
Qiuming Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2985129/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<scp>3D Free‣tanding</scp> Carbon Nanofibers Modified by Lithiophilic Metals Enabling <scp>Dendriteâ€Free</scp> Anodes for Li Metal Batteries. Energy and Environmental Materials, 2023, 6, .	7.3	2
2	Dualâ€Atom Nickel Moieties of Ni(II) ₂ N ₄ (µ ₂ â€N) ₂ Anchored on Alfalfaâ€Đerived Developed Porous Nâ€Đoped Carbon for Highâ€Performance Li–S Battery. Small, 2022, 18, .	5.2	7
3	High-content atomically distributed W(<scp>v</scp> , <scp>vi</scp>) on FeCo layered double hydroxide with high oxygen evolution reaction activity. Chemical Communications, 2022, 58, 7678-7681.	2.2	5
4	Liquid-phase exfoliation of layered biochars into multifunctional heteroatom (Fe, N, S) co-doped graphene-like carbon nanosheets. Chemical Engineering Journal, 2021, 420, 127601.	6.6	32
5	A MXene-based EDA-Ti3C2Tx intercalation compound with expanded interlayer spacing as high performance supercapacitor electrode material. Carbon, 2021, 173, 135-144.	5.4	46
6	Two Types of Single-Atom FeN ₄ and FeN ₅ Electrocatalytic Active Centers on N-Doped Carbon Driving High Performance of the SA-Fe-NC Oxygen Reduction Reaction Catalyst. Chemistry of Materials, 2021, 33, 5542-5554.	3.2	59
7	A rGO-Based Fe2O3 and Mn3O4 binary crystals nanocomposite additive for high performance Li–S battery. Electrochimica Acta, 2020, 343, 136079.	2.6	13
8	Fe, N co-doped carbonaceous hollow spheres with self-grown carbon nanotubes as a high performance binary electrocatalyst. Carbon, 2019, 154, 466-477.	5.4	42
9	Nanosized Fe7S8 with high surface area as polysulfide capturer combined with graphene for Li–S battery cathode. Electrochimica Acta, 2019, 319, 472-480.	2.6	8
10	A C-coated and Sb-doped SnO2 nanocompsite with high surface area and low charge transfer resistance as ultrahigh capacity lithium ion battery anode. Materials Today Energy, 2019, 13, 93-99.	2.5	14
11	2D Meso/Microporous Platelet Carbon Derived from Metalâ€Organic frameworks and Its Application in Highâ€Performance Li‧ Batteries. ChemElectroChem, 2019, 6, 3091-3100.	1.7	6
12	Low content of Fe3C anchored on Fe,N,S-codoped graphene-like carbon as bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Carbon, 2019, 150, 93-100.	5.4	57
13	A high surface area N-doped holey graphene aerogel with low charge transfer resistance as high performance electrode of non-flammable thermostable supercapacitors. Carbon, 2019, 149, 452-461.	5.4	78
14	Porous Aâ€SnO ₂ /rGO Nanocomposite via Annealing Treatment with Stable Highâ€Capacity as Anode of Lithiumâ€lon Battery. ChemistrySelect, 2018, 3, 4303-4309.	0.7	9
15	Ultrahigh Oxygen Reduction Reaction Electrocatalytic Activity and Stability over Hierarchical Nanoporous N-doped Carbon. Scientific Reports, 2018, 8, 2863.	1.6	23
16	A Largeâ€Sized Reduced Graphene Oxide with Low Chargeâ€Transfer Resistance as a Highâ€Performance Electrode for a Nonflammable Highâ€Temperature Stable Ionicâ€Liquidâ€Based Supercapacitor. ChemSusChem, 2018, 11, 4026-4032.	3.6	11
17	Binary Hierarchical Porous Graphene/Pyrolytic Carbon Nanocomposite Matrix Loaded with Sulfur as a High-Performance Li–S Battery Cathode. ACS Applied Materials & Interfaces, 2018, 10, 18726-18733.	4.0	33
18	Uniform small-sized MoS ₂ from novel solution-based microwave-assisted method with exceptional reversible lithium storage properties. Nanoscale, 2018, 10, 15222-15228.	2.8	14

