List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/298526/publications.pdf Version: 2024-02-01

	186209	233338
2,611	28	45
citations	h-index	g-index
111	111	2226
docs citations	times ranked	citing authors
	citations 111	2,61128citationsh-index111111

#	Article	IF	CITATIONS
1	Homoharringtonine is a transdermal granular permeation enhancer. Biochemical and Biophysical Research Communications, 2022, , .	1.0	0
2	Modifying the blood–brain barrier by targeting claudinâ€5: Safety and risks. Annals of the New York Academy of Sciences, 2022, 1514, 62-69.	1.8	6
3	Occludinâ€binding singleâ€chain variable fragment and antigenâ€binding fragment antibodies prevent hepatitis C virus infection. FEBS Letters, 2021, 595, 220-229.	1.3	2
4	Overview of the Premarketing and Postmarketing Requirements for Drugs Granted Japanese Conditional Marketing Approval. Clinical and Translational Science, 2021, 14, 806-811.	1.5	5
5	Legislation on the Roles of the Pharmacist and Pharmacy in the Revision of the Pharmaceutical and Medical Device Act and the Pharmacists Act in Japan. Therapeutic Innovation and Regulatory Science, 2021, 55, 304-308.	0.8	1
6	Brain endothelial tricellular junctions as novel sites for T cell diapedesis across the blood–brain barrier. Journal of Cell Science, 2021, 134, .	1.2	37
7	Translocation of LSR from tricellular corners causes macropinocytosis at cell–cell interface as a trigger for breaking out of contact inhibition. FASEB Journal, 2021, 35, e21742.	0.2	2
8	Safety and efficacy of an anti-claudin-5 monoclonal antibody to increase blood–brain barrier permeability for drug delivery to the brain in a non-human primate. Journal of Controlled Release, 2021, 336, 105-111.	4.8	16
9	Effects of HMGB1 on Tricellular Tight Junctions via TGF-β Signaling in Human Nasal Epithelial Cells. International Journal of Molecular Sciences, 2021, 22, 8390.	1.8	5
10	Claudin-5: A Pharmacological Target to Modify the Permeability of the Blood–Brain Barrier. Biological and Pharmaceutical Bulletin, 2021, 44, 1380-1390.	0.6	20
11	Tricellular tight junction protein LSR/angulin-1 contributes to the epithelial barrier and malignancy in human pancreatic cancer cell line. Histochemistry and Cell Biology, 2020, 153, 5-16.	0.8	21
12	Epithelial barrier dysfunction and cell migration induction via JNK/cofilin/actin by angubindin-1. Tissue Barriers, 2020, 8, 1695475.	1.6	16
13	The Roadmap to Approval under Japan's Two-Track Regulatory System: Comparing Six Regenerative Medical Products. Cell Stem Cell, 2020, 27, 515-518.	5.2	6
14	Anti-tumor effect of a recombinant Bifidobacterium strain secreting a claudin-targeting molecule in a mouse breast cancer model. European Journal of Pharmacology, 2020, 887, 173596.	1.7	10
15	A Method to Prepare a Bioprobe for Regulatory Science of the Drug Delivery System to the Brain: An Angulin Binder to Modulate Tricellular Tight Junction-Seal. Methods in Molecular Biology, 2020, 2367, 291-304.	0.4	2
16	Tight Junction Modulating Bioprobes for Drug Delivery System to the Brain: A Review. Pharmaceutics, 2020, 12, 1236.	2.0	12
17	Radiolabeled cCPE Peptides for SPECT Imaging of Claudin-4 Overexpression in Pancreatic Cancer. Journal of Nuclear Medicine, 2020, 61, 1756-1763.	2.8	13
18	Tight junction modulators for drug delivery to the central nervous system. Drug Discovery Today, 2020, 25, 1477-1486.	3.2	12

#	Article	IF	CITATIONS
19	New Japanese Regulatory Frameworks for Post-Marketing Management of Pharmaceutical Products. Pharmaceutical Research, 2020, 37, 122.	1.7	4
