
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/298460/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Acoustic Vibration Modes of Gold–Silver Core–Shell Nanoparticles. Chemosensors, 2022, 10, 193.	3.6	1
2	Shape-Controlled Second-Harmonic Scattering from Gold Nanotetrapods. Journal of Physical Chemistry C, 2022, 126, 9831-9835.	3.1	1
3	Two-step assembly kinetics of gold nanoparticles. Journal of Materials Chemistry C, 2021, 9, 1730-1739.	5.5	5
4	Interplay of Structure and Dynamics in Lithium/Ionic Liquid Electrolytes: Experiment and Molecular Simulation. Journal of Physical Chemistry B, 2021, 125, 1618-1631.	2.6	10
5	Sharp Spectral Variations of the Ultrafast Transient Light Extinction by Bimetallic Nanoparticles in the Nearâ€UV. Advanced Optical Materials, 2021, 9, 2001778.	7.3	2
6	Doxorubicin-Loaded Metal-Organic Frameworks Nanoparticles with Engineered Cyclodextrin Coatings: Insights on Drug Location by Solid State NMR Spectroscopy. Nanomaterials, 2021, 11, 945.	4.1	20
7	Symmetry Breaking in Seed-Mediated Silver Nanorod Growth Induced by Dimethyl Sulfoxide. Chemistry of Materials, 2021, 33, 2948-2956.	6.7	9
8	Structure and Formation Kinetics of Millimeterâ€Size Single Domain Supercrystals. Advanced Functional Materials, 2021, 31, 2101869.	14.9	9
9	Fréedericksz-Like Transition in a Biaxial Smectic- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mi>A </mml:mi> Phase. Physical Review X, 2021, 11, .</mml:math 	8.9	5
10	Softness-driven complexity in supercrystals of gold nanoparticles. Soft Matter, 2021, 17, 6461-6469.	2.7	8
11	Grazing Incidence X-ray Diffraction Studies of Lipid–Peptide Mixed Monolayers during Shear Flow. ACS Omega, 2020, 5, 14555-14563.	3.5	4
12	Revealing the Dynamics of Functional Nanomaterials in Their Formation and Application Media with Liquid and Gas-phase TEM. Microscopy and Microanalysis, 2020, 26, 196-198.	0.4	1
13	Determining the morphology and concentration of core–shell Au/Ag nanoparticles. Nanoscale Advances, 2020, 2, 4522-4528.	4.6	5
14	Growth Kinetics of Core–Shell Au/Ag Nanoparticles. Journal of Physical Chemistry C, 2020, 124, 21717-21721.	3.1	3
15	Real-Time <i>In Situ</i> Observations Reveal a Double Role for Ascorbic Acid in the Anisotropic Growth of Silver on Gold. Journal of Physical Chemistry Letters, 2020, 11, 2830-2837.	4.6	21
16	Interactions Between Topological Defects and Nanoparticles. Frontiers in Physics, 2020, 7, .	2.1	2
17	From Chains to Monolayers: Nanoparticle Assembly Driven by Smectic Topological Defects. Nano Letters, 2020, 20, 1598-1606.	9.1	19
18	Design of Engineered Cyclodextrin Derivatives for Spontaneous Coating of Highly Porous Metal-Organic Framework Nanoparticles in Aqueous Media. Nanomaterials, 2019, 9, 1103.	4.1	28