#	Article	IF	CITATIONS
19	Low content Pt nanoparticles anchored on N-doped reduced graphene oxide with high and stable electrocatalytic activity for oxygen reduction reaction. Scientific Reports, 2017, 7, 43352.	1.6	51
20	Unusual interconnected graphitized carbon nanosheets as the electrode of high-rate ionic liquid-based supercapacitor. Carbon, 2017, 119, 287-295.	5.4	79
21	Crosslinked Polypyrrole Grafted Reduced Graphene Oxide-Sulfur Nanocomposite Cathode for High Performance Li-S Battery. Electrochimica Acta, 2017, 235, 32-41.	2.6	50
22	Interlinked Porous Carbon Nanoflakes Derived from Hydrolyzate Residue during Cellulosic Bioethanol Production for Ultrahigh-Rate Supercapacitors in Nonaqueous Electrolytes. ACS Sustainable Chemistry and Engineering, 2017, 5, 1297-1305.	3.2	45
23	Unusual Mesoporous Carbonaceous Matrix Loading with Sulfur as the Cathode of Lithium Sulfur Battery with Exceptionally Stable High Rate Performance. ACS Applied Materials & Interfaces, 2017, 9, 28366-28376.	4.0	19
24	Graphene-based carbon coated tin oxide as a lithium ion battery anode material with high performance. Journal of Materials Chemistry A, 2017, 5, 19136-19142.	5.2	35
25	Biomassâ€Derived Porous Carbon with Micropores and Small Mesopores for Highâ€Performance Lithium–Sulfur Batteries. Chemistry - A European Journal, 2016, 22, 3239-3244.	1.7	117
26	3D Hierarchically Interconnected Porous Graphene Containing Sulfur for Stable High Rate Li–S Batteries. Energy Technology, 2016, 4, 625-632.	1.8	14
27	1D nanorod-like porous carbon with simultaneous high energy and large power density as a supercapacitor electrode material. RSC Advances, 2016, 6, 51332-51336.	1.7	6
28	Renewable graphene-like nitrogen-doped carbon nanosheets as supercapacitor electrodes with integrated high energy–power properties. Journal of Materials Chemistry A, 2016, 4, 8690-8699.	5.2	155
29	One-pot in situ chemical reduction of graphene oxide and recombination of sulphur as a cathode material for a Li–S battery. Journal of Materials Chemistry A, 2016, 4, 15140-15147.	5.2	17
30	Unique 1D Co3O4 crystallized nanofibers with (220) oriented facets as high-performance lithium ion battery anode material. Scientific Reports, 2016, 6, 26460.	1.6	32
31	Catalytic CO Oxidation over Au Nanoparticles Loaded Nanoporous Nickel Phosphate Composite. Journal of Nanomaterials, 2015, 2015, 1-7.	1.5	1
32	Bio-inspired beehive-like hierarchical nanoporous carbon derived from bamboo-based industrial by-product as a high performance supercapacitor electrode material. Journal of Materials Chemistry A, 2015, 3, 5656-5664.	5.2	367
33	Three-dimensional functionalized graphenes with systematical control over the interconnected pores and surface functional groups for high energy performance supercapacitors. Carbon, 2015, 85, 351-362.	5.4	83
34	Nitrogen and oxygen co-doped microporous carbons derived from theÂleaves of Euonymus japonicas as high performance supercapacitor electrode material. Microporous and Mesoporous Materials, 2015, 210, 1-9.	2.2	55
35	One-dimensional porous nanofibers of Co3O4 on the carbon matrix from human hair with superior lithium ion storage performance. Scientific Reports, 2015, 5, 12382.	1.6	65
36	Solvothermally induced α-Fe ₂ O ₃ /graphene nanocomposites with ultrahigh capacitance and excellent rate capability for supercapacitors. Journal of Materials Chemistry A, 2015, 3, 22005-22011.	5.2	71

