Frauke Zipp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2984516/publications.pdf

Version: 2024-02-01

316 26,870 papers citations

73 h-index 151 g-index

340 all docs 340 does citations 340 times ranked

31456 citing authors

#	Article	IF	CITATIONS
1	Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature, 2011, 476, 214-219.	13.7	2,400
2	A Placebo-Controlled Trial of Oral Fingolimod in Relapsing Multiple Sclerosis. New England Journal of Medicine, 2010, 362, 387-401.	13.9	2,314
3	Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nature Genetics, 2013, 45, 1353-1360.	9.4	1,213
4	Multiple Sclerosis Severity Score. Neurology, 2005, 64, 1144-1151.	1.5	836
5	Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science, 2019, 365, .	6.0	710
6	Genetic Cell Ablation Reveals Clusters of Local Self-Renewing Microglia in the Mammalian Central Nervous System. Immunity, 2015, 43, 92-106.	6.6	506
7	Comprehensive Research Synopsis and Systematic Meta-Analyses in Parkinson's Disease Genetics: The PDGene Database. PLoS Genetics, 2012, 8, e1002548.	1.5	495
8	ECTRIMS/EAN Guideline on the pharmacological treatment of people with multiple sclerosis. Multiple Sclerosis Journal, 2018, 24, 96-120.	1.4	458
9	Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nature Cell Biology, 2008, 10, 385-394.	4.6	412
10	The brain as a target of inflammation: common pathways link inflammatory and neurodegenerative diseases. Trends in Neurosciences, 2006, 29, 518-527.	4.2	329
11	Green Tea Epigallocatechin-3-Gallate Mediates T Cellular NF-κB Inhibition and Exerts Neuroprotection in Autoimmune Encephalomyelitis. Journal of Immunology, 2004, 173, 5794-5800.	0.4	314
12	Genomeâ€wide metaâ€analysis identifies novel multiple sclerosis susceptibility loci. Annals of Neurology, 2011, 70, 897-912.	2.8	314
13	Class II HLA interactions modulate genetic risk for multiple sclerosis. Nature Genetics, 2015, 47, 1107-1113.	9.4	312
14	Human brain-cell death induced by tumour-necrosis-factor-related apoptosis-inducing ligand (TRAIL). Lancet, The, 2000, 356, 827-828.	6.3	293
15	Immunoneuropsychiatry â€" novel perspectives on brain disorders. Nature Reviews Neurology, 2019, 15, 317-328.	4.9	293
16	In Vivo Imaging of Partially Reversible Th17 Cell-Induced Neuronal Dysfunction in the Course of Encephalomyelitis. Immunity, 2010, 33, 424-436.	6.6	291
17	Mechanisms of Disease: aquaporin-4 antibodies in neuromyelitis optica. Nature Clinical Practice Neurology, 2008, 4, 202-214.	2.7	286
18	Treatment of Relapsing Paralysis in Experimental Encephalomyelitis by Targeting Th1 Cells through Atorvastatin. Journal of Experimental Medicine, 2003, 197, 725-733.	4.2	271

