
Francisco Javier Rebollo Castillo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2985418/publications.pdf

Version: 2024-02-01

FRANCISCO JAVIER REBOLLO

#	Article	IF	CITATIONS
1	Mapping management zones in a sandy pasture soil using an objective model and multivariate techniques. Precision Agriculture, 2021, 22, 800-817.	6.0	3
2	Delineating site-specific management zones on pasture soil using a probabilistic and objective model and geostatistical techniques. Precision Agriculture, 2020, 21, 620-636.	6.0	9
3	Using an objective and probabilistic model to delineate homogeneous zones in hedgerow olive orchards. Soil and Tillage Research, 2019, 194, 104308.	5.6	3
4	Using an objective measurement model to determine the corrective maintenance demand in the field of hospital engineering. International Journal of Systems Assurance Engineering and Management, 2019, 10, 1567-1576.	2.4	2
5	Estimating and mapping pasture soil fertility in a portuguese montado based on a objective model and geostatistical techniques. Computers and Electronics in Agriculture, 2019, 157, 500-508.	7.7	10
6	Aridity in the Iberian Peninsula (1960–2017): distribution, tendencies, and changes. Theoretical and Applied Climatology, 2019, 138, 811-830.	2.8	28
7	Modeling of Atmospheric Pollution in Urban and Rural Sites Using a Probabilistic and Objective Approach. Applied Sciences (Switzerland), 2019, 9, 4009.	2.5	6
8	Spanish vineyard classification according to bioclimatic indexes. Australian Journal of Grape and Wine Research, 2018, 24, 335-344.	2.1	14
9	Mapping cation exchange capacity using a Veris-3100 instrument and invVERIS modelling software. Science of the Total Environment, 2017, 599-600, 2156-2165.	8.0	21
10	Spatial analysis of the annual and seasonal aridity trends in Extremadura, southwestern Spain. Theoretical and Applied Climatology, 2017, 130, 917-932.	2.8	18
11	Characterization of soil fertility using the Rasch model. Journal of Soil Science and Plant Nutrition, 2017, , 0-0.	3.4	13
12	Application of climatic indices to analyse viticultural suitability in Extremadura, south-western Spain. Theoretical and Applied Climatology, 2016, 123, 277-289.	2.8	16
13	Spatial distribution and comparison of aridity indices in Extremadura, southwestern Spain. Theoretical and Applied Climatology, 2016, 126, 801-814.	2.8	36
14	Integration of climatic indices in an objective probabilistic model for establishing and mapping viticultural climatic zones in a region. Theoretical and Applied Climatology, 2016, 124, 1033-1043.	2.8	8
15	A GIS-based multivariate clustering for characterization and ecoregion mapping from a viticultural perspective. Spanish Journal of Agricultural Research, 2016, 14, e0206.	0.6	14
16	Using an objective model to estimate overall ozone levels at different urban locations. Stochastic Environmental Research and Risk Assessment, 2014, 28, 455-465.	4.0	5
17	Using an objective and probabilistic model to evaluate the impact of different factors in the dehesa agroforestry ecosystem. Ecological Indicators, 2014, 46, 253-259.	6.3	10
18	Climatic spatial variability in Extremadura (Spain) based on viticultural bioclimatic indices. International Journal of Biometeorology, 2014, 58, 2139-2152.	3.0	19

#	Article	IF	CITATIONS
19	Analysis of soil fertility and its anomalies using an objective model. Journal of Plant Nutrition and Soil Science, 2012, 175, 912-919.	1.9	5
20	Modelling ambient ozone in an urban area using an objective model and geostatistical algorithms. Atmospheric Environment, 2012, 63, 86-93.	4.1	6
21	Yield potential probability maps using the Rasch model. Biosystems Engineering, 2012, 111, 369-380.	4.3	1
22	Site-specific management zones based on the Rasch model and geostatistical techniques. Computers and Electronics in Agriculture, 2011, 75, 223-230.	7.7	47