#	Article	IF	CITATIONS
37	Microporous carbon derived from Apricot shell as cathode material for lithium–sulfur battery. Microporous and Mesoporous Materials, 2015, 204, 235-241.	2.2	80
38	Superlow load of nanosized MnO on a porous carbon matrix from wood fibre with superior lithium ion storage performance. Journal of Materials Chemistry A, 2014, 2, 19975-19982.	5.2	83
39	Preparation, characterization and electrochemical properties of porous NiO/NPC composite nanosheets. Microporous and Mesoporous Materials, 2014, 200, 92-100.	2.2	13
40	Preparing two-dimensional microporous carbon from Pistachio nutshell with high areal capacitance as supercapacitor materials. Scientific Reports, 2014, 4, 5545.	1.6	168
41	Constructing Free Standing Metal Organic Framework MIL-53 Membrane Based on Anodized Aluminum Oxide Precursor. Scientific Reports, 2014, 4, 4947.	1.6	49
42	An unusual method to prepare a highly microporous carbon for hydrogen storage application. Materials Letters, 2013, 100, 227-229.	1.3	15
43	High-performance LiFePO4/C nanocomposites prepared from a micro-reactor based on an unusual water–oil system. RSC Advances, 2013, 3, 7245.	1.7	6
44	Efficient phosphors based on organic dyes encapsulated in nanoporous nickel phosphate VSB-1. Journal of Luminescence, 2012, 132, 439-442.	1.5	2
45	LiFePO4/C composite cathode material with a continuous porous carbon network for high power lithium-ion battery. Journal of Alloys and Compounds, 2011, 509, 3690-3698.	2.8	38
46	Nano-scaled top-down of bismuth chalcogenides based on electrochemical lithium intercalation. Journal of Nanoparticle Research, 2011, 13, 6569-6578.	0.8	9
47	Porous carbon synthesized through chemical vapor deposition of ferrocene and its electrochemical capacitance behavior. Rare Metals, 2011, 30, 35-37.	3.6	2
48	Enhanced methanol electro-oxidation activity of PtNi alloy nanoparticles on the large surface area porous carbon. Rare Metals, 2011, 30, 42-47.	3.6	7
49	Facile Approach to Prepare Nickel Cobaltite Nanowire Materials for Supercapacitors. Small, 2011, 7, 2454-2459.	5.2	426
50	Hierarchical porous carbons prepared by an easy one-step carbonization and activation of phenol–formaldehyde resins with high performance for supercapacitors. Journal of Power Sources, 2011, 196, 1615-1619.	4.0	93
51	Copper oxide and ordered mesoporous carbon composite with high performance using as anode material for lithium-ion battery. Microporous and Mesoporous Materials, 2011, 143, 230-235.	2.2	52
52	Synthesis, Characterization and Capacitive Behaviors of Nanoporous Carbons Obtained by Using the Template of Zeolite-13X/MCM-48 Biporous Molecular Sieve. Materials Science Forum, 2011, 688, 326-333.	0.3	1
53	Enhanced Hydrogen Storage Capacity of Nanosized Copper Loaded Active Carbons Treated Under CO ₂ . Journal of Nanoscience and Nanotechnology, 2010, 10, 7648-7653.	0.9	0
54	Preparation of porous doped carbons and the high performance in electrochemical capacitors. Microporous and Mesoporous Materials, 2010, 131, 89-96.	2.2	86

#	Article	IF	CITATIONS
55	Topotactic Conversion Route to Mesoporous Quasi‣ingleâ€Crystalline Co ₃ O ₄ Nanobelts with Optimizable Electrochemical Performance. Advanced Functional Materials, 2010, 20, 617-623.	7.8	202
56	Asymmetric capacitor based on superior porous Ni–Zn–Co oxide/hydroxide and carbon electrodes. Journal of Power Sources, 2010, 195, 3017-3024.	4.0	123