#	Article	IF	CITATIONS
19	MR-elastography reveals degradation of tissue integrity in multiple sclerosis. NeuroImage, 2010, 49, 2520-2525.	2.1	262
20	Indolamine 2,3â€dioxygenase is expressed in the CNS and downâ€regulates autoimmune inflammation. FASEB Journal, 2005, 19, 1347-1349.	0.2	261
21	Fine-Mapping the Genetic Association of the Major Histocompatibility Complex in Multiple Sclerosis: HLA and Non-HLA Effects. PLoS Genetics, 2013, 9, e1003926.	1.5	250
22	Integration of genetic risk factors into a clinical algorithm for multiple sclerosis susceptibility: a weighted genetic risk score. Lancet Neurology, The, 2009, 8, 1111-1119.	4.9	233
23	Microglia–blood vessel interactions: a double-edged sword in brain pathologies. Acta Neuropathologica, 2016, 131, 347-363.	3.9	217
24	Neuronal Damage in Autoimmune Neuroinflammation Mediated by the Death Ligand TRAIL. Neuron, 2005, 46, 421-432.	3.8	211
25	Basic and escalating immunomodulatory treatments in multiple sclerosis: Current therapeutic recommendations. Journal of Neurology, 2008, 255, 1449-1463.	1.8	204
26	Perivascular spacesMRI marker of inflammatory activity in the brain?. Brain, 2008, 131, 2332-2340.	3.7	200
27	Perivascular microglia promote blood vessel disintegration in the ischemic penumbra. Acta Neuropathologica, 2015, 129, 279-295.	3.9	198
28	TNF-related apoptosis inducing ligand (TRAIL) as a potential response marker for interferon-beta treatment in multiple sclerosis. Lancet, The, 2003, 361, 2036-2043.	6.3	194
29	Changes in cerebral perfusion precede plaque formation in multiple sclerosis: a longitudinal perfusion MRI study. Brain, 2004, 127, 111-119.	3.7	194
30	Neuronal Damage in Brain Inflammation. Archives of Neurology, 2007, 64, 185.	4.9	193
31	Antibody to Aquaporin 4 in the Diagnosis of Neuromyelitis Optica. PLoS Medicine, 2007, 4, e133.	3.9	187
32	Multiple sclerosis – candidate mechanisms underlying CNS atrophy. Trends in Neurosciences, 2010, 33, 202-210.	4.2	183
33	Fatigue in multiple sclerosis is closely related to sleep disorders: a polysomnographic cross-sectional study. Multiple Sclerosis Journal, 2011, 17, 613-622.	1.4	172
34	Network-Based Multiple Sclerosis Pathway Analysis with GWAS Data from 15,000 Cases and 30,000 Controls. American Journal of Human Genetics, 2013, 92, 854-865.	2.6	164
35	MHCII-independent CD4+ T cells protect injured CNS neurons via IL-4. Journal of Clinical Investigation, 2015, 125, 699-714.	3.9	161
36	Relapse and disability outcomes in patients with multiple sclerosis treated with fingolimod: subgroup analyses of the double-blind, randomised, placebo-controlled FREEDOMS study. Lancet Neurology, The, 2012, 11, 420-428.	4.9	152

#	Article	IF	CITATIONS
37	Lower motor neuron loss in multiple sclerosis and experimental autoimmune encephalomyelitis. Annals of Neurology, 2009, 66, 310-322.	2.8	151
38	Serum neurofilament light chain is a biomarker of acute and chronic neuronal damage in early multiple sclerosis. Multiple Sclerosis Journal, 2019, 25, 678-686.	1.4	148
39	DNA methylation as a mediator of HLA-DRB1*15:01 and a protective variant in multiple sclerosis. Nature Communications, 2018, 9, 2397.	5.8	147
40	No increase in demyelinating diseases after hepatitis B vaccination. Nature Medicine, 1999, 5, 964-965.	15.2	138
41	Activation of Microglial Poly(ADP-Ribose)-Polymerase-1 by Cholesterol Breakdown Products during Neuroinflammation. Journal of Experimental Medicine, 2003, 198, 1729-1740.	4.2	137
42	Molecular mechanisms linking neuroinflammation and neurodegeneration in MS. Experimental Neurology, 2014, 262, 8-17.	2.0	136
43	Direct Impact of T Cells on Neurons Revealed by Two-Photon Microscopy in Living Brain Tissue. Journal of Neuroscience, 2004, 24, 2458-2464.	1.7	134
44	Novel multiple sclerosis susceptibility loci implicated in epigenetic regulation. Science Advances, 2016, 2, e1501678.	4.7	133
45	Escalating immunotherapy of multiple sclerosis. Journal of Neurology, 2004, 251, 1329-1339.	1.8	129
46	Understanding the Role of T Cells in CNS Homeostasis. Trends in Immunology, 2016, 37, 154-165.	2.9	125
47	Death Ligand TRAIL Induces No Apoptosis but Inhibits Activation of Human (Auto)antigen-Specific T Cells. Journal of Immunology, 2002, 168, 4881-4888.	0.4	124
48	Activation of kinin receptor B1 limits encephalitogenic T lymphocyte recruitment to the central nervous system. Nature Medicine, 2009, 15, 788-793.	15.2	118
49	Neuronal injury in chronic CNS inflammation. Bailliere's Best Practice and Research in Clinical Anaesthesiology, 2010, 24, 551-562.	1.7	117
50	Graph Theoretical Framework of Brain Networks in Multiple Sclerosis: A Review of Concepts. Neuroscience, 2019, 403, 35-53.	1.1	117
51	Low-Frequency and Rare-Coding Variation Contributes to Multiple Sclerosis Risk. Cell, 2018, 175, 1679-1687.e7.	13.5	115
52	Dimethyl Fumarate Treatment Mediates an Anti-Inflammatory Shift in B Cell Subsets of Patients with Multiple Sclerosis. Journal of Immunology, 2017, 198, 691-698.	0.4	112
53	Oral High-Dose Atorvastatin Treatment in Relapsing-Remitting Multiple Sclerosis. PLoS ONE, 2008, 3, e1928.	1.1	110
54	Patterns of retinal nerve fiber layer loss in multiple sclerosis patients with or without optic neuritis and glaucoma patients. Clinical Neurology and Neurosurgery, 2010, 112, 647-652.	0.6	107