20	A Concept for a Japanese Regulatory Framework for Emerging Medical Devices with Frequently Modified Behavior. Clinical and Translational Science, 2020, 13, 877-879.	1.5	5
21	Targeting claudinâ€4 enhances chemosensitivity in breast cancer. Cancer Science, 2020, 111, 1840-1850.	1.7	27
22	Clostridium perfringens enterotoxin induces claudin-4 to activate YAP in oral squamous cell carcinomas. Oncotarget, 2020, 11, 309-321.	0.8	22
23	Therapeutic innovation and regulatory sciences for paracellular absorption enhancers for biologics. Drug Delivery System, 2020, 35, 20-26.	0.0	Ο
24	The Clinical Innovation Network: a policy for promoting development of drugs and medical devices in Japan. Drug Discovery Today, 2019, 24, 4-8.	3.2	12
25	A Method to Prepare Claudin-Modulating Recombinant Proteins. Methods in Molecular Biology, 2019, 2109, 251-260.	0.4	4
26	Potential for Tight Junction Protein–Directed Drug Development Using Claudin Binders and Angubindin-1. International Journal of Molecular Sciences, 2019, 20, 4016.	1.8	28
27	Anti-Claudin Antibodies as a Concept for Development of Claudin-Directed Drugs. Journal of Pharmacology and Experimental Therapeutics, 2019, 368, 179-186.	1.3	11
28	Human-rat chimeric anti-occludin monoclonal antibodies inhibit hepatitis C virus infection. Biochemical and Biophysical Research Communications, 2019, 514, 785-790.	1.0	5
29	Characterization of monoclonal antibodies recognizing each extracellular loop domain of occludin. Journal of Biochemistry, 2019, 166, 297-308.	0.9	5
30	A Review of the Regulatory Framework for Initiation and Acceleration of Patient Access to Innovative Medical Products in Japan. Clinical Pharmacology and Therapeutics, 2019, 106, 508-511.	2.3	4
31	Development of drug delivery system based on biology of epithelial barrier : 19 th Nagai Award, Japan Society of DDS. Drug Delivery System, 2019, 34, 279-283.	0.0	0
32	Development of drug delivery system for treatment of central nervous system diseases targeting tight junctions. Drug Delivery System, 2019, 34, 374-384.	0.0	0
33	[FOREWORD]Interpenetration of innovation and regulation for drug development. Drug Delivery System, 2019, 34, 333-333.	0.0	0
34	Safety evaluation of a human chimeric monoclonal antibody that recognizes the extracellular loop domain of claudin-2. European Journal of Pharmaceutical Sciences, 2018, 117, 161-167.	1.9	12
35	Impaired airway mucociliary function reduces antigen-specific IgA immune response to immunization with a claudin-4-targeting nasal vaccine in mice. Scientific Reports, 2018, 8, 2904.	1.6	11
36	Monoclonal Antibodies against Occludin Completely Prevented Hepatitis C Virus Infection in a Mouse Model. Journal of Virology, 2018, 92, .	1.5	27

#	Article	IF	CITATIONS
37	Lignosulfonic acid attenuates NF-κB activation and intestinal epithelial barrier dysfunction induced by TNF-α/IFN-γ in Caco-2 cells. Journal of Natural Medicines, 2018, 72, 448-455.	1.1	10
38	Development of Adjuvant-Free Bivalent Food Poisoning Vaccine by Augmenting the Antigenicity of Clostridium perfringens Enterotoxin. Frontiers in Immunology, 2018, 9, 2320.	2.2	14
39	Angubindin-1 opens the blood–brain barrier in vivo for delivery of antisense oligonucleotide to the central nervous system. Journal of Controlled Release, 2018, 283, 126-134.	4.8	51
40	Engineered membrane protein antigens successfully induce antibodies against extracellular regions of claudin-5. Scientific Reports, 2018, 8, 8383.	1.6	28
