 223       |
| 4  | Direct Z-scheme 2D/2D Mnln2S4/g-C3N4 architectures with highly efficient photocatalytic activities towards treatment of pharmaceutical wastewater and hydrogen evolution. Chemical Engineering Journal, 2019, 359, 244-253.                                      | 12.7 | 194       |
| 5  | Direct Z-scheme 1D/2D WO2.72/ZnIn2S4 hybrid photocatalysts with highly-efficient visible-light-driven photodegradation towards tetracycline hydrochloride removal. Journal of Hazardous Materials, 2020, 384, 121308.                                            | 12.4 | 171       |
| 6  | In situ fabrication of novel Z-scheme Bi 2 WO 6 quantum dots/g-C 3 N 4 ultrathin nanosheets<br>heterostructures with improved photocatalytic activity. Applied Surface Science, 2015, 355, 379-387.                                                              | 6.1  | 141       |
| 7  | Step-scheme WO3/CdIn2S4 hybrid system with high visible light activity for tetracycline hydrochloride photodegradation. Applied Surface Science, 2021, 535, 147682.                                                                                              | 6.1  | 122       |
| 8  | Realizing simultaneous improvements in mechanical strength, flame retardancy and smoke<br>suppression of ABS nanocomposites from multifunctional graphene. Composites Part B: Engineering,<br>2019, 177, 107377.                                                 | 12.0 | 117       |
| 9  | Two-dimensional mesoporous g-C 3 N 4 nanosheet-supported MgIn 2 S 4 nanoplates as<br>visible-light-active heterostructures for enhanced photocatalytic activity. Journal of Catalysis, 2017,<br>349, 8-18.                                                       | 6.2  | 113       |
| 10 | Accelerated photocatalytic degradation of tetracycline hydrochloride over CuAl2O4/g-C3N4 p-n<br>heterojunctions under visible light irradiation. Separation and Purification Technology, 2021, 277,<br>119461.                                                   | 7.9  | 110       |
| 11 | Hierarchical CdIn2S4 microspheres wrapped by mesoporous g-C3N4 ultrathin nanosheets with<br>enhanced visible light driven photocatalytic reduction activity. Journal of Hazardous Materials, 2016,<br>320, 529-538.                                              | 12.4 | 102       |
| 12 | Multifunctional graphene-based nano-additives toward high-performance polymer nanocomposites<br>with enhanced mechanical, thermal, flame retardancy and smoke suppressive properties. Chemical<br>Engineering Journal, 2021, 410, 127590.                        | 12.7 | 101       |
| 13 | Direct Z-scheme CdFe2O4/g-C3N4 hybrid photocatalysts for highly efficient ceftiofur sodium photodegradation. Journal of Materials Science and Technology, 2020, 56, 133-142.                                                                                     | 10.7 | 100       |
| 14 | NbS <sub>2</sub> Nanosheets with M/Se (M = Fe, Co, Ni) Codopants for Li <sup>+</sup> and<br>Na <sup>+</sup> Storage. ACS Nano, 2017, 11, 10599-10607.                                                                                                            | 14.6 | 95        |
| 15 | Efficient and stable charge transfer channels for photocatalytic water splitting activity of CdS without sacrificial agents. Journal of Materials Chemistry A, 2020, 8, 20963-20969.                                                                             | 10.3 | 95        |
| 16 | Anisotropic Electronic Characteristics, Adsorption, and Stability of Low-Index BiVO <sub>4</sub><br>Surfaces for Photoelectrochemical Applications. ACS Applied Materials & Interfaces, 2018, 10,<br>5475-5484.                                                  | 8.0  | 93        |
| 17 | Theoretical Insight into the Mechanism of Photoelectrochemical Oxygen Evolution Reaction on<br>BiVO <sub>4</sub> Anode with Oxygen Vacancy. Journal of Physical Chemistry C, 2017, 121, 18702-18709.                                                             | 3.1  | 89        |