#	Article	IF	CITATIONS
55	IL-17 and related cytokines involved in the pathology and immunotherapy of multiple sclerosis: Current and future developments. Cytokine and Growth Factor Reviews, 2014, 25, 403-413.	3.2	107
56	Lack of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand But Presence of Its Receptors in the Human Brain. Journal of Neuroscience, 2002, 22, RC209-RC209.	1.7	106
57	Protein kinase CK2 enables regulatory T cells to suppress excessive TH2 responses in vivo. Nature Immunology, 2015, 16, 267-275.	7.0	102
58	Modulation of dendritic cell properties by laquinimod as a mechanism for modulating multiple sclerosis. Brain, 2013, 136, 1048-1066.	3.7	100
59	Regulation of soluble and surface-bound TRAIL in human T cells, B cells, and monocytes. Cytokine, 2003, 24, 244-253.	1.4	99
60	The potential of serum neurofilament as biomarker for multiple sclerosis. Brain, 2021, 144, 2954-2963.	3.7	98
61	Impact of Fingolimod Therapy on Magnetic Resonance Imaging Outcomes in Patients With Multiple Sclerosis. Archives of Neurology, 2012, 69, 1259.	4.9	97
62	Autoregulation of Th1-mediated inflammation by <i>twist1 </i> . Journal of Experimental Medicine, 2008, 205, 1889-1901.	4.2	96
63	Expanding Two-Photon Intravital Microscopy to the Infrared by Means of Optical Parametric Oscillator. Biophysical Journal, 2010, 98, 715-723.	0.2	96
64	Entorhinal fibers form synaptic contacts on parvalbumin-immunoreactive neurons in the rat fascia dentata. Brain Research, 1989, 495, 161-166.	1,1	95
65	NfL (Neurofilament Light Chain) Levels as a Predictive Marker for Long-Term Outcome After Ischemic Stroke. Stroke, 2019, 50, 3077-3084.	1.0	92
66	Neurodegeneration in autoimmune CNS inflammation. Experimental Neurology, 2010, 225, 9-17.	2.0	91
67	Correlation of self-assessed fatigue and alertness in multiple sclerosis. Multiple Sclerosis Journal, 2010, 16, 1134-1140.	1.4	88
68	Neurons as targets for T cells in the nervous system. Trends in Neurosciences, 2013, 36, 315-324.	4.2	88
69	Multiple Sclerosis Therapy Consensus Group (MSTCG): position statement on disease-modifying therapies for multiple sclerosis (white paper). Therapeutic Advances in Neurological Disorders, 2021, 14, 175628642110396.	1.5	86
70	Frequency of blood CX3CR1â€positive natural killer cells correlates with disease activity in multiple sclerosis patients. FASEB Journal, 2005, 19, 1902-1904.	0.2	85
71	Secondary Progression in Multiple Sclerosis: Neuronal Exhaustion or Distinct Pathology?. Trends in Neurosciences, 2016, 39, 325-339.	4.2	83
72	Neurodegeneration in multiple sclerosis: novel treatment strategies. Expert Review of Neurotherapeutics, 2012, 12, 1061-1077.	1.4	82

