
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2985130/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A protein-enabled protective film with functions of self-adapting and anion-anchoring for stabilizing lithium-metal batteries. Journal of Energy Chemistry, 2022, 64, 485-495.	12.9	20
2	Numerical simulation of a cavity receiver enhanced with transparent aerogel for parabolic dish solar power generation. Energy, 2022, 246, 123358.	8.8	11
3	Mechanical performance of a CFRP composite reinforced <i>via</i> gelatin-CNTs: A study on fiber interfacial enhancement and matrix enhancement. Nanotechnology Reviews, 2022, 11, 625-636.	5.8	6
4	Natural protein as novel additive of a commercial electrolyte for Long-Cycling lithium metal batteries. Chemical Engineering Journal, 2022, 437, 135283.	12.7	7
5	Tailoring bimodal protein fabrics for enhanced air filtration performance. Separation and Purification Technology, 2022, 290, 120913.	7.9	8
6	MOFâ€Enabled Ionâ€Regulating Gel Electrolyte for Long ycling Lithium Metal Batteries Under High Voltage. Small, 2022, 18, e2106225.	10.0	26
7	The Surface Structure Origin of Carbon Fiber with Enhanced Electrothermal Properties Prepared by Modification of Graphene Coating. Journal of Electronic Materials, 2022, 51, 4288-4298.	2.2	3
8	Protein-modified SEI formation and evolution in Li metal batteries. Journal of Energy Chemistry, 2022, 73, 248-258.	12.9	16
9	Inspired by the growth characteristic of leaf epidermis cell walls: A bio-ITCLC core for supporting a flexible skin with combined morphing applications. Composite Structures, 2021, 255, 112870.	5.8	2
10	The mechanics characteristic of epidermis cell walls in a leaf growth process provides inspiration on a flexible multi-morphing skin. International Journal of Mechanical Sciences, 2021, 193, 106162.	6.7	1
11	Proteinâ€Engineered Functional Materials for Bioelectronics. Advanced Functional Materials, 2021, 31, 2006744.	14.9	24
12	Tug-of-War-Inspired Bio-Based Air Filters with Advanced Filtration Performance. ACS Applied Materials & Interfaces, 2021, 13, 8736-8744.	8.0	19
13	A Proteinâ€Based Janus Separator for Trapping Polysulfides and Regulating Ion Transport in Lithiumâ^'Sulfur Batteries. ChemSusChem, 2021, 14, 2226-2236.	6.8	10
14	Inâ€Situ Synthesis of N, O, Pâ€Doped Hierarchical Porous Carbon from Polyâ€bis(phenoxy)phosphazene for Polysulfideâ€Trapping Interlayer in Lithiumâ€Sulfur Batteries. Chemistry - A European Journal, 2021, 27, 9876-9884.	3.3	5
15	Numerical Study of MXene Enhanced Therminol®VP-1 Nanofluid for Solar Photothermal Conversion. IOP Conference Series: Earth and Environmental Science, 2021, 838, 012012.	0.3	0
16	Building bimodal structures by a wettability difference-driven strategy for high-performance protein air-filters. Journal of Hazardous Materials, 2021, 415, 125742.	12.4	17
17	Decoupled Ion Transport in Protein-Based Solid Electrolyte through <i>Ab Initio</i> Calculations and Experiments. Journal of Physical Chemistry Letters, 2021, 12, 9429-9435.	4.6	4
18	Natural "relief―for lithium dendrites: Tailoring protein configurations for long-life lithium metal anodes. Energy Storage Materials, 2021, 42, 22-33.	18.0	22

#	Article	IF	CITATIONS
19	Interface-tailored forces fluffing protein fiber membranes for high-performance filtration. Separation and Purification Technology, 2021, 278, 119570.	7.9	6
20	A novel carbon aerogel enabling respiratory monitoring for bio-facial masks. Journal of Materials Chemistry A, 2021, 9, 13143-13150.	10.3	9
21	Robust supramolecular composite hydrogels for sustainable and "visible―agriculture irrigation. Journal of Materials Chemistry A, 2021, 9, 24613-24621.	10.3	11
22	Robust, Superelastic Hard Carbon with In Situ Ultrafine Crystals. Advanced Functional Materials, 2020, 30, 1907486.	14.9	20
23	A bio-OCLC structure equating to a movable unit of a lattice cellular core for hybrid in-plane morphing applications. Composite Structures, 2020, 235, 111762.	5.8	3
