Francesco Simone Ruggeri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2985017/publications.pdf

Version: 2024-02-01

77 papers

4,489 citations

36 h-index 63 g-index

90 all docs 90 docs citations

90 times ranked 5385 citing authors

#	Article	IF	CITATIONS
1	FUS Phase Separation Is Modulated by a Molecular Chaperone and Methylation of Arginine Cation-Ï€ Interactions. Cell, 2018, 173, 720-734.e15.	28.9	662
2	Infrared nanospectroscopy characterization of oligomeric and fibrillar aggregates during amyloid formation. Nature Communications, 2015, 6, 7831.	12.8	245
3	Cholesterol catalyses \hat{A}^2 42 aggregation through a heterogeneous nucleation pathway in the presence of lipid membranes. Nature Chemistry, 2018, 10, 673-683.	13.6	186
4	Measurement of intrinsic properties of amyloid fibrils by the peak force QNM method. Nanoscale, 2012, 4, 4426.	5.6	175
5	The H50Q Mutation Enhances α-Synuclein Aggregation, Secretion, and Toxicity. Journal of Biological Chemistry, 2014, 289, 21856-21876.	3.4	152
6	Different soluble aggregates of $\hat{Al^2}42$ can give rise to cellular toxicity through different mechanisms. Nature Communications, 2019, 10, 1541.	12.8	140
7	Nanoscale studies link amyloid maturity with polyglutamine diseases onset. Scientific Reports, 2016, 6, 31155.	3.3	130
8	Influence of the βâ€6heet Content on the Mechanical Properties of Aggregates during Amyloid Fibrillization. Angewandte Chemie - International Edition, 2015, 54, 2462-2466.	13.8	129
9	Detecting nanoscale vibrations as signature of life. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 378-381.	7.1	118
10	Stabilized tilted-octahedra halide perovskites inhibit local formation of performance-limiting phases. Science, 2021, 374, 1598-1605.	12.6	115
11	Trodusquemine enhances $\hat{A^2}42$ aggregation but suppresses its toxicity by displacing oligomers from cell membranes. Nature Communications, 2019, 10, 225.	12.8	111
12	Atomic force microscopy for single molecule characterisation of protein aggregation. Archives of Biochemistry and Biophysics, 2019, 664, 134-148.	3.0	109
13	Biomolecular condensates undergo a generic shear-mediated liquid-to-solid transition. Nature Nanotechnology, 2020, 15, 841-847.	31.5	101
14	Determination of Polypeptide Conformation with Nanoscale Resolution in Water. ACS Nano, 2018, 12, 6612-6619.	14.6	97
15	Silk micrococoons for protein stabilisation and molecular encapsulation. Nature Communications, 2017, 8, 15902.	12.8	96
16	Identification and nanomechanical characterization of the fundamental single-strand protofilaments of amyloid \hat{l}_{\pm} -synuclein fibrils. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7230-7235.	7.1	96
17	Small-molecule sequestration of amyloid-β as a drug discovery strategy for Alzheimer's disease. Science Advances, 2020, 6, .	10.3	95
18	Nanoplasmonic mid-infrared biosensor for in vitro protein secondary structure detection. Light: Science and Applications, 2017, 6, e17029-e17029.	16.6	93