#	Article	IF	Citations
73	Genetic control of multiple sclerosis: Increased production of lymphotoxin and tumor necrosis factor-? by HLA-DR2+ T cells. Annals of Neurology, 1995, 38, 723-730.	2.8	81
74	Cytotoxic CD8 ⁺ T Cell–Neuron Interactions: Perforin-Dependent Electrical Silencing Precedes But Is Not Causally Linked to Neuronal Cell Death. Journal of Neuroscience, 2009, 29, 15397-15409.	1.7	78
75	Differential immune cell dynamics in the CNS cause CD4+ T cell compartmentalization. Brain, 2009, 132, 1247-1258.	3.7	78
76	Familial effects on the clinical course of multiple sclerosis. Neurology, 2007, 68, 376-383.	1.5	77
77	Neuroprotective Effect of Combination Therapy of Glatiramer Acetate and Epigallocatechin-3-Gallate in Neuroinflammation. PLoS ONE, 2011, 6, e25456.	1.1	75
78	Increased serum levels of soluble CD95 (APO-1/Fas) in relapsing-remitting multiple sclerosis. Annals of Neurology, 1998, 43, 116-120.	2.8	73
79	Dimethyl fumarate–induced lymphopenia in MS due to differential T-cell subset apoptosis. Neurology: Neuroimmunology and NeuroInflammation, 2017, 4, e340.	3.1	73
80	Immune (dys)regulation in multiple sclerosis: role of the CD95–CD95 ligand system. Trends in Immunology, 1999, 20, 550-554.	7.5	72
81	ABC-transporter gene-polymorphisms are potential pharmacogenetic markers for mitoxantrone response in multiple sclerosis. Brain, 2009, 132, 2517-2530.	3.7	72
82	Analyses of phenotypic and functional characteristics of CX3CR1â€expressing natural killer cells. Immunology, 2011, 133, 62-73.	2.0	72
83	Rapid alterations of cell cycle control proteins in human T lymphocytes in microgravity. Cell Communication and Signaling, 2012, 10, 1.	2.7	72
84	IL12A, MPHOSPH9/CDK2AP1 and RGS1 are novel multiple sclerosis susceptibility loci. Genes and Immunity, 2010, 11, 397-405.	2.2	70
85	BLBP-expression in astrocytes during experimental demyelination and in human multiple sclerosis lesions. Brain, Behavior, and Immunity, 2011, 25, 1554-1568.	2.0	69
86	Attention Network Test reveals alerting network dysfunction in multiple sclerosis. Multiple Sclerosis Journal, 2010, 16, 93-99.	1.4	68
87	Impairment of contrast visual acuity as a functional correlate of retinal nerve fibre layer thinning and total macular volume reduction in multiple sclerosis. British Journal of Ophthalmology, 2012, 96, 62-67.	2.1	68
88	Structural Brain Network Characteristics Can Differentiate CIS from Early RRMS. Frontiers in Neuroscience, 2016, 10, 14.	1.4	68
89	IL-17+ CD8+ T cell suppression by dimethyl fumarate associates with clinical response in multiple sclerosis. Nature Communications, 2019, 10, 5722.	5 . 8	68
90	Apoptosis in multiple sclerosis. Cell and Tissue Research, 2000, 301, 163-171.	1.5	67

#	Article	IF	CITATIONS
91	Clinical implications of serum neurofilament in newly diagnosed MS patients: A longitudinal multicentre cohort study. EBioMedicine, 2020, 56, 102807.	2.7	67
92	Blockade of chemokine signaling in patients with multiple sclerosis. Neurology, 2006, 67, 1880-1883.	1.5	66
93	A "Candidate-Interactome―Aggregate Analysis of Genome-Wide Association Data in Multiple Sclerosis. PLoS ONE, 2013, 8, e63300.	1.1	66
94	Time domain and spectral domain optical coherence tomography in multiple sclerosis: a comparative cross-sectional study. Multiple Sclerosis Journal, 2010, 16, 893-896.	1.4	65
95	Ocrelizumab Extended Interval Dosing in Multiple Sclerosis in Times of COVID-19. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	3.1	65
96	New candidates for CD4 T cell pathogenicity in experimental neuroinflammation and multiple sclerosis. Brain, 2015, 138, 902-917.	3.7	64
97	Maladaptive cortical hyperactivity upon recovery from experimental autoimmune encephalomyelitis. Nature Neuroscience, 2018, 21, 1392-1403.	7.1	64
98	Astrocyte-induced T cell elimination is CD95 ligand dependent. Journal of Neuroimmunology, 2002, 132, 60-65.	1.1	63
99	Parallelized TCSPC for Dynamic Intravital Fluorescence Lifetime Imaging: Quantifying Neuronal Dysfunction in Neuroinflammation. PLoS ONE, 2013, 8, e60100.	1.1	63
100	PML risk stratification using anti-JCV antibody index and L-selectin. Multiple Sclerosis Journal, 2016, 22, 1048-1060.	1.4	62
101	Increased structural white and grey matter network connectivity compensates for functional decline in early multiple sclerosis. Multiple Sclerosis Journal, 2017, 23, 432-441.	1.4	62
102	TRAIL limits excessive host immune responses in bacterial meningitis. Journal of Clinical Investigation, 2007, 117, 2004-2013.	3.9	62
103	The role of TRAIL/TRAIL receptors in central nervous system pathology. Frontiers in Bioscience - Landmark, 2007, 12, 2912.	3.0	61
104	Neural Cell Adhesion Molecule Polysialylation Enhances the Sensitivity of Embryonic Stem Cell-Derived Neural Precursors to Migration Guidance Cues. Stem Cells, 2007, 25, 3016-3025.	1.4	60
105	MANBA, CXCR5, SOX8, RPS6KB1 and ZBTB46 are genetic risk loci for multiple sclerosis. Brain, 2013, 136, 1778-1782.	3.7	60
106	Automated segmentation of changes in FLAIR-hyperintense white matter lesions in multiple sclerosis on serial magnetic resonance imaging. NeuroImage: Clinical, 2019, 23, 101849.	1.4	60
107	Atorvastatin Induces T Cell Anergy via Phosphorylation of ERK1. Journal of Immunology, 2005, 174, 5630-5635.	0.4	59
108	Encephalopathy, visual disturbance and hearing lossâ€"recognizing the symptoms of Susac syndrome. Nature Reviews Neurology, 2009, 5, 683-688.	4.9	59

