
Guang-Qin Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2985661/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bulky Thiolate-Protected Silver Nanocluster Ag ₂₁₃ (Adm-S) ₄₄ Cl ₃₃ with Excellent Electrocatalytic Performance toward Oxygen Reduction. CCS Chemistry, 2023, 5, 1154-1162.	7.8	4
2	Single-atomic Fe anchored on hierarchically porous carbon frame for efficient oxygen reduction performance. Chinese Chemical Letters, 2022, 33, 1070-1073.	9.0	17
3	Ir nanoclusters confined within hollow MIL-101(Fe) for selective hydrogenation of α,β-unsaturated aldehyde. Chinese Chemical Letters, 2022, 33, 374-377.	9.0	19
4	Recent Progress of Metal Organic Frameworksâ€Based Electrocatalysts for Hydrogen Evolution, Oxygen Evolution, and Oxygen Reduction Reaction. Energy and Environmental Materials, 2022, 5, 1084-1102.	12.8	24
5	Tailoring the Electronic Structure of an Atomically Dispersed Zinc Electrocatalyst: Coordination Environment Regulation for High Selectivity Oxygen Reduction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	104
6	Tailoring the Electronic Structure of an Atomically Dispersed Zinc Electrocatalyst: Coordination Environment Regulation for High Selectivity Oxygen Reduction. Angewandte Chemie, 2022, 134, .	2.0	9
7	Constructing nickel sulfide heterojunctions by W-doping-induced structural transition for enhanced oxygen evolution. Journal of Materials Chemistry A, 2022, 10, 3341-3345.	10.3	24
8	Nickel metal–organic frameworks for visible-light CO ₂ reduction under mild reaction conditions. Dalton Transactions, 2022, 51, 7950-7956.	3.3	4
9	Multiscale structural regulation of metal–organic framework nanofilm arrays for efficient oxygen evolution reaction. Chemical Communications, 2022, 58, 6966-6969.	4.1	7
10	Docking rings in a solid: reversible assembling of pseudorotaxanes inside a zirconium metal–organic framework. Chemical Science, 2022, 13, 6291-6296.	7.4	2
11	Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution. Nature Communications, 2021, 12, 1369.	12.8	360
12	Defect-engineered room-temperature ferromagnetism in quasi-two-dimensional nitrided CoTa2O6. Physical Review B, 2021, 104, .	3.2	0
13	Recent advances in the electrocatalytic synthesis of 2,5-furandicarboxylic acid from 5-(hydroxymethyl)furfural. Journal of Materials Chemistry A, 2021, 9, 20164-20183.	10.3	62
14	Interfacial Charge Transfer in a Hierarchical Ni ₂ P/FeOOH Heterojunction Facilitates Electrocatalytic Oxygen Evolution. ACS Applied Materials & Interfaces, 2021, 13, 2765-2771.	8.0	40
15	Modulating electronic structure of Rh via spontaneous oxidation facilitates oxygen evolution. Chem Catalysis, 2021, 1, 972-974.	6.1	1
16	Constructing 2D MOFs from 2D LDHs: a highly efficient and durable electrocatalyst for water oxidation. Journal of Materials Chemistry A, 2020, 8, 190-195.	10.3	93
17	Trimetallic MOFâ€74 Films Grown on Ni Foam as Bifunctional Electrocatalysts for Overall Water Splitting. ChemSusChem, 2020, 13, 5647-5653.	6.8	56
18	Two-dimensional metal–organic framework nanosheets for highly efficient electrocatalytic biomass 5-(hydroxymethyl)furfural (HMF) valorization. Journal of Materials Chemistry A, 2020, 8, 20386-20392.	10.3	88