41	Anti-claudin-4 extracellular domain antibody enhances the antitumoral effects of chemotherapeutic and antibody drugs in colorectal cancer. Oncotarget, 2018, 9, 37367-37378.	0.8	32
42	Cellular internalization, transcellular transport, and cellular effects of silver nanoparticles in polarized Caco-2 cells following apical or basolateral exposure. Biochemical and Biophysical Research Communications, 2017, 484, 543-549.	1.0	19
43	Claudinâ€ŧargeted drug development using anti laudin monoclonal antibodies to treat hepatitis and cancer. Annals of the New York Academy of Sciences, 2017, 1397, 5-16.	1.8	18
44	Angubindin-1, a novel paracellular absorption enhancer acting at the tricellular tight junction. Journal of Controlled Release, 2017, 260, 1-11.	4.8	48
45	Development of a Quenchbody for the Detection and Imaging of the Cancer-Related Tight-Junction-Associated Membrane Protein Claudin. Analytical Chemistry, 2017, 89, 10783-10789.	3.2	20
46	Claudin-5-Binders Enhance Permeation of Solutes across the Blood-Brain Barrier in a Mammalian Model. Journal of Pharmacology and Experimental Therapeutics, 2017, 363, 275-283.	1.3	44
47	Creation of a Claudin-2 Binder and Its Tight Junction–Modulating Activity in a Human Intestinal Model. Journal of Pharmacology and Experimental Therapeutics, 2017, 363, 444-451.	1.3	15
48	Identification of claudin-4 binder that attenuates tight junction barrier function by TR-FRET-based screening assay. Scientific Reports, 2017, 7, 14514.	1.6	18
49	Roles of the first-generation claudin binder, Clostridium perfringens enterotoxin, in the diagnosis and claudin-targeted treatment of epithelium-derived cancers. Pflugers Archiv European Journal of Physiology, 2017, 469, 45-53.	1.3	22
50	Checkpoint Kinase 1 Activation Enhances Intestinal Epithelial Barrier Function via Regulation of Claudin-5 Expression. PLoS ONE, 2016, 11, e0145631.	1.1	14
51	Generation and characterization of a human–mouse chimeric antibody against the extracellular domain of claudin-1 for cancer therapy using a mouse model. Biochemical and Biophysical Research Communications, 2016, 477, 91-95.	1.0	11
52	Efficacy and safety evaluation of claudinâ€4â€ŧargeted antitumor therapy using a human and mouse crossâ€ŧeactive monoclonal antibody. Pharmacology Research and Perspectives, 2016, 4, e00266.	1.1	24
53	Current progress in a second-generation claudin binder, anti-claudin antibody, for clinical applications. Drug Discovery Today, 2016, 21, 1711-1718.	3.2	11
54	Occludin-Knockout Human Hepatic Huh7.5.1-8-Derived Cells Are Completely Resistant to Hepatitis C Virus Infection. Biological and Pharmaceutical Bulletin, 2016, 39, 839-848.	0.6	22

#	Article	IF	CITATIONS
55	Claudin-binder C-CPE mutants enhance permeability of insulin across human nasal epithelial cells. Drug Delivery, 2016, 23, 2703-2710.	2.5	20
56	Claudinâ€4 binder Câ€CPE 194 enhances effects of anticancer agents on pancreatic cancer cell lines via a <scp>MAPK</scp> pathway. Pharmacology Research and Perspectives, 2015, 3, e00196.	1.1	9
5 7	Silica nanoparticle-induced toxicity in mouse lung and liver imaged by electron microscopy. Fundamental Toxicological Sciences, 2015, 2, 19-23.	0.2	1
58	C-Terminal Clostridium perfringens Enterotoxin-Mediated Antigen Delivery for Nasal Pneumococcal Vaccine. PLoS ONE, 2015, 10, e0126352.	1.1	47
59	Monoclonal Antibodies against Extracellular Domains of Claudin-1 Block Hepatitis C Virus Infection in a Mouse Model. Journal of Virology, 2015, 89, 4866-4879.	1.5	48