#	Article	IF	CITATIONS
19	Insights into the Formation Mechanism of CdSe Nanoplatelets Using in Situ X-ray Scattering. Nano Letters, 2019, 19, 6466-6474.	9.1	26
20	Plasmonic Oligomers with Tunable Conductive Nanojunctions. Journal of Physical Chemistry Letters, 2019, 10, 7093-7099.	4.6	12
21	Interaction and structuration of membrane-binding and membrane-excluding colloidal particles in lamellar phases. Soft Matter, 2019, 15, 4351-4362.	2.7	Ο
22	The effect of gramicidin inclusions on the local order of membrane components. European Physical Journal E, 2018, 41, 44.	1.6	1
23	Coupling between Inclusions and Membranes at the Nanoscale. Physical Review Letters, 2018, 120, 128104.	7.8	9
24	Membrane-Mediated Interactions. , 2018, , 311-350.		3
25	Nanoparticle-Templated Self-Assembly of Viral Capsids Probed by Time-Resolved Absorbance Spectroscopy and X-Ray Scattering. Physical Review Applied, 2018, 10, .	3.8	5
26	Controlling the symmetry of supercrystals formed by plasmonic core–shell nanorods with tunable cross-section. Nanoscale, 2018, 10, 18362-18369.	5.6	12
27	Nonequilibrium Self-Assembly Dynamics of Icosahedral Viral Capsids Packaging Genome. Biophysical Journal, 2018, 114, 60a.	0.5	2
28	Direct Liquid to Crystal Transition in a Quasi-Two-Dimensional Colloidal Membrane. Journal of Physical Chemistry Letters, 2018, 9, 4302-4307.	4.6	6
29	Nonequilibrium self-assembly dynamics of icosahedral viral capsids packaging genome or polyelectrolyte. Nature Communications, 2018, 9, 3071.	12.8	59
30	Isotropic, nematic, and lamellar phases in colloidal suspensions of nanosheets. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6662-6667.	7.1	67
31	Nanostructuration of ionic liquids: impact on the cation mobility. A multi-scale study. Nanoscale, 2017, 9, 1901-1908.	5.6	26
32	Reversible strain alignment and reshuffling of nanoplatelet stacks confined in a lamellar block copolymer matrix. Nanoscale, 2017, 9, 17371-17377.	5.6	12
33	Ionic Liquids: evidence of the viscosity scale-dependence. Scientific Reports, 2017, 7, 2241.	3.3	21
34	Identification of a major intermediate along the self-assembly pathway of an icosahedral viral capsid by using an analytical model of a spherical patch. Soft Matter, 2016, 12, 6728-6736.	2.7	14
35	Solution self-assembly of plasmonic Janus nanoparticles. Soft Matter, 2016, 12, 9666-9673.	2.7	16
36	Varying the counter ion changes the kinetics, but not the final structure of colloidal gels. Journal of Colloid and Interface Science, 2016, 463, 137-144.	9.4	6

#	Article	IF	CITATIONS
37	Solution scattering from colloidal curved plates: barrel tiles, scrolls and spherical patches. Journal of Applied Crystallography, 2015, 48, 1901-1906.	4.5	4
38	Strain-controlled fluorescence polarization in a CdSe nanoplatelet–block copolymer composite. Chemical Communications, 2015, 51, 4051-4054.	4.1	20
39	Real-Time in Situ Probing of High-Temperature Quantum Dots Solution Synthesis. Nano Letters, 2015, 15, 2620-2626.	9.1	84
40	Reconstruction of the Disassembly Pathway of an Icosahedral Viral Capsid and Shape Determination of Two Successive Intermediates. Journal of Physical Chemistry Letters, 2015, 6, 3471-3476.	4.6	23
41	Why the aspect ratio? Shape equivalence for the extinction spectra of gold nanoparticles. European Physical Journal E, 2015, 38, 116.	1.6	8
42	A two-dimensional nematic phase of magnetic nanorods. Journal of Chemical Physics, 2014, 140, 104904.	3.0	22
43	Lamellar <i>L</i> _α Mesophases Doped with Inorganic Nanoparticles. ChemPhysChem, 2014, 15, 1270-1282.	2.1	14
44	Mesostructured silica matrix for irinotecan delivery systems. Open Chemistry, 2014, 12, 813-820.	1.9	8
45	Infrared dichroism of gold nanorods controlled using a magnetically addressable mesophase. Journal of Materials Chemistry C, 2014, 2, 5087.	5.5	2
46	Hybrid Nanocomposites with Tunable Alignment of the Magnetic Nanorod Filler. ACS Applied Materials & Interfaces, 2014, 6, 1583-1588.	8.0	8
47	The Amine Content of PEGylated Chitosan Bombyx mori Nanoparticles Acts as a Trigger for Protein Delivery. Langmuir, 2014, 30, 965-975.	3.5	17
48	Morphology of gold nanoparticles determined by full-curve fitting of the light absorption spectrum. Comparison with X-ray scattering and electron microscopy data. Nanoscale, 2014, 6, 13527-13534.	5.6	15
49	Norovirus Capsid Proteins Self-Assemble through Biphasic Kinetics via Long-Lived Stave-like Intermediates. Journal of the American Chemical Society, 2013, 135, 15373-15381.	13.7	50
50	Elasticity of Lipid Bilayer Membranes at the Nanoscale: The Need for New Terms. Biophysical Journal, 2013, 104, 244a.	0.5	0
51	Structure, thermodynamics and dynamics of the isotropic phase of spherical non-ionic surfactant micelles. Journal of Colloid and Interface Science, 2013, 393, 161-173.	9.4	7
52	Smectic mesophases of functionalized silver and gold nanoparticles with anisotropic plasmonic properties. Chemical Communications, 2013, 49, 7845.	4.1	29
53	The interaction of charged nanoparticles at interfaces. Europhysics Letters, 2012, 100, 18002.	2.0	4
54	Bilayer Elasticity at the Nanoscale: The Need for New Terms. PLoS ONE, 2012, 7, e48306.	2.5	33