#	Article	IF	CITATIONS
19	Single molecule secondary structure determination of proteins through infrared absorption nanospectroscopy. Nature Communications, 2020, 11, 2945.	12.8	92
20	AFM-Based Single Molecule Techniques: Unraveling the Amyloid Pathogenic Species. Current Pharmaceutical Design, 2016, 22, 3950-3970.	1.9	75
21	Soluble aggregates present in cerebrospinal fluid change in size and mechanism of toxicity during Alzheimer's disease progression. Acta Neuropathologica Communications, 2019, 7, 120.	5.2	64
22	N-terminal Huntingtin (Htt) phosphorylation is a molecular switch regulating Htt aggregation, helical conformation, internalization, and nuclear targeting. Journal of Biological Chemistry, 2018, 293, 18540-18558.	3.4	63
23	Nanobodies raised against monomeric É'-synuclein inhibit fibril formation and destabilize toxic oligomeric species. BMC Biology, 2017, 15, 57.	3.8	61
24	Rational design of a conformation-specific antibody for the quantification of \hat{A}^2 oligomers. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13509-13518.	7.1	61
25	Transthyretin Inhibits Primary and Secondary Nucleations of Amyloid-β Peptide Aggregation and Reduces the Toxicity of Its Oligomers. Biomacromolecules, 2020, 21, 1112-1125.	5.4	59
26	The Influence of Pathogenic Mutations in $\hat{l}\pm$ -Synuclein on Biophysical and Structural Characteristics of Amyloid Fibrils. ACS Nano, 2020, 14, 5213-5222.	14.6	58
27	Mutant Exon1 Huntingtin Aggregation is Regulated by T3 Phosphorylationâ€Induced Structural Changes and Crosstalk between T3 Phosphorylation and Acetylation at K6. Angewandte Chemie - International Edition, 2017, 56, 5202-5207.	13.8	54
28	Infrared nanospectroscopy reveals the molecular interaction fingerprint of an aggregation inhibitor with single $A\hat{l}^242$ oligomers. Nature Communications, 2021, 12, 688.	12.8	52
29	Controlled self-assembly of plant proteins into high-performance multifunctional nanostructured films. Nature Communications, 2021, 12, 3529.	12.8	50
30	Oneâ€Pot Semisynthesis of Exonâ€1 of the Huntingtin Protein: New Tools for Elucidating the Role of Posttranslational Modifications in the Pathogenesis of Huntington's Disease. Angewandte Chemie - International Edition, 2014, 53, 1928-1933.	13.8	48
31	Nanoscale spatially resolved infrared spectra from single microdroplets. Lab on A Chip, 2014, 14, 1315-1319.	6.0	46
32	Identification of Oxidative Stress in Red Blood Cells with Nanoscale Chemical Resolution by Infrared Nanospectroscopy. International Journal of Molecular Sciences, 2018, 19, 2582.	4.1	46
33	A critical concentration of N-terminal pyroglutamylated amyloid beta drives the misfolding of Ab1-42 into more toxic aggregates. International Journal of Biochemistry and Cell Biology, 2016, 79, 261-270.	2.8	44
34	Trodusquemine displaces protein misfolded oligomers from cell membranes and abrogates their cytotoxicity through a generic mechanism. Communications Biology, 2020, 3, 435.	4.4	44
35	Stabilization and Characterization of Cytotoxic A \hat{l}^2 (sub>40 (/sub> Oligomers Isolated from an Aggregation Reaction in the Presence of Zinc Ions. ACS Chemical Neuroscience, 2018, 9, 2959-2971.	3 . 5	42
36	Microfluidic deposition for resolving single-molecule protein architecture and heterogeneity. Nature Communications, 2018, 9, 3890.	12.8	40

#	Article	IF	CITATIONS
37	The Hsc70 disaggregation machinery removes monomer units directly from α-synuclein fibril ends. Nature Communications, 2021, 12, 5999.	12.8	37
38	Ultrathin Polydopamine Films with Phospholipid Nanodiscs Containing a Glycophorin A Domain. Advanced Functional Materials, 2020, 30, 2000378.	14.9	36
39	Squalamine and Its Derivatives Modulate the Aggregation of Amyloid- \hat{l}^2 and $\hat{l}\pm$ -Synuclein and Suppress the Toxicity of Their Oligomers. Frontiers in Neuroscience, 2021, 15, 680026.	2.8	34
40	Soluble amyloid beta-containing aggregates are present throughout the brain at early stages of Alzheimer's disease. Brain Communications, 2021, 3, fcab147.	3.3	32
41	Molecular determinants of the interaction of EGCG with ordered and disordered proteins. Biopolymers, 2018, 109, e23117.	2.4	30
42	Waterâ€Dispersible Polydopamineâ€Coated Nanofibers for Stimulation of Neuronal Growth and Adhesion. Advanced Healthcare Materials, 2018, 7, e1701485.	7.6	29
43	Fabrication and Characterization of Reconstituted Silk Microgels for the Storage and Release of Small Molecules. Macromolecular Rapid Communications, 2019, 40, e1800898.	3.9	29
44	Solution fibre spinning technique for the fabrication of tuneable decellularised matrix-laden fibres and fibrous micromembranes. Acta Biomaterialia, 2018, 78, 111-122.	8.3	27
45	Micro- and nanoscale hierarchical structure of core–shell protein microgels. Journal of Materials Chemistry B, 2016, 4, 7989-7999.	5.8	26
46	A dopamine metabolite stabilizes neurotoxic amyloid- \hat{l}^2 oligomers. Communications Biology, 2021, 4, 19.	4.4	25
47	Concentration-dependent and surface-assisted self-assembly properties of a bioactive estrogen receptor α-derived peptide. Journal of Peptide Science, 2015, 21, 95-104.	1.4	24
48	Influence of the βâ€Sheet Content on the Mechanical Properties of Aggregates during Amyloid Fibrillization. Angewandte Chemie, 2015, 127, 2492-2496.	2.0	22
49	Amyloid single-cell cytotoxicity assays by nanomotion detection. Cell Death Discovery, 2017, 3, 17053.	4.7	20
50	Evolution of Conformation, Nanomechanics, and Infrared Nanospectroscopy of Single Amyloid Fibrils Converting into Microcrystals. Advanced Science, 2021, 8, 2002182.	11.2	20
51	lmaging protein aggregates in the serum and cerebrospinal fluid in Parkinson's disease. Brain, 2022, 145, 632-643.	7.6	20
52	Infrared nanospectroscopic mapping of a single metaphase chromosome. Nucleic Acids Research, 2019, 47, e108-e108.	14.5	19
53	Sequenceâ€Optimized Peptide Nanofibers as Growth Stimulators for Regeneration of Peripheral Neurons. Advanced Functional Materials, 2019, 29, 1809112.	14.9	19
54	Effects of sedimentation, microgravity, hydrodynamic mixing and air–water interface on α-synuclein amyloid formation. Chemical Science, 2020, 11, 3687-3693.	7.4	18

