List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/298506/publications.pdf Version: 2024-02-01

STEVEN M DUDEK

#	Article	IF	CITATIONS
1	Cytoskeletal regulation of pulmonary vascular permeability. Journal of Applied Physiology, 2001, 91, 1487-1500.	2.5	892
2	Activated Protein C Mediates Novel Lung Endothelial Barrier Enhancement. Journal of Biological Chemistry, 2005, 280, 17286-17293.	3.4	349
3	Pulmonary Endothelial Cell Barrier Enhancement by Sphingosine 1-Phosphate. Journal of Biological Chemistry, 2004, 279, 24692-24700.	3.4	271
4	Regulation of sphingosine 1â€phosphateâ€induced endothelial cytoskeletal rearrangement and barrier enhancement by S1P 1 receptor, PI3 kinase, Tiam1/Rac1, and αâ€actinin. FASEB Journal, 2005, 19, 1646-1656.	0.5	265
5	Transactivation of Sphingosine 1-Phosphate Receptors Is Essential for Vascular Barrier Regulation. Journal of Biological Chemistry, 2006, 281, 34381-34393.	3.4	169
6	Differential Effects of Sphingosine 1–Phosphate Receptors on Airway and Vascular Barrier Function in the Murine Lung. American Journal of Respiratory Cell and Molecular Biology, 2010, 43, 394-402.	2.9	150
7	Regulation of vascular permeability by sphingosine 1-phosphate. Microvascular Research, 2009, 77, 39-45.	2.5	149
8	Cytoskeletal Activation and Altered Gene Expression in Endothelial Barrier Regulation by Simvastatin. American Journal of Respiratory Cell and Molecular Biology, 2004, 30, 662-670.	2.9	144
9	Sphingosine-1–Phosphate, FTY720, and Sphingosine-1–Phosphate Receptors in the Pathobiology of Acute Lung Injury. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 6-17.	2.9	127
10	Arachidonic acid cascade in endothelial pathobiology. Microvascular Research, 2005, 69, 107-127.	2.5	107
11	Abl Tyrosine Kinase Phosphorylates Nonmuscle Myosin Light Chain Kinase to Regulate Endothelial Barrier Function. Molecular Biology of the Cell, 2010, 21, 4042-4056.	2.1	101
12	Novel interaction of cortactin with endothelial cell myosin light chain kinase. Biochemical and Biophysical Research Communications, 2002, 298, 511-519.	2.1	91
13	DPP4 inhibition by sitagliptin attenuates LPS-induced lung injury in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L834-L845.	2.9	89
14	Endothelial cell barrier enhancement by ATP is mediated by the small GTPase Rac and cortactin. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 291, L289-L295.	2.9	83
15	Enhanced interaction between focal adhesion and adherens junction proteins: Involvement in sphingosine 1-phosphate-induced endothelial barrier enhancement. Microvascular Research, 2009, 77, 304-313.	2.5	79
16	Endothelial permeability is controlled by spatially defined cytoskeletal mechanics: Atomic force microscopy force mapping of pulmonary endothelial monolayer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2009, 5, 30-41.	3.3	77
17	Role of c-Met/Phosphatidylinositol 3-Kinase (PI3k)/Akt Signaling in Hepatocyte Growth Factor (HGF)-mediated Lamellipodia Formation, Reactive Oxygen Species (ROS) Generation, and Motility of Lung Endothelial Cells. Journal of Biological Chemistry, 2014, 289, 13476-13491.	3.4	73
18	Imatinib attenuates inflammation and vascular leak in a clinically relevant two-hit model of acute lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L1294-L1304.	2.9	72