60	Anti-HCV effect of Lentinula edodes mycelia solid culture extracts andÂlow-molecular-weight lignin. Biochemical and Biophysical Research Communications, 2015, 462, 52-57.	1.0	28
61	Homoharringtonine increases intestinal epithelial permeability by modulating specific claudin isoforms in Caco-2 cell monolayers. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 89, 232-238.	2.0	24
62	Discovery of Anti–Claudin-1 Antibodies as Candidate Therapeutics against Hepatitis C Virus. Journal of Pharmacology and Experimental Therapeutics, 2015, 353, 112-118.	1.3	21
63	Use of cell-based screening to identify small-molecule compounds that modulate claudin-4 expression. Biotechnology Letters, 2015, 37, 1177-1185.	1.1	4
64	Claudin-1 Binder Enhances Epidermal Permeability in a Human Keratinocyte Model. Journal of Pharmacology and Experimental Therapeutics, 2015, 354, 440-447.	1.3	26
65	Pro-chemotherapeutic effects of antibody against extracellular domain of claudin-4 in bladder cancer. Cancer Letters, 2015, 369, 212-221.	3.2	34
66	Development of an Anti–Claudin-3 and -4 Bispecific Monoclonal Antibody for Cancer Diagnosis and Therapy. Journal of Pharmacology and Experimental Therapeutics, 2014, 351, 206-213.	1.3	34
67	Endothelial Cell–Specific Expression of Roundabout 4 Is Regulated by Differential DNA Methylation of the Proximal Promoter. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1531-1538.	1.1	16
68	Hepatitis C Virus Entry Is Impaired by Claudin-1 Downregulation in Diacylglycerol Acyltransferase-1-Deficient Cells. Journal of Virology, 2014, 88, 9233-9244.	1.5	30
69	Tissue distribution and safety evaluation of a claudin-targeting molecule, the C-terminal fragment of Clostridium perfringens enterotoxin. European Journal of Pharmaceutical Sciences, 2014, 52, 132-137.	1.9	14
70	Acute and chronic nephrotoxicity of platinum nanoparticles in mice. Nanoscale Research Letters, 2013, 8, 395.	3.1	59
71	Recent Advances in Claudin-Targeting Technology. Biological and Pharmaceutical Bulletin, 2013, 36, 708-714.	0.6	9
72	Comparison of mucosal absorption-enhancing activity between a claudin-3/-4 binder and a broadly specific claudin binder. Biochemical and Biophysical Research Communications, 2012, 423, 229-233.	1.0	17

#	Article	IF	CITATIONS
73	A simple reporter assay for screening claudin-4 modulators. Biochemical and Biophysical Research Communications, 2012, 426, 454-460.	1.0	11
74	Spiral progression in the development of absorption enhancers based on the biology of tight junctions. Advanced Drug Delivery Reviews, 2012, 64, 515-522.	6.6	31
75	Pathological changes in tight junctions and potential applications into therapies. Drug Discovery Today, 2012, 17, 727-732.	3.2	7
76	The application of an alanine-substituted mutant of the C-terminal fragment of Clostridium perfringens enterotoxin as a mucosal vaccine in mice. Biomaterials, 2012, 33, 317-324.	5.7	11
77	Creation and biochemical analysis of a broad-specific claudin binder. Biomaterials, 2012, 33, 3464-3474.	5.7	45
78	Proof of concept for claudinâ€ŧargeted drug development. Annals of the New York Academy of Sciences, 2012, 1258, 65-70.	1.8	16
79	Mutated C-terminal fragments of Clostridium perfringens enterotoxin have increased affinity to claudin-4 and reversibly modulate tight junctions in vitro. Biochemical and Biophysical Research Communications, 2011, 410, 466-470.	1.0	21