24	Numerical analysis of photothermal conversion performance of MXene nanofluid in direct absorption solar collectors. Energy Conversion and Management, 2020, 226, 113515.	9.2	49
25	A Bimodal Protein Fabric Enabled via In Situ Diffusion for High-Performance Air Filtration. Environmental Science & Technology, 2020, 54, 12042-12050.	10.0	24
26	One-step firing of carbon fiber and ceramic precursors for high performance electro-thermal composite: Influence of graphene coating. Materials and Design, 2020, 191, 108633.	7.0	17
27	A Janus protein-based nanofabric for trapping polysulfides and stabilizing lithium metal in lithium–sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 7377-7389.	10.3	38
28	A Super-breathable "Woven-like―Protein Nanofabric. ACS Applied Bio Materials, 2020, 3, 2958-2964.	4.6	13
29	An Ultra-microporous Carbon Material Boosting Integrated Capacitance for Cellulose-Based Supercapacitors. Nano-Micro Letters, 2020, 12, 63.	27.0	81
30	Superresilient Hard Carbon Nanofabrics for Sodiumâ€lon Batteries. Small, 2020, 16, e1906883.	10.0	64
31	A gelatin-treated carbon nanofiber/epoxy nanocomposite with significantly improved multifunctional properties. Materials Today Communications, 2020, 24, 101006.	1.9	8
32	A wet-processed, binder-free sulfur cathode integrated with a dual-functional separator for flexible Li–S batteries. Nanoscale, 2020, 12, 5483-5493.	5.6	21
33	Ultralight Programmable Bioinspired Aerogels with an Integrated Multifunctional Surface for Self-Cleaning, Oil Absorption, and Thermal Insulation via Coassembly. ACS Applied Materials & Interfaces, 2020, 12, 11273-11286.	8.0	46
34	An ultra-durable gel electrolyte stabilizing ion deposition and trapping polysulfides for lithium-sulfur batteries. Energy Storage Materials, 2020, 27, 25-34.	18.0	27
35	A multifunctional carbon nanotube reinforced nanocomposite modified via soy protein isolate: A study on dispersion, electrical and mechanical properties. Carbon, 2020, 161, 350-358.	10.3	20
36	Let It Catch: A Shortâ€Branched Protein for Efficiently Capturing Polysulfides in Lithium–Sulfur Batteries. Advanced Energy Materials, 2020, 10, 1903642.	19.5	37

#	Article	IF	CITATIONS
37	Manipulating conductive network formation via 3D T-ZnO: A facile approach for a CNT-reinforced nanocomposite. Nanotechnology Reviews, 2020, 9, 534-542.	5.8	5
38	Enhanced Interfacial Adhesion and Properties of Polypropylene/Carbon Fiber Composites by Fiber Surface Oxidation in Presence of a Compatibilizer. Polymer Composites, 2019, 40, E654.	4.6	32
39	"See―the invisibles: Inspecting battery separator defects via pressure drop. Energy Storage Materials, 2019, 16, 589-596.	18.0	12
40	Rational Design of Graphite Nanoplatelets Interlayers via a Surfactant-Controlled Strategy for Enhancing Lithium–Sulfur Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 15267-15277.	6.7	15
41	A Janus nanofiber-based separator for trapping polysulfides and facilitating ion-transport in lithium–sulfur batteries. Nanoscale, 2019, 11, 18090-18098.	5.6	33
42	Biomaterials for Highâ€Energy Lithiumâ€Based Batteries: Strategies, Challenges, and Perspectives. Advanced Energy Materials, 2019, 9, 1901774.	19.5	73
43	An Ultrarobust Composite Gel Electrolyte Stabilizing Ion Deposition for Longâ€Life Lithium Metal Batteries. Advanced Functional Materials, 2019, 29, 1904547.	14.9	76
44	A protein-functionalized microfiber/protein nanofiber Bi-layered air filter with synergistically enhanced filtration performance by a viable method. Separation and Purification Technology, 2019, 229, 115837.	7.9	36
45	A robust and ion-conductive protein-based binder enabling strong polysulfide anchoring for high-energy lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 1835-1848.	10.3	96
46	Dissipative Particle Dynamics Simulations of a Protein-Directed Self-Assembly of Nanoparticles. ACS Omega, 2019, 4, 10216-10224.	3.5	11