Guang-Qin Li

#	Article	IF	CITATIONS
19	Accelerating charge transfer at an ultrafine NiFe-LDHs/CB interface during the electrocatalyst activation process for water oxidation. Dalton Transactions, 2020, 49, 7436-7443.	3.3	6
20	Chemoselective hydrogenation of α,β-unsaturated aldehydes over Rh nanoclusters confined in a metal–organic framework. Journal of Materials Chemistry A, 2020, 8, 11442-11447.	10.3	24
21	Hierarchical Nanorods of MoS ₂ /MoP Heterojunction for Efficient Electrocatalytic Hydrogen Evolution Reaction. Small, 2020, 16, e2002482.	10.0	85
22	Aminoâ€Induced 2D Cuâ€Based Metal–Organic Framework as an Efficient Heterogeneous Catalyst for Aerobic Oxidation of Olefins. Chemistry - A European Journal, 2020, 26, 4333-4340.	3.3	18
23	Zirconium-based metal–organic framework gels for selective luminescence sensing. RSC Advances, 2020, 10, 44912-44919.	3.6	15
24	Missing-linker metal-organic frameworks for oxygen evolution reaction. Nature Communications, 2019, 10, 5048.	12.8	422
25	Hierarchical nanotubes constructed from CoSe2 nanorods with an oxygen-rich surface for an efficient oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 15073-15078.	10.3	47
26	Interfacial Electronic Structure Modulation of NiTe Nanoarrays with NiS Nanodots Facilitates Electrocatalytic Oxygen Evolution. Advanced Materials, 2019, 31, e1900430.	21.0	298
27	A 2D NiFe Bimetallic Metal–Organic Frameworks for Efficient Oxygen Evolution Electrocatalysis. Energy and Environmental Materials, 2019, 2, 18-21.	12.8	56
28	Oneâ€ S tep Construction of Hydrophobic MOFs@COFs Core–Shell Composites for Heterogeneous Selective Catalysis. Advanced Science, 2019, 6, 1802365.	11.2	134
29	The Vital Balance of Graphitization and Defect Engineering for Efficient Bifunctional Oxygen Electrocatalyst Based on Nâ€doping Carbon/CNT Frameworks. ChemCatChem, 2019, 11, 861-867.	3.7	34
30	Bimetallic Zeolitic Imidazolite Framework Derived Carbon Nanotubes Embedded with Co Nanoparticles for Efficient Bifunctional Oxygen Electrocatalyst. Advanced Energy Materials, 2018, 8, 1702048.	19.5	200
31	Design and Enantioresolution of Homochiral Fe(II)–Pd(II) Coordination Cages from Stereolabile Metalloligands: Stereochemical Stability and Enantioselective Separation. Journal of the American Chemical Society, 2018, 140, 18183-18191.	13.7	102
32	Electronic origin of hydrogen storage in MOF-covered palladium nanocubes investigated by synchrotron X-rays. Communications Chemistry, 2018, 1, .	4.5	24
33	MOF-derived Mn doped porous CoP nanosheets as efficient and stable bifunctional electrocatalysts for water splitting. Dalton Transactions, 2018, 47, 14679-14685.	3.3	98
34	Modulating Electronic Structure of Metalâ€Organic Framework for Efficient Electrocatalytic Oxygen Evolution. Advanced Energy Materials, 2018, 8, 1801564.	19.5	240
35	Hierarchically Porous Single Nanocrystals of Bimetallic Metal–Organic Framework for Nanoreactors with Enhanced Conversion. Chemistry of Materials, 2018, 30, 6458-6468.	6.7	24
36	Stepwise engineering of pore environments and enhancement of CO ₂ /R22 adsorption capacity through dynamic spacer installation and functionality modification. Chemical Communications, 2017, 53, 11403-11406.	4.1	22

Guang-Qin Li

#	Article	IF	CITATIONS
37	An ordered bcc CuPd nanoalloy synthesised via the thermal decomposition of Pd nanoparticles covered with a metal–organic framework under hydrogen gas. Chemical Communications, 2014, 50, 13750-13753.	4.1	28
38	Shape-Dependent Hydrogen-Storage Properties in Pd Nanocrystals: Which Does Hydrogen Prefer, Octahedron (111) or Cube (100)?. Journal of the American Chemical Society, 2014, 136, 10222-10225.	13.7	104
39	Hydrogen storage in Pd nanocrystals covered with a metal–organic framework. Nature Materials, 2014, 13, 802-806.	27.5	412
40	First In Situ NMR Observation of Hydrogen Adsorbed inside [Cu3(btc)2] at Ambient Temperature and Pressure. Chemistry Letters, 2014, 43, 1363-1364.	1.3	1