Ming Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2985716/publications.pdf Version: 2024-02-01

MINC HU

#	Article	IF	CITATIONS
1	OhrR is a central transcriptional regulator of virulence in <i>Dickeya zeae</i> . Molecular Plant Pathology, 2022, 23, 45-59.	4.2	7
2	Genomic and Functional Dissections of Dickeya zeae Shed Light on the Role of Type III Secretion System and Cell Wall-Degrading Enzymes to Host Range and Virulence. Microbiology Spectrum, 2022, 10, e0159021.	3.0	8
3	Dickeya Manipulates Multiple Quorum Sensing Systems to Control Virulence and Collective Behaviors. Frontiers in Plant Science, 2022, 13, 838125.	3.6	10
4	Five Plant Natural Products Are Potential Type III Secretion System Inhibitors to Effectively Control Soft-Rot Disease Caused by Dickeya. Frontiers in Microbiology, 2022, 13, 839025.	3.5	7
5	Isolation and Genome Analysis of Pectobacterium colocasium sp. nov. and Pectobacterium aroidearum, Two New Pathogens of Taro. Frontiers in Plant Science, 2022, 13, 852750.	3.6	8
6	The integration host factor regulates multiple virulence pathways in bacterial pathogen <i>Dickeya zeae</i> MS2. Molecular Plant Pathology, 2022, 23, 1487-1507.	4.2	5
7	Isolation, Characterization, and Genomic Investigation of a Phytopathogenic Strain of <i>Stenotrophomonas maltophilia</i> . Phytopathology, 2021, 111, 2088-2099.	2.2	8
8	First Report of Bacterial Soft Rot Disease on Taro Caused by <i>Dickeya fangzhongdai</i> in China. Plant Disease, 2021, 105, 3737.	1.4	7
9	<i>Enterobacter asburiae</i> and <i>Pantoea ananatis</i> Causing Rice Bacterial Blight in China. Plant Disease, 2021, 105, 2078-2088.	1.4	23
10	Microbial Diversity Analysis and Genome Sequencing Identify Xanthomonas perforans as the Pathogen of Bacterial Leaf Canker of Water Spinach (Ipomoea aquatic). Frontiers in Microbiology, 2021, 12, 752760.	3.5	8
11	Five Fungal Pathogens Are Responsible for Bayberry Twig Blight and Fungicides Were Screened for Disease Control. Microorganisms, 2020, 8, 689.	3.6	17
12	Screening, Identification and Efficacy Evaluation of Antagonistic Bacteria for Biocontrol of Soft Rot Disease Caused by Dickeya zeae. Microorganisms, 2020, 8, 697.	3.6	29
13	Virulence Factor Identification in the Banana Pathogen Dickeya zeae MS2. Applied and Environmental Microbiology, 2019, 85, .	3.1	15
14	A twoâ€component regulatory system VfmIH modulates multiple virulence traits inDickeya zeae. Molecular Microbiology, 2019, 111, 1493-1509.	2.5	32
15	Dickeya zeae strains isolated from rice, banana and clivia rot plants show great virulence differentials. BMC Microbiology, 2018, 18, 136.	3.3	43