47	A critical study on a 3D scaffold-based lithium metal anode. Electrochimica Acta, 2019, 318, 220-227.	5.2	15
48	Towards Sustainable and Multifunctional Air-Filters: A Review on Biopolymer-Based Filtration Materials. Polymer Reviews, 2019, 59, 651-686.	10.9	80
49	Hierarchically Structured All-biomass Air Filters with High Filtration Efficiency and Low Air Pressure Drop Based on Pickering Emulsion. ACS Applied Materials & Interfaces, 2019, 11, 14266-14274.	8.0	52
50	Roles of electrical stimulation in promoting osteogenic differentiation of BMSCs on conductive fibers. Journal of Biomedical Materials Research - Part A, 2019, 107, 1443-1454.	4.0	35
51	Study of Electrical Stimulation with Different Electric-Field Intensities in the Regulation of the Differentiation of PC12 Cells. ACS Chemical Neuroscience, 2019, 10, 348-357.	3.5	46
52	Strategies for Building Robust Traffic Networks in Advanced Energy Storage Devices: A Focus on Composite Electrodes. Advanced Materials, 2019, 31, e1804204.	21.0	69
53	Promoting neural transdifferentiation of BMSCs via applying synergetic multiple factors for nerve regeneration. Experimental Cell Research, 2019, 375, 80-91.	2.6	16
54	A review of the electrical and mechanical properties of carbon nanofiller-reinforced polymer composites. Journal of Materials Science, 2019, 54, 1036-1076.	3.7	210

WEI-HONG ZHONG

#	Article	IF	CITATIONS
55	In Situ Armoring: A Robust, High-Wettability, and Fire-Resistant Hybrid Separator for Advanced and Safe Batteries. ACS Applied Materials & Interfaces, 2019, 11, 2978-2988.	8.0	71
56	Natural polypeptides treat pollution complex: Moisture-resistant multi-functional protein nanofabrics for sustainable air filtration. Nano Research, 2018, 11, 4265-4277.	10.4	78
57	A Polymer-Alloy Binder for Structures-Properties Control of Battery Electrodes. Energy Storage Materials, 2018, 14, 149-158.	18.0	21
58	Soy protein-treated nanofillers creating adaptive interfaces in nanocomposites with effectively improved conductivity. Journal of Materials Science, 2018, 53, 8653-8665.	3.7	12
59	Self-Assembled Protein Nanofilter for Trapping Polysulfides and Promoting Li ⁺ Transport in Lithium–Sulfur Batteries. Journal of Physical Chemistry Letters, 2018, 9, 2450-2459.	4.6	35
60	Synergistically effects of copolymer and core-shell particles for toughening epoxy. Polymer, 2018, 140, 39-46.	3.8	56
61	Building Ion-Conduction Highways in Polymeric Electrolytes by Manipulating Protein Configuration. ACS Applied Materials & Interfaces, 2018, 10, 4726-4736.	8.0	26
62	Influence of a fiberglass layer on the lightning strike damage response of CFRP laminates in the dry and hygrothermal environments. Composite Structures, 2018, 187, 179-189.	5.8	16
63	A Biobased Composite Gel Polymer Electrolyte with Functions of Lithium Dendrites Suppressing and Manganese lons Trapping. Advanced Energy Materials, 2018, 8, 1702561.	19.5	77
64	Small Molecules Make a Big Difference: A Solvent ontrolled Strategy for Building Robust Conductive Network Structures in High apacity Electrode Composites. Small Methods, 2018, 2, 1800066.	8.6	15
65	A bio-surfactant for defect control: Multifunctional gelatin coated MWCNTs for conductive epoxy nanocomposites. Composites Science and Technology, 2018, 159, 216-224.	7.8	33
66	A sandwich structure polymer/polymer-ceramics/polymer gel electrolytes for the safe, stable cycling of lithium metal batteries. Journal of Membrane Science, 2018, 555, 169-176.	8.2	71
67	Molecular simulation and experimental analysis on thermal and mechanical properties of carbon nanotube/epoxy resin composites with different curing agents at high″ow temperature. Polymer Composites, 2018, 39, E945.	4.6	52
68	NANOMATERIALS AND NANOSTRUCTURES FOR REGULATING IONS AND ELECTRON TRANSPORT IN ADVANCED ENERGY STORAGE DEVICES. , 2018, , 757-809.		0