| 18 | Fabrication of direct Z-scheme FeIn2S4/Bi2WO6 hierarchical heterostructures with enhanced photocatalytic activity for tetracycline hydrochloride photodagradation. Ceramics International, 2021, 47, 6318-6328.                                                  | 4.8  | 69        |

Wei Chen

| #  | Article                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Boosting the catalytic activity of a step-scheme In2O3/ZnIn2S4 hybrid system for the photofixation of nitrogen. Chinese Journal of Catalysis, 2022, 43, 265-275.                                                                                     | 14.0 | 67        |
| 20 | A novel yet simple strategy to fabricate visible light responsive<br>C,N-TiO <sub>2</sub> /g-C <sub>3</sub> N <sub>4</sub> heterostructures with significantly enhanced<br>photocatalytic hydrogen generation. RSC Advances, 2015, 5, 101214-101220. | 3.6  | 63        |
| 21 | Highly efficient visible-light-driven photocatalytic hydrogen evolution by all-solid-state Z-scheme<br>CdS/QDs/Zn1n2S4 architectures with MoS2 quantum dots as solid-state electron mediator. Applied<br>Surface Science, 2020, 504, 144406.         | 6.1  | 61        |
| 22 | One-pot hydrothermal route to synthesize the ZnIn2S4/g-C3N4 composites with enhanced photocatalytic activity. Journal of Materials Science, 2015, 50, 8142-8152.                                                                                     | 3.7  | 56        |
| 23 | Fabrication of Bi2MoO6 nanoplates hybridized with g-C3N4 nanosheets as highly efficient visible light responsive heterojunction photocatalysts for Rhodamine B degradation. Materials Science in Semiconductor Processing, 2015, 35, 45-54.          | 4.0  | 53        |
| 24 | Scaleâ€Up of BiVO <sub>4</sub> Photoanode for Water Splitting in a Photoelectrochemical Cell: Issues and Challenges. Energy Technology, 2018, 6, 100-109.                                                                                            | 3.8  | 49        |
| 25 | Au/ZnO nanoarchitectures with Au as both supporter and antenna of visible-light. Applied Surface Science, 2017, 392, 616-623.                                                                                                                        | 6.1  | 48        |
| 26 | ZnIn 2 S 4 hybrid with MoS 2 : A non-noble metal photocatalyst with efficient photocatalytic activity for hydrogen evolution. Powder Technology, 2017, 315, 157-162.                                                                                 | 4.2  | 47        |
| 27 | Self-assembled MoS <sub>2</sub> -GO Framework as an Efficient Cocatalyst of CuInZnS for<br>Visible-Light Driven Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2018, 6, 4671-4679.                                                   | 6.7  | 44        |
| 28 | Enhanced Charge Transport and Increased Active Sites on α-Fe <sub>2</sub> O <sub>3</sub> (110)<br>Nanorod Surface Containing Oxygen Vacancies for Improved Solar Water Oxidation Performance. ACS<br>Omega, 2018, 3, 14973-14980.                    | 3.5  | 36        |
| 29 | Hydrothermal route to synthesize helical CdS@ZnIn2S4 core-shell heterostructures with enhanced photocatalytic hydrogeneration activity. Ceramics International, 2019, 45, 1803-1811.                                                                 | 4.8  | 34        |
| 30 | Synergistic effects of interface coupling and defect sites in WO3/InVO4 architectures for highly efficient nitrogen photofixation. Separation and Purification Technology, 2022, 290, 120875.                                                        | 7.9  | 31        |
| 31 | Nitrogen and sulfur dual-doped carbon nanotube derived from a thiazolothiazole based conjugated microporous polymer as efficient metal-free electrocatalysts for oxygen reduction reaction. Journal of Power Sources, 2020, 461, 228145.             | 7.8  | 29        |
| 32 | Synthesis of homogeneous one-dimensional Ni x Cd1â^'x S nanorods with enhanced visible-light response by ethanediamine-assisted decomposition of complex precursors. Journal of Materials Science, 2015, 50, 3920-3928.                              | 3.7  | 28        |