#	Article	IF	CITATIONS
19	Non–Muscle Myosin Light Chain Kinase Isoform Is a Viable Molecular Target in Acute Inflammatory Lung Injury. American Journal of Respiratory Cell and Molecular Biology, 2011, 44, 40-52.	2.9	69
20	Pathologic Mechanical Stress and Endotoxin Exposure Increases Lung Endothelial Microparticle Shedding. American Journal of Respiratory Cell and Molecular Biology, 2015, 52, 193-204.	2.9	68
21	Targeting Abl Kinases to Regulate Vascular Leak During Sepsis and Acute Respiratory Distress Syndrome. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1071-1079.	2.4	64
22	Regulation of Hyperoxia-induced NADPH Oxidase Activation in Human Lung Endothelial Cells by the Actin Cytoskeleton and Cortactin. Journal of Biological Chemistry, 2007, 282, 23284-23295.	3.4	63
23	Secretory group V phospholipase A ₂ regulates acute lung injury and neutrophilic inflammation caused by LPS in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 296, L879-L887.	2.9	60
24	Regulation of the Micromechanical Properties of Pulmonary Endothelium by S1P and Thrombin: Role of Cortactin. Biophysical Journal, 2008, 95, 886-894.	0.5	58
25	Ezrin/radixin/moesin proteins differentially regulate endothelial hyperpermeability after thrombin. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 305, L240-L255.	2.9	58
26	Role of sphingolipids in murine radiationâ€induced lung injury: protection by sphingosine 1â€phosphate analogs. FASEB Journal, 2011, 25, 3388-3400.	0.5	57
27	Phosphotyrosine protein dynamics in cell membrane rafts of sphingosine-1-phosphate-stimulated human endothelium: Role in barrier enhancement. Cellular Signalling, 2009, 21, 1945-1960.	3.6	53
28	Endothelial eNAMPT amplifies pre-clinical acute lung injury: efficacy of an eNAMPT-neutralising monoclonal antibody. European Respiratory Journal, 2021, 57, 2002536.	6.7	53
29	Role of FAK in S1P-regulated endothelial permeability. Microvascular Research, 2012, 83, 22-30.	2.5	52
30	Differential involvement of ezrin/radixin/moesin proteins in sphingosine 1-phosphate-induced human pulmonary endothelial cell barrier enhancement. Cellular Signalling, 2011, 23, 2086-2096.	3.6	49
31	Quantitative distribution and colocalization of non-muscle myosin light chain kinase isoforms and cortactin in human lung endothelium. Microvascular Research, 2010, 80, 75-88.	2.5	45
32	FTY720 (S)-Phosphonate Preserves Sphingosine 1-Phosphate Receptor 1 Expression and Exhibits Superior Barrier Protection to FTY720 in Acute Lung Injury. Critical Care Medicine, 2014, 42, e189-e199.	0.9	45
33	Protective effects of high-molecular weight Polyethylene Glycol (PEG) in human lung endothelial cell barrier regulation: Role of actin cytoskeletal rearrangement. Microvascular Research, 2009, 77, 174-186.	2.5	43
34	Functional promoter variants in sphingosine 1-phosphate receptor 3 associate with susceptibility to sepsis-associated acute respiratory distress syndrome. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 305, L467-L477.	2.9	43
35	Novel Role for Non-muscle Myosin Light Chain Kinase (MLCK) in Hyperoxia-induced Recruitment of Cytoskeletal Proteins, NADPH Oxidase Activation, and Reactive Oxygen Species Generation in Lung Endothelium. Journal of Biological Chemistry, 2012, 287, 9360-9375.	3.4	42
36	Angiocrine Sphingosine-1-Phosphate Activation of S1PR2-YAP Signaling Axis in Alveolar Type II Cells Is Essential for Lung Repair. Cell Reports, 2020, 31, 107828.	6.4	38