69	Morphology engineering of protein fabrics for advanced and sustainable filtration. Journal of Materials Chemistry A, 2018, 6, 21585-21595.	10.3	69
70	Core–Shell Hybrid Nanowires with Protein Enabling Fast Ion Conduction for Highâ€Performance Composite Polymer Electrolytes. Small, 2018, 14, e1803564.	10.0	22
71	Poly(Vinylidene Fluoride)â€Based Blends as New Binders for Lithiumâ€Ion Batteries. ChemElectroChem, 2018, 5, 2288-2294.	3.4	20
72	A polymeric nanocomposite interlayer as ion-transport-regulator for trapping polysulfides and stabilizing lithium metal. Energy Storage Materials, 2018, 15, 447-457.	18.0	27

#	Article	IF	CITATIONS
73	A Nanoprotein-Functionalized Hierarchical Composite Air Filter. ACS Sustainable Chemistry and Engineering, 2018, 6, 11606-11613.	6.7	47
74	Novel double-networked polyurethane composites with multi-stimuli responsive functionalities. Journal of Materials Chemistry A, 2018, 6, 17457-17472.	10.3	26
75	A UV-curable epoxy with "soft―segments for 3D-printable shape-memory materials. Journal of Materials Science, 2018, 53, 12650-12661.	3.7	12
76	Effect of epoxy monomer structure on the curing process and thermo-mechanical characteristics of tri-functional epoxy/amine systems: a methodology combining atomistic molecular simulation with experimental analyses. Polymer Chemistry, 2017, 8, 2016-2027.	3.9	41
77	A Multifunctional Protein Coating for Self-Assembled Porous Nanostructured Electrodes. ACS Omega, 2017, 2, 1679-1686.	3.5	15
78	Gumâ€Like Nanocomposites as Conformable, Conductive, and Adhesive Electrode Matrix for Energy Storage Devices. Advanced Energy Materials, 2017, 7, 1601767.	19.5	40
79	Soy protein isolate/bacterial cellulose composite membranes for high efficiency particulate air filtration. Composites Science and Technology, 2017, 138, 124-133.	7.8	88
80	Cross-Linked Protein Nanofilter with Antibacterial Properties for Multifunctional Air Filtration. ACS Applied Materials & Interfaces, 2017, 9, 22846-22855.	8.0	65
81	Energy Storage: Gumâ€Like Nanocomposites as Conformable, Conductive, and Adhesive Electrode Matrix for Energy Storage Devices (Adv. Energy Mater. 6/2017). Advanced Energy Materials, 2017, 7, .	19.5	0
82	A Disposable Multi-Functional Air Filter: Paper Towel/Protein Nanofibers with Gradient Porous Structures for Capturing Pollutants of Broad Species and Sizes. ACS Sustainable Chemistry and Engineering, 2017, 5, 6209-6217.	6.7	77
83	Gel polymer electrolyte based on polyethylene glycol composite lignocellulose matrix with higher comprehensive performances. Electrochimica Acta, 2017, 247, 505-515.	5.2	42
84	Effect of hygrothermal aging on the damage characteristics of carbon woven fabric/epoxy laminates subjected to simulated lightning strike. Materials and Design, 2016, 99, 477-489.	7.0	32
85	Soy-Protein-Based Nanofabrics for Highly Efficient and Multifunctional Air Filtration. ACS Applied Materials & Interfaces, 2016, 8, 20023-20031.	8.0	139
86	Decoupled Ion Transport in a Protein-Based Solid Ion Conductor. Journal of Physical Chemistry Letters, 2016, 7, 4304-4310.	4.6	38
87	"Green―nano-filters: fine nanofibers of natural protein for high efficiency filtration of particulate pollutants and toxic gases. RSC Advances, 2016, 6, 105948-105956.	3.6	70
88	A protein-reinforced adhesive composite electrolyte. Polymer, 2016, 106, 43-52.	3.8	16
89	Novel MnO/carbon composite anode material with multi-modal pore structure for high performance lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 2082-2088.	10.3	59
90	Development of Electrolytes towards Achieving Safe and Highâ€Performance Energyâ€Storage Devices: A Review. ChemElectroChem, 2015, 2, 3-3.	3.4	7

#	Article	IF	CITATIONS
91	Facilitating protein denaturation in organic solvent and the contribution to the promoting dispersion of graphite nanoplatelets in a polymer. EXPRESS Polymer Letters, 2015, 9, 686-694.	2.1	7