| 33 | Well-dispersed ultrafine nitrogen-doped TiO 2 with polyvinylpyrrolidone (PVP) acted as N-source and stabilizer for water splitting. Journal of Energy Chemistry, 2016, 25, 1-9.                                                                      | 12.9 | 28        |
| 34 | Hybrid of AgInZnS and MoS 2 as efficient visible-light driven photocatalyst for hydrogen production.<br>International Journal of Hydrogen Energy, 2017, 42, 12254-12261.                                                                             | 7.1  | 26        |
| 35 | Mesoporous Bi2MoO6 quasi-nanospheres anchored on activated carbon cloth for flexible<br>all-solid-state supercapacitors with enhanced energy density. Journal of Power Sources, 2020, 463,<br>228202.                                                | 7.8  | 24        |
| 36 | Fabrication of highly visible light sensitive graphite-like C3N4 hybridized with Zn0.28Cd0.72S<br>heterjunctions photocatalyst for degradation of organic pollutants. Journal of Environmental<br>Chemical Engineering, 2014, 2, 1889-1897.          | 6.7  | 22        |

Wei Chen

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The Influence of Ti Doping on Morphology and Photoelectrochemical Properties of Hematite Grown from Aqueous Solution for Water Splitting. Energy Technology, 2018, 6, 2188-2199.                                           | 3.8 | 18        |
| 38 | Flower-like ZnIn2S4 microspheres with highly efficient catalytic activity for visible-light-driven sulfamethoxazole photodegradation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 643, 128779. | 4.7 | 18        |
| 39 | Ultrasound-assisted growth of Zn0.2Cd0.8S nanoparticles on mesoporous P-doped graphitic carbon<br>nitride nanosheets for superior photocatalytic activities. Journal of Alloys and Compounds, 2017, 690,<br>503-511.       | 5.5 | 17        |
| 40 | Mesoporous g-C3N4 ultrathin nanosheets coupled with QDs self-decorated SnIn4S8 homojunctions<br>towards highly efficient photocatalytic functional transformation. Journal of Alloys and<br>Compounds, 2019, 809, 151859.  | 5.5 | 17        |
| 41 | Titania-on-gold nanoarchitectures for visible-light-driven hydrogen evolution from water splitting.<br>Journal of Materials Science, 2016, 51, 6987-6997.                                                                  | 3.7 | 15        |
| 42 | Catalytically Active Sites on Ni5P4 for Efficient Hydrogen Evolution Reaction From Atomic Scale Calculation. Frontiers in Chemistry, 2019, 7, 444.                                                                         | 3.6 | 15        |
| 43 | Biomolecule-assisted solvothermal synthesis and enhanced visible light photocatalytic performance<br>of Bi2S3/BiOCl composites. Journal Wuhan University of Technology, Materials Science Edition, 2016,<br>31, 765-772.   | 1.0 | 14        |
| 44 | Mechanistic Study of Monolayer NiP <sub>2</sub> (100) toward Solar Hydrogen Production. Solar<br>Rrl, 2020, 4, 1900360.                                                                                                    | 5.8 | 8         |
| 45 | Stable Active Sites on Ni 12 P 5 Surfaces for the Hydrogen Evolution Reaction. Energy Technology, 2019, 7, 1900013.                                                                                                        | 3.8 | 7         |
| 46 | Fast preparation of fluorescent carbon nanoparticles from β-cyclodextrin via precursor design treatment. Materials Letters, 2015, 139, 122-125.                                                                            | 2.6 | 6         |
| 47 | Several recent designs or choices of nanomaterials for photocatalysis: Ag/AgCl composite, silicate and Bi2MoO6. SPR Nanoscience, 2016, , 211-275.                                                                          | 0.6 | 3         |
| 48 | A new strategy to immobilize molecular Fe sites into a cationic polymer to fabricate an oxygen reduction catalyst. Electrochemistry Communications, 2020, 117, 106781.                                                     | 4.7 | 1         |