STEVEN M DUDEK

#	Article	IF	CITATIONS
37	Parkin regulates lipopolysaccharide-induced proinflammatory responses in acute lung injury. Translational Research, 2017, 181, 71-82.	5.0	36
38	Cortical Actin Dynamics in Endothelial Permeability. Current Topics in Membranes, 2018, 82, 141-195.	0.9	35
39	Role of Growth Arrest and DNA Damage–inducible α in Akt Phosphorylation and Ubiquitination after Mechanical Stress-induced Vascular Injury. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 1030-1040.	5.6	33
40	Interaction of cortactin and Arp2/3 complex is required for sphingosine-1-phosphate-induced endothelial cell remodeling. Experimental Cell Research, 2004, 298, 107-121.	2.6	32
41	Nano-Biomechanical Study of Spatio-Temporal Cytoskeleton Rearrangements that Determine Subcellular Mechanical Properties and Endothelial Permeability. Scientific Reports, 2015, 5, 11097.	3.3	31
42	Loss of Cystic Fibrosis Transmembrane Conductance Regulator Impairs Lung Endothelial Cell Barrier Function and Increases Susceptibility to Microvascular Damage from Cigarette Smoke. Pulmonary Circulation, 2014, 4, 260-268.	1.7	30
43	Junctional complex and focal adhesion rearrangement mediates pulmonary endothelial barrier enhancement by FTY720 S-phosphonate. Microvascular Research, 2015, 99, 102-109.	2.5	28
44	Group V Phospholipase A2Mediates Barrier Disruption of Human Pulmonary Endothelial Cells Caused by LPSIn Vitro. American Journal of Respiratory Cell and Molecular Biology, 2011, 44, 361-368.	2.9	24
45	Development of ultrasound bioprobe for biological imaging. Science Advances, 2017, 3, e1701176.	10.3	24
46	A nonapoptotic endothelial barrier-protective role for caspase-3. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 316, L1118-L1126.	2.9	24
47	eNAMPT neutralization reduces preclinical ARDS severity via rectified NFkB and Akt/mTORC2 signaling. Scientific Reports, 2022, 12, 696.	3.3	23
48	Pulmonary Endothelial Cell Barrier Enhancement by Novel FTY720 Analogs: Methoxy-FTY720, Fluoro-FTY720, and β-Glucuronide-FTY720. Chemistry and Physics of Lipids, 2015, 191, 16-24.	3.2	21
49	Secretory Phospholipase A2 Enzymes in Acute Lung Injury. Cell Biochemistry and Biophysics, 2021, 79, 609-617.	1.8	20
50	A common cortactin gene variation confers differential susceptibility to severe asthma. Genetic Epidemiology, 2008, 32, 757-766.	1.3	18
51	Myosin light chain kinase (<i>MYLK</i>) coding polymorphisms modulate human lung endothelial cell barrier responses via altered tyrosine phosphorylation, spatial localization, and lamellipodial protrusions. Pulmonary Circulation, 2018, 8, 1-7.	1.7	17
52	The ARP 2/3 complex mediates endothelial barrier function and recovery. Pulmonary Circulation, 2017, 7, 200-210.	1.7	16
53	Regulation of Thrombin-Induced Lung Endothelial Cell Barrier Disruption by Protein Kinase C Delta. PLoS ONE, 2016, 11, e0158865.	2.5	15
54	Proline-rich region of non-muscle myosin light chain kinase modulates kinase activity and endothelial cytoskeletal dynamics. Microvascular Research, 2014, 95, 94-102.	2.5	14