92	Ion-induced effective control of morphologies of soy protein biocomposites. Journal of Materials Science, 2015, 50, 2691-2699.	3.7	4
93	Combustion characteristics of a slotted swirl combustor: An experimental test and numerical validation. International Communications in Heat and Mass Transfer, 2015, 66, 140-147.	5.6	21
94	Mechanical properties, tribological behavior, and biocompatibility of high-density polyethylene/carbon nanofibers nanocomposites. Journal of Composite Materials, 2015, 49, 1503-1512.	2.4	10
95	Potential Application and Molecular Mechanisms of Soy Protein on the Enhancement of Graphite Nanoplatelet Dispersion. Journal of Physical Chemistry C, 2015, 119, 26760-26767.	3.1	13
96	Experimental study of damage characteristics of carbon woven fabric/epoxy laminates subjected to lightning strike. Composites Part A: Applied Science and Manufacturing, 2015, 79, 164-175.	7.6	80
97	A Particleâ€Controlled, Highâ€Performance, Gumâ€Like Electrolyte for Safe and Flexible Energy Storage Devices. Advanced Energy Materials, 2015, 5, 1400463.	19.5	42
98	Thermal properties of carbon nanofiber reinforced high-density polyethylene nanocomposites. Journal of Composite Materials, 2015, 49, 795-805.	2.4	15
99	Development of Electrolytes towards Achieving Safe and Highâ€Performance Energyâ€&torage Devices: A Review. ChemElectroChem, 2015, 2, 22-36.	3.4	299
100	A quantitative analysis tool for quality assessment of nanocomposite masterbatches. Journal of Composite Materials, 2014, 48, 2527-2536.	2.4	2
101	Segregated polymeric nanocomposites with tunable three-dimensional network of nanoparticles by controlling the dispersion and distribution. RSC Advances, 2014, 4, 51872-51877.	3.6	2
102	Analysis tools for fibrous nanofiller polymer composites: Macro―and nanoscale dispersion assessments correlated with mechanical and electrical composite properties. Polymer Composites, 2014, 35, 10-18.	4.6	9
103	An Efficient Quantified Stereological Macrodispersion Analysis Approach for Determining Microscale Influences on Nanocomposite Material Properties. Macromolecular Materials and Engineering, 2013, 298, 221-234.	3.6	5
104	Fabrication and characterization of flexible high performance thermoplastic foams derived from rigid polyetherketoneketone via a VOC-free foaming method. Journal of Materials Science, 2013, 48, 3517-3527.	3.7	2
105	A Gumâ€Like Electrolyte: Safety of a Solid, Performance of a Liquid. Advanced Energy Materials, 2013, 3, 1557-1562.	19.5	51
106	Wear and Friction of Carbon Nanofiber-Reinforced HDPE Composites. Journal of Tribology, 2012, 134, .	1.9	17
107	Soy Protein-Assisted Dispersion of Carbon Nanotubes in a Polymer Matrix. Materials Express, 2012, 2, 76-82.	0.5	13
108	An Ultraelastic Poly(ethylene oxide)/Soy Protein Film with Fully Amorphous Structure. Macromolecules, 2012, 45, 602-606.	4.8	34

7

#	Article	IF	CITATIONS
109	Quantified stereological macrodispersion analysis of polymer nanocomposites. Composites Part A: Applied Science and Manufacturing, 2012, 43, 847-855.	7.6	15
110	Wear of Carbon Nanofiber Reinforced HDPE Nanocomposites Under Dry Sliding Condition. Journal of Nanotechnology in Engineering and Medicine, 2012, 3, .	0.8	7
111	Effects of Soy Protein on the Crystallization and Dielectric Properties of PEG/PEG Copolymers. Macromolecular Chemistry and Physics, 2012, 213, 757-765.	2.2	8
112	Structurally Induced Dielectric Constant Promotion and Loss Suppression for Poly(vinylidene) Tj ETQq0 0 0 rgBT	Overlock	10 Tf 50 622 16
113	Effects of compaction and UV exposure on performance of acrylate/glassâ€fiber composites cured layer by layer. Journal of Applied Polymer Science, 2012, 123, 3799-3805.	2.6	18
114	Sensitivity of Dielectric Properties to Wear Process on Carbon Nanofiber/High-Density Polyethylene Composites. Nanoscale Research Letters, 2011, 6, 7.	5.7	21