57	Enhanced room temperature hydrogen storage capacity of hollow nitrogen-containing carbon spheres. International Journal of Hydrogen Energy, 2010, 35, 210-216.	3.8	101
58	Cryogenic hydrogen uptake of high surface area porous carbon materials activated by potassium hydroxide. International Journal of Hydrogen Energy, 2010, 35, 7547-7554.	3.8	27
59	Hierarchical porous carbon obtained using the template of NaOH-treated zeolite β and its high performance as supercapacitor. Microporous and Mesoporous Materials, 2010, 133, 106-114.	2.2	43
60	High hydrogen uptake capacity of mesoporous nitrogen-doped carbons activated using potassium hydroxide. Carbon, 2010, 48, 2968-2973.	5.4	47
61	Influence of textural parameters on the catalytic behavior for CO oxidation over ordered mesoporous Co3O4. Applied Catalysis B: Environmental, 2010, 97, 284-291.	10.8	75
62	Porous carbons prepared by using metal–organic framework as the precursor for supercapacitors. Carbon, 2010, 48, 3599-3606.	5.4	332
63	Immobilization of Hemoglobin at the Galleries of Layered Lepidocrocite-Related Potassium Lithium Titanate. Journal of Nanoscience and Nanotechnology, 2009, 9, 1615-1618.	0.9	0
64	High Performance Oxide Functionalized Nitrogenâ€Doped Mesocellular Carbon Foam for Biosensor Construction. Electroanalysis, 2009, 21, 715-722.	1.5	13
65	Hemoglobinâ€ītanate Composite Based Biosensor for the Amperometric Determination of Hydrogen Peroxide in Acidic Medium. Electroanalysis, 2009, 21, 904-908.	1.5	2
66	Fe-substituted titanate nanosheets intercalated with hemoglobin for direct electrochemistry. Biosensors and Bioelectronics, 2009, 25, 948-951.	5.3	5
67	Enhanced electrical capacitance of porous carbons by nitrogen enrichment and control of the pore structure. Microporous and Mesoporous Materials, 2009, 118, 28-34.	2.2	72
68	Rapid preparation, characterization and hydrogen storage properties of pure and metal ions doped mesoporous MCM-41. Microporous and Mesoporous Materials, 2009, 117, 165-169.	2.2	25
69	Mesoporous MCo2O4 (M=Cu, Mn and Ni) spinels: Structural replication, characterization and catalytic application in CO oxidation. Microporous and Mesoporous Materials, 2009, 124, 144-152.	2.2	183
70	Boron and nitrogen co-doped porous carbon and its enhanced properties as supercapacitor. Journal of Power Sources, 2009, 186, 551-556.	4.0	342
71	Synthesis, characterization and energy-related applications of carbide-derived carbons obtained by the chlorination of boron carbide. Carbon, 2009, 47, 820-828.	5.4	48
72	High performance of nanoporous carbon in cryogenic hydrogen storage and electrochemical capacitance. Carbon, 2009, 47, 2259-2268.	5.4	81

#	Article	IF	CITATIONS
73	High Hydrogen Storage Capacity of Porous Carbons Prepared by Using Activated Carbon. Journal of the American Chemical Society, 2009, 131, 7016-7022.	6.6	505
74	<i>In-Situ</i> Fourier Transform Infrared Spectroscopy Study on CO Oxidation Over Au/Titanate and Au/Titania Nanocatalysts. Journal of Nanoscience and Nanotechnology, 2009, 9, 1483-1486.	0.9	0
75	CO2 activation of ordered porous carbon CMK-1 for hydrogen storage. International Journal of Hydrogen Energy, 2008, 33, 116-123.	3.8	71
76	Catalytic Activity and Stability of Magadiite-Immobilized Myoglobin in Organic Solvents. Chinese Journal of Catalysis, 2008, 29, 458-462.	6.9	5
77	Selective Determination of Dopamine in the Presence of Ascorbic Acid at Porousâ€Carbonâ€Modified Glassy Carbon Electrodes. Electroanalysis, 2008, 20, 1159-1166.	1.5	16
