Andreas C Joerger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2984934/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Principles and Applications of Halogen Bonding in Medicinal Chemistry and Chemical Biology. Journal of Medicinal Chemistry, 2013, 56, 1363-1388.	2.9	1,002
2	Structural Biology of the Tumor Suppressor p53. Annual Review of Biochemistry, 2008, 77, 557-582.	5.0	549
3	The p53 Pathway: Origins, Inactivation in Cancer, and Emerging Therapeutic Approaches. Annual Review of Biochemistry, 2016, 85, 375-404.	5.0	483
4	Targeted rescue of a destabilized mutant of p53 by an <i>in silico</i> screened drug. Proceedings of the United States of America, 2008, 105, 10360-10365.	3.3	319
5	The Tumor Suppressor p53: From Structures to Drug Discovery. Cold Spring Harbor Perspectives in Biology, 2010, 2, a000919-a000919.	2.3	273
6	Structural basis for understanding oncogenic p53 mutations and designing rescue drugs. Proceedings of the United States of America, 2006, 103, 15056-15061.	3.3	267
7	Halogen-Enriched Fragment Libraries as Leads for Drug Rescue of Mutant p53. Journal of the American Chemical Society, 2012, 134, 6810-6818.	6.6	202
8	Small molecule induced reactivation of mutant p53 in cancer cells. Nucleic Acids Research, 2013, 41, 6034-6044.	6.5	187
9	Crystal Structure of a Superstable Mutant of Human p53 Core Domain. Journal of Biological Chemistry, 2004, 279, 1291-1296.	1.6	147
10	Structures of p53 Cancer Mutants and Mechanism of Rescue by Second-site Suppressor Mutations. Journal of Biological Chemistry, 2005, 280, 16030-16037.	1.6	144
11	Structural evolution of p53, p63, and p73: Implication for heterotetramer formation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17705-17710.	3.3	133
12	Effects of Common Cancer Mutations on Stability and DNA Binding of Full-length p53 Compared with Isolated Core Domains. Journal of Biological Chemistry, 2006, 281, 21934-21941.	1.6	119
13	Toward the Rational Design of p53-Stabilizing Drugs: Probing the Surface of the Oncogenic Y220C Mutant. Chemistry and Biology, 2010, 17, 46-56.	6.2	97
14	Design of a molecular support for cryo-EM structure determination. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7456-E7463.	3.3	93
15	2-Sulfonylpyrimidines: Mild alkylating agents with anticancer activity toward p53-compromised cells. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5271-80.	3.3	88
16	Interaction of the p53 DNA-Binding Domain with Its N-Terminal Extension Modulates the Stability of the p53 Tetramer. Journal of Molecular Biology, 2011, 409, 358-368.	2.0	81
17	Acetylation of lysine 120 of p53 endows DNA-binding specificity at effective physiological salt concentration. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8251-8256.	3.3	81
18	Exploiting vulnerabilities of SWI/SNF chromatin remodelling complexes for cancer therapy. Oncogene, 2021, 40, 3637-3654.	2.6	66

ANDREAS C JOERGER

#	Article	IF	CITATIONS
19	Aminobenzothiazole derivatives stabilize the thermolabile p53 cancer mutant Y220C and show anticancer activity in p53-Y220C cell lines. European Journal of Medicinal Chemistry, 2018, 152, 101-114.	2.6	57
20	Harnessing Fluorine–Sulfur Contacts and Multipolar Interactions for the Design of p53 Mutant Y220C Rescue Drugs. ACS Chemical Biology, 2016, 11, 2265-2274.	1.6	56
21	A structure-guided molecular chaperone approach for restoring the transcriptional activity of the p53 cancer mutant Y220C. Future Medicinal Chemistry, 2019, 11, 2491-2504.	1.1	53
22	Exploiting Transient Protein States for the Design of Small-Molecule Stabilizers of Mutant p53. Structure, 2015, 23, 2246-2255.	1.6	45
23	Targeting Cavity-Creating p53 Cancer Mutations with Small-Molecule Stabilizers: the Y220X Paradigm. ACS Chemical Biology, 2020, 15, 657-668.	1.6	45
24	Characterization of a dual <scp>BET</scp> / <scp>HDAC</scp> inhibitor for treatment of pancreatic ductal adenocarcinoma. International Journal of Cancer, 2020, 147, 2847-2861.	2.3	34
25	New pyrido[3,4-g]quinazoline derivatives as CLK1 and DYRK1A inhibitors: synthesis, biological evaluation and binding mode analysis. European Journal of Medicinal Chemistry, 2019, 166, 304-317.	2.6	32
26	Structure and Kinetic Stability of the p63 Tetramerization Domain. Journal of Molecular Biology, 2012, 415, 503-513.	2.0	31
27	Structure-Based Design of Selective Salt-Inducible Kinase Inhibitors. Journal of Medicinal Chemistry, 2021, 64, 8142-8160.	2.9	28
28	Tracing the Evolution of the p53 Tetramerization Domain. Structure, 2014, 22, 1301-1310.	1.6	27
29	Identification and functional characterization of new missense SNPs in the coding region of the TP53 gene. Cell Death and Differentiation, 2021, 28, 1477-1492.	5.0	26
30	Experimental and Theoretical Evaluation of the Ethynyl Moiety as a Halogen Bioisostere. ACS Chemical Biology, 2015, 10, 2725-2732.	1.6	23
31	Stabilising the DNA-binding domain of p53 by rational design of its hydrophobic core. Protein Engineering, Design and Selection, 2009, 22, 421-430.	1.0	21
32	Pan-SMARCA/PB1 Bromodomain Inhibitors and Their Role in Regulating Adipogenesis. Journal of Medicinal Chemistry, 2020, 63, 14680-14699.	2.9	21
33	Evaluating Drosophila p53 as a Model System for Studying Cancer Mutations. Journal of Biological Chemistry, 2012, 287, 44330-44337.	1.6	13
34	Selective targeting of the αC and DFG-out pocket in p38 MAPK. European Journal of Medicinal Chemistry, 2020, 208, 112721.	2.6	12
35	Evolutionary history of the p53 family DNA-binding domain: insights from an Alvinella pompejana homolog. Cell Death and Disease, 2022, 13, 214.	2.7	10
36	Integrated analysis of Shank1 PDZ interactions with C-terminal and internal binding motifs. Current Research in Structural Biology, 2021, 3, 41-50.	1.1	4

#	Article	IF	CITATIONS
37	Genotoxicity and Epigenotoxicity of Carbazole-Derived Molecules on MCF-7 Breast Cancer Cells. International Journal of Molecular Sciences, 2021, 22, 3410.	1.8	4
38	Development of a Selective Dual Discoidin Domain Receptor (DDR)/p38 Kinase Chemical Probe. Journal of Medicinal Chemistry, 2021, 64, 13451-13474.	2.9	4
39	Extending the Code of Sequence Readout by Gene Regulatory Proteins: The Role of Hoogsteen Base Pairing in p53-DNA Recognition. Structure, 2018, 26, 1163-1165.	1.6	3