
Marcel Wiermer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2985057/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SEED LIPID DROPLET PROTEIN1, SEED LIPID DROPLET PROTEIN2, and LIPID DROPLET PLASMA MEMBRANE ADAPTOR mediate lipid droplet–plasma membrane tethering. Plant Cell, 2022, 34, 2424-2448.	6.6	12
2	Cell wall-localized BETA-XYLOSIDASE4 contributes to immunity of Arabidopsis against <i>Botrytis cinerea</i> . Plant Physiology, 2022, 189, 1794-1813.	4.8	14
3	EXTRA LARGE G-PROTEIN2 mediates cell death and hyperimmunity in the <i>chitin elicitor receptor kinase 1-4</i>	4.8	5
4	<scp>NLR</scp> we there yet? Nucleocytoplasmic coordination of <scp>NLR</scp> â€mediated immunity. New Phytologist, 2022, 236, 24-42.	7.3	12
5	SCF ^{SNIPER7} controls protein turnover of unfoldase CDC48A to promote plant immunity. New Phytologist, 2021, 229, 2795-2811.	7.3	13
6	Functional requirement of the <i>Arabidopsis</i> importinâ€Î± nuclear transport receptor family in autoimmunity mediated by the NLR protein SNC1. Plant Journal, 2021, 105, 994-1009.	5.7	20
7	Nucleocytoplasmic Communication in Healthy and Diseased Plant Tissues. Frontiers in Plant Science, 2021, 12, 719453.	3.6	9
8	Isochorismate-derived biosynthesis of the plant stress hormone salicylic acid. Science, 2019, 365, 498-502.	12.6	273
9	STOREKEEPER RELATED1/G-Element Binding Protein (STKR1) Interacts with Protein Kinase SnRK1. Plant Physiology, 2018, 176, 1773-1792.	4.8	31
10	MOS6 and TN13 in plant immunity. Plant Signaling and Behavior, 2018, 13, e1454816.	2.4	2
11	Nucleoporin NUP88/MOS7 is required for manifestation of phenotypes associated with the Arabidopsis CHITIN ELICITOR RECEPTOR KINASE1 mutant cerk1–4. Plant Signaling and Behavior, 2017, 12, e1313378.	2.4	1
12	The putative kinase substrate MUSE7 negatively impacts the accumulation of <scp>NLR</scp> proteins. Plant Journal, 2017, 89, 1174-1183.	5.7	4
13	The truncated NLR protein TIRâ€NBS13 is a MOS6/IMPORTINâ€Î±3 interaction partner required for plant immunity. Plant Journal, 2017, 92, 808-821.	5.7	43
14	E3 ligase SAUL1 serves as a positive regulator of PAMPâ€ŧriggered immunity and its homeostasis is monitored by immune receptor SOC3. New Phytologist, 2017, 215, 1516-1532.	7.3	69
15	Nucleoporin-regulated MAP kinase signaling in immunity to a necrotrophic fungal pathogen. Plant Physiology, 2016, 172, pp.00832.2016.	4.8	31
16	Probing formation of cargo/importinâ€Î± transport complexes in plant cells using a pathogen effector. Plant Journal, 2015, 81, 40-52.	5.7	48
17	Two Activities of Long-Chain Acyl-Coenzyme A Synthetase Are Involved in Lipid Trafficking between the Endoplasmic Reticulum and the Plastid in Arabidopsis. Plant Physiology, 2015, 167, 351-366.	4.8	109
18	An E4 Ligase Facilitates Polyubiquitination of Plant Immune Receptor Resistance Proteins in <i>Arabidopsis</i> Â. Plant Cell, 2014, 26, 485-496.	6.6	57

MARCEL WIERMER

#	Article	IF	CITATIONS
19	Mitochondrial AtPAM16 is required for plant survival and the negative regulation of plant immunity. Nature Communications, 2013, 4, 2558.	12.8	64
20	Analyses of <i>wrky18 wrky40</i> Plants Reveal Critical Roles of SA/EDS1 Signaling and Indole-Glucosinolate Biosynthesis for <i>Golovinomyces orontii</i> Resistance and a Loss-of Resistance Towards <i>Pseudomonas syringae</i> pv. <i>tomato</i> AvrRPS4. Molecular Plant-Microbe Interactions, 2013, 26, 758-767.	2.6	91
21	Hop-on hop-off: importin-α-guided tours to the nucleus in innate immune signaling. Frontiers in Plant Science, 2013, 4, 149.	3.6	58
22	The Salmonella Type III Effector SspH2 Specifically Exploits the NLR Co-chaperone Activity of SGT1 to Subvert Immunity. PLoS Pathogens, 2013, 9, e1003518.	4.7	80
23	Nucleoporins Nup160 and Seh1 are required for disease resistance in Arabidopsis. Plant Signaling and Behavior, 2012, 7, 1212-1214.	2.4	29
24	The cyclin L homolog MOS12 and the MOS4â€associated complex are required for the proper splicing of plant <i>resistance</i> genes. Plant Journal, 2012, 70, 916-928.	5.7	86
25	Putative members of the Arabidopsis Nup107â€160 nuclear pore subâ€complex contribute to pathogen defense. Plant Journal, 2012, 70, 796-808.	5.7	74
26	Balanced Nuclear and Cytoplasmic Activities of EDS1 Are Required for a Complete Plant Innate Immune Response. PLoS Pathogens, 2010, 6, e1000970.	4.7	202
27	Nucleoporin MOS7/Nup88 contributes to plant immunity and nuclear accumulation of defense regulators. Nucleus, 2010, 1, 332-336.	2.2	30
28	Arabidopsis resistance protein SNC1 activates immune responses through association with a transcriptional corepressor. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13960-13965.	7.1	205
29	Nuclear Pore Complex Component MOS7/Nup88 Is Required for Innate Immunity and Nuclear Accumulation of Defense Regulators in <i>Arabidopsis</i> Â Â. Plant Cell, 2009, 21, 2503-2516.	6.6	233
30	Should I stay or should I go? Nucleocytoplasmic trafficking in plant innate immunity. Cellular Microbiology, 2007, 9, 1880-1890.	2.1	56
31	Plant immunity: the EDS1 regulatory node. Current Opinion in Plant Biology, 2005, 8, 383-389.	7.1	542
32	Arabidopsis SENESCENCE-ASSOCIATED GENE101 Stabilizes and Signals within an ENHANCED DISEASE SUSCEPTIBILITY1 Complex in Plant Innate Immunity. Plant Cell, 2005, 17, 2601-2613.	6.6	413
33	Pre- and Postinvasion Defenses Both Contribute to Nonhost Resistance in Arabidopsis. Science, 2005, 310, 1180-1183.	12.6	753

Marshalling the Troops: Intracellular Dynamics in Plant Pathogen Defense. , 0, , 177-219.