78	Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials. Carbon, 2008, 46, 1718-1726.	5.4	575
79	Preparation of mesoporous copper cerium bimetal oxides with high performance for catalytic oxidation of carbon monoxide. Applied Catalysis B: Environmental, 2008, 81, 236-243.	10.8	66
80	Enhanced carbon monoxide oxidation activity over gold–ceria nanocomposites. Applied Catalysis B: Environmental, 2008, 84, 790-796.	10.8	26
81	Co-intercalation of myoglobin and Eu3+ ions into the gallery of layered titanate: Preparation, structures as well as enzymatic and photoluminescent properties. Microporous and Mesoporous Materials, 2008, 109, 12-20.	2.2	1
82	Gold nanocatalysts supported on protonic titanate nanotubes and titania nanocrystals. Journal of Molecular Catalysis A, 2008, 280, 233-239.	4.8	21
83	A novel kind of porous carbon nitride using H-magadiite as the template. Materials Letters, 2008, 62, 2520-2523.	1.3	5
84	A novel nanoscale catalyst system composed of nanosized Pd catalysts immobilized on Fe ₃ O ₄ @SiO ₂ –PAMAM. Nanotechnology, 2008, 19, 075714.	1.3	74
85	Nanoporous metal phosphate CoVSB-1 catalyst for oxidation of styrene with H2O2. Studies in Surface Science and Catalysis, 2007, 170, 1338-1343.	1.5	1
86	Electronic coupling one-dimensional Ag/ZnS nanocomposites in a nanoporous nickel phosphate host. Nanotechnology, 2007, 18, 255607.	1.3	5
87	Selective oxidation of styrene to benzaldehyde over VSB-5 and isomorphously substituted cobalt VSB-5. Catalysis Communications, 2007, 8, 681-685.	1.6	35
88	Hemoglobin niobate composite based biosensor for efficient determination of hydrogen peroxide in a broad pH range. Biosensors and Bioelectronics, 2007, 22, 1454-1460.	5.3	37
89	Activation, characterization and hydrogen storage properties of the mesoporous carbon CMK-3. Carbon, 2007, 45, 1989-1996.	5.4	221
90	Intensively competitive adsorption for heavy metal ions by PAMAM-SBA-15 and EDTA-PAMAM-SBA-15 inorganic–organic hybrid materials. Microporous and Mesoporous Materials, 2007, 103, 316-324.	2.2	182

#	Article	IF	CITATIONS
91	Preparation of Cu2+/+–VSB-5 and their catalytic properties on hydroxylation of phenol. Materials Letters, 2007, 61, 2212-2216.	1.3	36
92	Preparation of cadmium selenide nanocrystals through an ultrasonic activation double-phase approach at room temperature. Materials Letters, 2007, 61, 4471-4473.	1.3	3
93	A novel kind of copper–active carbon nanocomposites with their high hydrogen storage capacities at room temperature. International Journal of Hydrogen Energy, 2007, 32, 1943-1948.	3.8	12
94	Heterogeneous Hydrogenation Catalyses over Recyclable Pd(0) Nanoparticle Catalysts Stabilized by PAMAM-SBA-15 Organicâ^'Inorganic Hybrid Composites. Journal of the American Chemical Society, 2006, 128, 716-717.	6.6	204
95	Precursors of TAA-magadiite nanocomposites. Applied Clay Science, 2006, 31, 229-237.	2.6	34
96	Synthesis of CdS nanocrystals and Au/CdS nanocomposites through ultrasound activation liquid–liquid two-phase approach at room temperature. Chemical Engineering Journal, 2006, 121, 9-16.	6.6	18
97	Preparation of CdS semiconductor nanoarrays in the channels of nickel phosphate VSB-5 nanorods. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 357, 136-140.	0.9	8
98	Freezing behavior of one-dimensional copper nanowires. Solid State Communications, 2006, 138, 399-403.	0.9	5