DORU CONSTANTIN

#	Article	IF	CITATIONS
55	Insertion of Gold Nanoparticles in Fluid Mesophases: Size Filtering and Control of Interactions. Journal of Physical Chemistry C, 2011, 115, 17682-17687.	3.1	11
56	Slow dynamics of a colloidal lamellar phase. Journal of Chemical Physics, 2010, 133, 224902.	3.0	6
57	Communications: Short-range dynamics of a nematic liquid-crystalline phase. Journal of Chemical Physics, 2010, 132, 091101.	3.0	10
58	The interaction of hybrid nanoparticles inserted within surfactant bilayers. Journal of Chemical Physics, 2010, 133, 144901.	3.0	9
59	Lyotropic Lamellar Phase Doped with a Nematic Phase of Magnetic Nanorods. Langmuir, 2010, 26, 4586-4589.	3.5	23
60	A PGSE-NMR Study of Molecular Self-Diffusion in Lamellar Phases Doped with Polyoxometalates. Journal of Physical Chemistry B, 2010, 114, 220-227.	2.6	17
61	Membrane-mediated repulsion between gramicidin pores. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 1782-1789.	2.6	13
62	Magnetic Nanorods Confined in a Lamellar Lyotropic Phase. Langmuir, 2008, 24, 8205-8209.	3.5	34
63	Photochromic Hybrid Organicâ^'Inorganic Liquid-Crystalline Materials Built from Nonionic Surfactants and Polyoxometalates: Elaboration and Structural Study. Langmuir, 2008, 24, 6285-6291.	3.5	42
64	Intermittent Brownian dynamics over a rigid strand: Heavily tailed relocation statistics in a simple geometry. Physical Review E, 2008, 78, 030102.	2.1	47
65	Repulsion Between Inorganic Particles Inserted Within Surfactant Bilayers. Physical Review Letters, 2008, 101, 098101.	7.8	21
66	Interaction of Alamethicin Pores in DMPC Bilayers. Biophysical Journal, 2007, 92, 3978-3987.	0.5	32
67	Structure and interaction potentials in solid-supported lipid membranes studied by X-ray reflectivity at varied osmotic pressure. European Physical Journal E, 2006, 20, 221-230.	1.6	22
68	Dynamics of bulk fluctuations in a lamellar phase studied by coherent x-ray scattering. Physical Review E, 2006, 74, 031706.	2.1	10
69	Coherent X-ray scattering and speckle pattern of solid-supported multilayers of surfactant bilayers. Physica B: Condensed Matter, 2005, 357, 61-65.	2.7	6
70	Electric field unbinding of solid-supported lipid multilayers. European Physical Journal E, 2005, 18, 273-278.	1.6	17
71	Lipid membranes on a surface grating studied by neutron reflectometry. Europhysics Letters, 2005, 71, 311-317.	2.0	5
72	Biomimetic membranes of lipid–peptide model systems prepared on solid support. Journal of Physics Condensed Matter, 2004, 16, S2439-S2453.	1.8	27

#	Article	IF	CITATIONS
73	Solid-supported lipid multilayers: Structure factor and fluctuations. European Physical Journal E, 2003, 12, 283-290.	1.6	33
74	Structural Transition in the Isotropic Phase of the C12EO6/H2O Lyotropic Mixture:Â A Rheological Investigation. Langmuir, 2003, 19, 2554-2559.	3.5	19
75	Comment on "Tracer Diffusion in a Dislocated Lamellar System― Physical Review Letters, 2003, 91, 039801; author reply 039802.	7.8	4
76	High-frequency rheological behaviour of a multiconnected lyotropic phase. Europhysics Letters, 2002, 58, 236-242.	2.0	13
77	Connectivity of the Hexagonal, Cubic, and Isotropic Phases of the C12EO6/H2O Lyotropic Mixture Investigated by Tracer Diffusion and X-ray Scattering. Journal of Physical Chemistry B, 2001, 105, 668-673.	2.6	34
78	Diffusion Coefficients in a Lamellar Lyotropic Phase: Evidence for Defects Connecting the Surfactant Structure. Physical Review Letters, 2000, 85, 4297-4300.	7.8	37
79	Kinetics of phase ordering of nematic liquid crystals confined in porous media. Physical Review E, 1999, 60, 1812-1814.	2.1	1