#	Article	IF	CITATIONS
55	A rationally designed bicyclic peptide remodels Aβ42 aggregation in vitro and reduces its toxicity in a worm model of Alzheimer's disease. Scientific Reports, 2020, 10, 15280.	3.3	15
56	The Nt17 Domain and its Helical Conformation Regulate the Aggregation, Cellular Properties and Neurotoxicity of Mutant Huntingtin Exon 1. Journal of Molecular Biology, 2021, 433, 167222.	4.2	15
57	Supramolecular Peptide Nanofibrils with Optimized Sequences and Molecular Structures for Efficient Retroviral Transduction. Advanced Functional Materials, 2021, 31, 2009382.	14.9	14
58	Characterizing Individual Protein Aggregates by Infrared Nanospectroscopy and Atomic Force Microscopy. Journal of Visualized Experiments, 2019, , .	0.3	13
59	Environmental Control of Amyloid Polymorphism by Modulation of Hydrodynamic Stress. ACS Nano, 2021, 15, 944-953.	14.6	13
60	Rationally Designed Antibodies as Research Tools to Study the Structure–Toxicity Relationship of Amyloid-l² Oligomers. International Journal of Molecular Sciences, 2020, 21, 4542.	4.1	12
61	In situ Sub ellular Identification of Functional Amyloids in Bacteria and Archaea by Infrared Nanospectroscopy. Small Methods, 2021, 5, e2001002.	8.6	11
62	Thermoresponsive, Pyrrolidoneâ€Based Antifouling Polymer Brushes. Advanced Materials Interfaces, 2022, 9, .	3.7	11
63	Structure-specific amyloid precipitation in biofluids. Nature Chemistry, 2022, 14, 1045-1053.	13.6	11
64	Alpha Synuclein only Forms Fibrils In Vitro when Larger than its Critical Size of 70 Monomers. ChemBioChem, 2021, 22, 2867-2871.	2.6	10
65	Frontispiece: Mutant Exon1 Huntingtin Aggregation is Regulated by T3 Phosphorylationâ€Induced Structural Changes and Crosstalk between T3 Phosphorylation and Acetylation at K6. Angewandte Chemie - International Edition, 2017, 56, .	13.8	6
66	Analysis of $\hat{l}\pm B$ -crystallin polydispersity in solution through native microfluidic electrophoresis. Analyst, The, 2019, 144, 4413-4424.	3.5	6
67	Influence of the electro-optical properties of an \hat{l} ±-Si:H single layer on the performances of a pin solar cell. Thin Solid Films, 2012, 520, 4036-4040.	1.8	5
68	Mutant Exon1 Huntingtin Aggregation is Regulated by T3 Phosphorylationâ€Induced Structural Changes and Crosstalk between T3 Phosphorylation and Acetylation at K6. Angewandte Chemie, 2017, 129, 5286-5291.	2.0	2
69	Modulating Amyloid-Beta Aggregation to Reduce the Toxicity of its Oligomeric Aggregates. Biophysical Journal, 2018, 114, 430a.	0.5	2
70	Attenuating the Toxicity of Amyloid-Beta Aggregation with Specific Species. Biophysical Journal, 2017, 112, 494a.	0.5	1
71	Frontispiz: Mutant Exon1 Huntingtin Aggregation is Regulated by T3 Phosphorylationâ€Induced Structural Changes and Crosstalk between T3 Phosphorylation and Acetylation at K6. Angewandte Chemie, 2017, 129, .	2.0	1
72	Berichtigung: One-Pot Semisynthesis of Exonâ€1 of the Huntingtin Protein: New Tools for Elucidating the Role of Posttranslational Modifications in the Pathogenesis of Huntington's Disease. Angewandte Chemie, 2014, 126, 7517-7517.	2.0	0

#	Article	IF	CITATIONS
73	Mid-infrared plasmonic nanoantennas for protein structure detection. , 2017, , .		O
74	Probing the Interaction of ABETA42 Amyloid Species with an Aggregation Suppressor Molecule by Infrared Nanospectroscopy. Biophysical Journal, 2018, 114, 224a.	0.5	0
75	Unraveling the Physicochemical Determinants of Protein Liquid-liquid Phase Separation by Nanoscale Infrared Vibrational Spectroscopy. Bio-protocol, 2021, 11, e4122.	0.4	O
76	Octahedral Tilt Engineering: Atomic-Level Picture of Stabilized α-FAPb13., 0,,.		0
77	Tilted-octahedra stabilize FA rich halide perovskites. , 0, , .		0