99	Metallic Ag arrays assembled in nanoporous VSB-5 nanocrystals by a simple method: A novel catalyst for the synthesis of olefin aldehyde from styrene. Materials Letters, 2006, 60, 1816-1822.	1.3	13
100	Syntheses, characterization and properties of novel nanostructures consisting of Ni/titanate and Ni/titania. Materials Letters, 2006, 60, 3803-3808.	1.3	18
101	Hexagonal zinc sulfide nanocrystals coated by esters with a well-defined exciton feature. Journal of Applied Physics, 2006, 99, 106107.	1.1	6
102	Rapid hydrothermal synthesis of bimetal cobalt nickel phosphate molecular sieve CoVSB-1 and its ammonia gas adsorption property. Microporous and Mesoporous Materials, 2005, 86, 323-328.	2.2	14
103	Preparation, channel surface hydroxyl characterization and photoluminescence properties of nanoporous nickel phosphate VSB-1. Microporous and Mesoporous Materials, 2005, 85, 355-364.	2.2	22
104	Synthesis, characterization and catalytic properties in oxidation of styrene over cobalt-substituted microporous nickel phosphate CoVSB-5. Microporous and Mesoporous Materials, 2005, 85, 365-373.	2.2	33
105	Molecular dynamics simulation of the solidification of liquid gold nanowires. Solid State Communications, 2005, 136, 32-35.	0.9	15
106	Preparation and photocatalytic activity of titanium oxide anchored on the channel surface of nanoporous material VSB-1. Materials Letters, 2005, 59, 446-449.	1.3	10
107	Immobilization of hemoglobin at the galleries of layered niobate HCaNbO. Biomaterials, 2005, 26, 5267-5275.	5.7	30
108	Zinc oxide nanoarrays in nanoporous nickel phosphate with a huge blueshift ultraviolet-visible exciton absorption peak. Applied Physics Letters, 2005, 87, 093113.	1.5	13

#	Article	IF	CITATIONS
109	Growth and Photoluminescence Characterization of Highly Oriented Cul/β-Cyclodextrin Hybrid Composite Film. Langmuir, 2005, 21, 6866-6871.	1.6	26
110	Synthesis and characterization of nanoporous nickel phosphates VSB-1 with systematic doping of cobalts in the frameworks. Microporous and Mesoporous Materials, 2004, 75, 135-141.	2.2	12
111	Influence of sulfosalicylic acid in the electrolyte on the optical properties of porous anodic alumina membranes. Physics Letters, Section A: General, Atomic and Solid State Physics, 2004, 333, 328-333.	0.9	11
112	Preparation and properties of an ordered, uniform 0.9 nm Ag array assembled in a nanoporous VSB-1 by a simple soft chemical method. Chemical Communications, 2004, , 1998.	2.2	14
113	Layered Structural Heme Protein Magadiite Nanocomposites with High Enzyme-like Peroxidase Activity. Chemistry of Materials, 2004, 16, 2675-2684.	3.2	64
114	Reversible Intercalation of Large-Capacity Hemoglobin into in Situ Prepared Titanate Interlayers with Enhanced Thermal and Organic Medium Stabilities. Langmuir, 2004, 20, 10231-10237.	1.6	36
115	Enhanced Catalytic Activity of Hemoglobin in Organic Solvents by Layered Titanate Immobilization. Journal of the American Chemical Society, 2004, 126, 14346-14347.	6.6	79
116	High Stability in Organic Solvent of Heme Proteins Immobilized in the Interlayers of Magadiite Nanoparticles. Chemistry Letters, 2004, 33, 1210-1211.	0.7	5
117	Unusual Nanometer-Sized Nsutite from Mn(ClO4)2 6H2O-(C2H5)4NOH-CsMnO4-H2O Basic Systems. Journal of Chemical Engineering of Japan, 2003, 36, 1222-1226.	0.3	2
118	COLLOIDS, HELICES, AND FILMS OF MB/HB-MNOX BIOCOMPOSITES. , 2003, , .		0