115	Fluorination deposition on carbon nanofibers by PTFE decomposition as a facile method to enhance dispersion and interaction in PVDF composites. Journal of Materials Chemistry, 2011, 21, 944-950.	6.7	12
116	Simultaneous improvement in ionic conductivity and mechanical properties of multi-functional block-copolymer modified solid polymer electrolytes for lithium ion batteries. Journal of Power Sources, 2011, 196, 10163-10168.	7.8	30
117	Review on polymer/graphite nanoplatelet nanocomposites. Journal of Materials Science, 2011, 46, 5595-5614.	3.7	402
118	Special wetting behavior of a graphitic nanofiber-modified epoxy generalized for rough textured fabric surfaces. Colloid and Polymer Science, 2011, 289, 141-148.	2.1	3
119	Dramatic Effects of Scalable SNNâ€Assisted Melt Dispersion on Thermal Conductivity and Coefficient of Thermal Expansion of Nanocomposites. Macromolecular Materials and Engineering, 2011, 296, 151-158.	3.6	4
120	Dependence of Dielectric Properties and Percolative Behavior on Phase Separation Structure Induced by Heterogeneous Carbon Nanofiber Distribution in Polymer Blend Nanocomposites. Macromolecular Materials and Engineering, 2011, 296, 992-1001.	3.6	15
121	Electrical and dielectric sensitivities to thermal processes in carbon nanofiber/high-density polyethylene composites. Science and Engineering of Composite Materials, 2011, 18, 51-60.	1.4	3
122	Influence of Carbon Nanofiber Network Variability on the AC Conductivity of Polyetherimide Composite Films. Macromolecular Materials and Engineering, 2010, 295, 310-314.	3.6	9
123	Effective Static Dissipation of Bilayer Thermoplastic Nanocomposites at Low Nanofiber Loadings. Macromolecular Materials and Engineering, 2010, 295, 1136-1143.	3.6	6
124	Synthesis of Organosilaneâ€Modified Carbon Nanofibers and Influence of Silane Coating Thickness on the Performance of Polyethylene Nanocomposites. Macromolecular Materials and Engineering, 2010, 295, 1125-1135.	3.6	33
125	Influence of phase morphology on the sliding wear of polyethylene blends filled with carbon nanofibers. Polymer Engineering and Science, 2010, 50, 613-623.	3.1	16
126	Effectual dispersion of carbon nanofibers in polyetherimide composites and their mechanical and tribological properties. Polymer Engineering and Science, 2010, 50, 1914-1922.	3.1	16

#	Article	IF	CITATIONS
127	Curing characteristics of an epoxy resin in the presence of ball-milled graphite particles. Journal of Materials Science, 2009, 44, 1987-1997.	3.7	25
128	The revival of electron beam irradiation curing of epoxy resin—materials characterization and supportive cure studies. Polymers for Advanced Technologies, 2009, 20, 811-817.	3.2	9
129	Mechanisms for the Improvement in Interfacial Adhesion Between UHMWPE Reinforcement and Nano-epoxy Resins with Reactive Graphitic Nanofibers. Journal of Adhesion Science and Technology, 2009, 23, 1281-1292.	2.6	3
130	Carbon nanofiber/polyetherimide composite membranes with special dielectric properties. Soft Matter, 2009, 5, 3593.	2.7	37
131	Physical properties of a reactive graphitic nanofiber-reinforced epoxy. Journal of Materials Science, 2008, 43, 413-416.	3.7	4
132	Analytical study of tensile behaviors of UHMWPE/nano-epoxy bundle composites. Journal of Materials Science, 2008, 43, 4236-4246.	3.7	13
133	Electrical conductivity enhancement of a polymer using butyl glycidyl ether (BGE)–lithium hexafluorophosphate (LiPF6) complex. Journal of Materials Science, 2008, 43, 4607-4617.	3.7	6
134	Preparation and properties of natural rubber composites reinforced with pretreated carbon nanotubes. Polymers for Advanced Technologies, 2008, 19, 1543-1549.	3.2	62
135	Characterization of the flexural behavior of a reactive graphitic nanofibers reinforced epoxy using a non-linear damage model. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 445-446, 106-112.	5.6	18
136	Wettability of nano-epoxies to UHMWPE fibers. Journal of Colloid and Interface Science, 2006, 299, 332-341.	9.4	35