#	Article	IF	CITATIONS
55	A genetic variant of cortactin linked to acute lung injury impairs lamellipodia dynamics and endothelial wound healing. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L983-L994.	2.9	14
56	Group V Phospholipase A ₂ Increases Pulmonary Endothelial Permeability Through Direct Hydrolysis of the Cell Membrane. Pulmonary Circulation, 2012, 2, 182-192.	1.7	13
57	"Pulmonary Endothelial Cell Barrier Enhancement by Novel FTY720 Analogs: Methoxy-FTY720, Fluoro-FTY720, and β-Glucuronide-FTY720― Chemistry and Physics of Lipids, 2016, 194, 85-93.	3.2	13
58	Novel ACE mutations mimicking sarcoidosis by increasing blood ACE levels. Translational Research, 2021, 230, 5-20.	5.0	12
59	Neutrophil-Derived Extracellular Vesicles Activate Platelets after Pneumolysin Exposure. Cells, 2021, 10, 3581.	4.1	12
60	Structure–Function Analysis of the Non-Muscle Myosin Light Chain Kinase (nmMLCK) Isoform by NMR Spectroscopy and Molecular Modeling: Influence of MYLK Variants. PLoS ONE, 2015, 10, e0130515.	2.5	11
61	Cortactin in Lung Cell Function and Disease. International Journal of Molecular Sciences, 2022, 23, 4606.	4.1	11
62	MRSA-induced endothelial permeability and acute lung injury are attenuated by FTY720 S-phosphonate. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 322, L149-L161.	2.9	10
63	Nonmuscle Myosin Light Chain Kinase Activity Modulates Radiationâ€Induced Lung Injury. Pulmonary Circulation, 2016, 6, 234-239.	1.7	9
64	Arg mediates LPS-induced disruption of the pulmonary endothelial barrier. Vascular Pharmacology, 2020, 128-129, 106677.	2.1	9
65	Group V Phospholipase A2 Mediates Endothelial Dysfunction and Acute Lung Injury Caused by Methicillin-Resistant Staphylococcus Aureus. Cells, 2021, 10, 1731.	4.1	9
66	Functional Roles for CD26/DPP4 in Mediating Inflammatory Responses of Pulmonary Vascular Endothelial Cells. Cells, 2021, 10, 3508.	4.1	9
67	Sphingosineâ€1â€phosphate receptorâ€independent lung endothelial cell barrier disruption induced by FTY720 regioisomers. Pulmonary Circulation, 2020, 10, 1-10.	1.7	8
68	Genetic and epigenetic regulation of the non-muscle myosin light chain kinase isoform by lung inflammatory factors and mechanical stress. Clinical Science, 2021, 135, 963-977.	4.3	8
69	Epitope mapping of novel monoclonal antibodies to human angiotensin l onverting enzyme. Protein Science, 2021, 30, 1577-1593.	7.6	7
70	Phenotyping Angiotensin-Converting Enzyme in Blood: A Necessary Approach for Precision Medicine. journal of applied laboratory medicine, The, 2021, 6, 1179-1191.	1.3	7
71	Role of Lysocardiolipin Acyltransferase in Cigarette Smoke-Induced Lung Epithelial Cell Mitochondrial ROS, Mitochondrial Dynamics, and Apoptosis. Cell Biochemistry and Biophysics, 2022, 80, 203-216.	1.8	7
72	EVL is a novel focal adhesion protein involved in the regulation of cytoskeletal dynamics and vascular permeability. Pulmonary Circulation, 2021, 11, 1-10.	1.7	6

#	Article	IF	CITATIONS
73	Cortactin Modulates Lung Endothelial Apoptosis Induced by Cigarette Smoke. Cells, 2021, 10, 2869.	4.1	6
74	A cortactin CTTN coding SNP contributes to lung vascular permeability and inflammatory disease severity in African descent subjects. Translational Research, 2022, 244, 56-74.	5.0	6
75	Critical role for the lung endothelial nonmuscle myosin lightâ€chain kinase isoform in the severity of inflammatory murine lung injury. Pulmonary Circulation, 2022, 12, e12061.	1.7	6
76	Cholesterol-Dependent Modulation of Stem Cell Biomechanics: Application to Adipogenesis. Journal of Biomechanical Engineering, 2019, 141, .	1.3	5
77	Cigarette Smoke and Nicotine-Containing Electronic-Cigarette Vapor Downregulate Lung WWOX Expression, Which Is Associated with Increased Severity of Murine Acute Respiratory Distress Syndrome. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 89-99.	2.9	5
78	Degradation of group V secretory phospholipase A2 in lung endothelium is mediated by autophagy. Microvascular Research, 2020, 129, 103954.	2.5	4
79	Identification of novelin vitroprotein kinase A phosphorylation sites on recombinant non-muscle myosin light chain kinase: nano-liquid chromatography tandem mass spectrometry methodology. Journal of Organ Dysfunction, 2009, 5, 242-253.	0.3	2
80	Cortactin in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 2278-2280.	2.4	2
81	Cortactin Loss Protects Against Hemin-Induced Acute Lung Injury in Sickle Cell Disease. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, , .	2.9	2
82	A Case of Candidemia after Long-term Presence of Urethral Foreign Bodies. IDCases, 2021, 25, e01176.	0.9	1
83	Development of an Image-Based HCS-Compatible Method for Endothelial Barrier Function Assessment. SLAS Discovery, 2021, 26, 1079-1090.	2.7	1
84	Comparison of polynomial fitting versus single time point analysis of ECIS data for barrier assessment. Physiological Reports, 2021, 9, e14983.	1.7	1
85	Decreased Pulmonary Function in Asymptomatic Long Term Survivors After Busulfan-Based Myeloablative Allogeneic Hematopoietic Stem Cell Transplant. Blood, 2012, 120, 4474-4474.	1.4	0