80	Use of human hepatocyte-like cells derived from induced pluripotent stem cells as a model for hepatocytes in hepatitis C virus infection. Biochemical and Biophysical Research Communications, 2011, 416, 119-124.	1.0	63
81	Peptides as Tight Junction Modulators. Current Pharmaceutical Design, 2011, 17, 2699-2703.	0.9	12
82	Adenovirus vector-mediated assay system for hepatitis C virus replication. Nucleic Acids Research, 2011, 39, e64-e64.	6.5	4
83	A Novel Screening System for Claudin Binder Using Baculoviral Display. PLoS ONE, 2011, 6, e16611.	1.1	13
84	A claudin-4 modulator enhances the mucosal absorption of a biologically active peptide. Biochemical Pharmacology, 2010, 79, 1437-1444.	2.0	77
85	Mucosal vaccination using claudin-4-targeting. Biomaterials, 2010, 31, 5463-5471.	5.7	41
86	A Claudin-Targeting Molecule as an Inhibitor of Tumor Metastasis. Journal of Pharmacology and Experimental Therapeutics, 2010, 334, 576-582.	1.3	26
87	Claudin-4-targeting of diphtheria toxin fragment A using a C-terminal fragment of Clostridium perfringens enterotoxin. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 75, 213-217.	2.0	20
88	A novel screening system for claudin binder using baculoviral display. FASEB Journal, 2010, 24, 773.3.	0.2	0
89	Tight junction modulator and drug delivery. Expert Opinion on Drug Delivery, 2009, 6, 509-515.	2.4	22
90	A Novel Tumor-Targeted Therapy Using a Claudin-4-Targeting Molecule. Molecular Pharmacology, 2009, 76, 918-926.	1.0	71

#	Article	IF	CITATIONS
91	Silica nanoparticles as hepatotoxicants. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 72, 496-501.	2.0	209
92	Histological analysis of 70-nm silica particles-induced chronic toxicity in mice. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 72, 626-629.	2.0	80
93	Domain mapping of a claudin-4 modulator, the C-terminal region of C-terminal fragment of Clostridium perfringens enterotoxin, by site-directed mutagenesis. Biochemical Pharmacology, 2008, 75, 1639-1648.	2.0	73
94	Targeting tight junction proteins-significance for drug development. Drug Discovery Today, 2008, 13, 180-186.	3.2	43
95	Progress in absorption enhancers based on tight junction. Expert Opinion on Drug Delivery, 2007, 4, 275-286.	2.4	25
96	Role of tyrosine residues in modulation of claudin-4 by the C-terminal fragment of Clostridium perfringens enterotoxin. Biochemical Pharmacology, 2007, 73, 206-214.	2.0	45
97	Role of Tyr306 in the C-terminal fragment of Clostridium perfringens enterotoxin for modulation of tight junction. Biochemical Pharmacology, 2007, 73, 824-830.	2.0	33
98	Preparation of a Claudin-Targeting Molecule Using a C-Terminal Fragment of Clostridium perfringens Enterotoxin. Journal of Pharmacology and Experimental Therapeutics, 2006, 316, 255-260.	1.3	60
99	A Novel Strategy for a Drug Delivery System Using a Claudin Modulator. Biological and Pharmaceutical Bulletin, 2006, 29, 1783-1789.	0.6	59
100	Epinephrine is an enhancer of rat intestinal absorption. Journal of Controlled Release, 2005, 102, 563-568.	4.8	12
101	Role of C-terminal regions of the C-terminal fragment of Clostridium perfringens enterotoxin in its interaction with claudin-4. Journal of Controlled Release, 2005, 108, 56-62.	4.8	73
102	A Novel Strategy for the Enhancement of Drug Absorption Using a Claudin Modulator. Molecular Pharmacology, 2005, 67, 749-756.	1.0	134
103	Role of N-Terminal Amino Acids in the Absorption-Enhancing Effects of the C-Terminal Fragment ofClostridium perfringensEnterotoxin. Journal of Pharmacology and Experimental Therapeutics, 2005, 314, 789-795.	1.3	27