119	Magnesium Manganese Oxide Nanoribbons:Â Synthesis, Characterization, and Catalytic Application. Journal of Physical Chemistry B, 2002, 106, 9761-9768.	1.2	52
120	Colloids, helices, and patterned films made from heme proteins and manganese oxide. Chemical Communications, 2002, , 2254-2255.	2.2	33
121	Synthesis and ab initio structural determination of a new pillared nickel diphosphonate: VSB-6 or Ni5.4(OH,F)4[O3Pî—,(CH2)3î—,PO3]2(H2O)1.4·1.2H3O. Solid State Sciences, 2002, 4, 1179-1185.	1.5	15
122	PREPARATION, STRUCTURE, AND FORMATION PROCESSES OF NANOMETER-SIZED LAYERED MANGANESE OXIDES. , 2002, , .		0
123	Preparation of Nanometer-Sized Manganese Oxides by Intercalation of Organic Ammonium Ions in Synthetic Birnessite OL-1. Chemistry of Materials, 2001, 13, 778-786.	3.2	121
124	Catalytic conversion of butadiene to ethylbenzene over the nanoporous nickel(ii) phosphate, VSB-1. Chemical Communications, 2001, , 859-860.	2.2	47
125	Nickel(II) Phosphate VSB-5: A Magnetic Nanoporous Hydrogenation Catalyst with 24-Ring Tunnels. Angewandte Chemie - International Edition, 2001, 40, 2831-2834.	7.2	319
126	On the synthesis of CoAPO-46, -11 and -44 molecular sieves from a Co(Ac)2·4H2O·Al(iPrO)3·H3PO4·Pr2NH·H2O gel via experimental design. Microporous and Mesoporous Materials, 1999, 27, 75-86.	2.2	23

#	Article	IF	CITATIONS
127	Structure and Magnetism of VSB-2, -3, and -4 or Ni4(O3P-(CH2)-PO3)2·(H2O)n(n= 3, 2, 0), the First Ferromagnetic Nickel(II) Diphosphonates:Â Increase of Dimensionality and Multiple Coordination Changes during a Quasi Topotactic Dehydration. Chemistry of Materials, 1999, 11, 2937-2947.	3.2	94
128	A family of unusual lamellar aluminophosphates synthesized from non-aqueous systems. Studies in Surface Science and Catalysis, 1997, , 389-396.	1.5	1
129	Synthesis and Characterization of a Family of Amine-Intercatalated Lamellar Aluminophosphates from Alcoholic System. Chemistry of Materials, 1997, 9, 457-462.	3.2	60
130	Synthesis and characterization of novel open-framework cobalt phosphates from aqueous-alcoholic systems. Studies in Surface Science and Catalysis, 1997, 105, 381-388.	1.5	1
131	Synthesis of microporous aluminophosphates (AlPO4-12, AlPO4-JDF and AlPO4-41) from alcohol systems in the presence of organic templating agents. Materials Letters, 1997, 31, 151-153.	1.3	6
132	Nonaqueous Synthesis and Characterization of a New 2-Dimensional Layered Aluminophosphate [Al3P4O16]3â^A· 3[CH3CH2NH3]+. Journal of Solid State Chemistry, 1997, 129, 37-44.	1.4	80
133	Synthesis and characterization of a novel microporous aluminophosphate AlPO4-JDF (2AlPO4·HOCH2CH2NH2) from alcohol systems. Journal of Materials Chemistry, 1996, 6, 1207-1210.	6.7	11
134	Selective oxidative dehydrogenation of isobutane over unidimensional aluminophosphate molecular sieves (AlPO4-5, AlPO4-41, AlPO4-25). Chemical Communications, 1996, , 1905.	2.2	4
135	Synthesis and Structure of a Chain Aluminophosphate Filled with [NH4]+and [H3NCH2CH2NH3]2+Cations. Journal of Solid State Chemistry, 1996, 127, 145-150.	1.4	57
136	Synthesis and characterization of aluminophosphate molecular sieve AlPO4-41 from alcohol systems. Microporous Materials, 1996, 7, 219-223.	1.6	11
137	Synthesis of AlPO4-17 from non-aqueous systems. Journal of the Chemical Society Chemical Communications, 1994, , 1465.	2.0	29
138	Synthesis and Hydrogen Adsorption Properties of Templated Nanoporous Carbons. Advanced Materials Research, 0, 239-242, 2116-2119.	0.3	1