#	Article	IF	CITATIONS
109	Gatekeeper role of brain antigenâ€presenting CD11c ⁺ cells in neuroinflammation. EMBO Journal, 2016, 35, 89-101.	3.5	59
110	Poor PASAT performance correlates with MRI contrast enhancement in multiple sclerosis. Neurology, 2009, 73, 1624-1627.	1.5	58
111	Treatment response to dimethyl fumarate is characterized by disproportionate CD8+ T cell reduction in MS. Multiple Sclerosis Journal, 2018, 24, 632-641.	1.4	57
112	Expression of TRAIL receptors in human autoreactive and foreign antigen-specific T cells. Cell Death and Differentiation, 2000, 7, 637-644.	5.0	56
113	Impact of HMG-CoA reductase inhibition on brain pathology. Trends in Pharmacological Sciences, 2007, 28, 342-349.	4.0	56
114	A Novel Cervical Spinal Cord Window Preparation Allows for Two-Photon Imaging of T-Cell Interactions with the Cervical Spinal Cord Microvasculature during Experimental Autoimmune Encephalomyelitis. Frontiers in Immunology, 2017, 8, 406.	2.2	56
115	Serum CD95 of relapsing remitting multiple sclerosis patients protects from CD95-mediated apoptosis. Journal of Neuroimmunology, 1998, 86, 151-154.	1.1	54
116	Classifications and treatment responses in chronic immune-mediated demyelinating polyneuropathy. Neurology, 2007, 68, 1622-1629.	1.5	54
117	Treatment choices and neuropsychological symptoms of a large cohort of early MS. Neurology: Neuroimmunology and NeuroInflammation, 2018, 5, e446.	3.1	54
118	Characterizing Microstructural Tissue Properties in Multiple Sclerosis with Diffusion MRI at 7â€T and 3â€T: The Impact of the Experimental Design. Neuroscience, 2019, 403, 17-26.	1.1	54
119	Microgravity-induced alterations in signal transduction in cells of the immune system. Acta Astronautica, 2010, 67, 1116-1125.	1.7	53
120	Cerebral blood perfusion changes in multiple sclerosis. Journal of the Neurological Sciences, 2007, 259, 16-20.	0.3	52
121	Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) in central nervous system inflammation. Journal of Molecular Medicine, 2009, 87, 753-763.	1.7	51
122	The problems and promises of research into human immunology and autoimmune disease. Nature Medicine, 2012, 18, 48-53.	15.2	51
123	Multiple sclerosis: comparison of the human T-cell response to S100 beta and myelin basic protein reveals parallels to rat experimental autoimmune panencephalitis. Brain, 1997, 120, 1437-1445.	3.7	49
124	<i>In vivo</i> and <i>inÂvitro</i> effects of multiple sclerosis immunomodulatory therapeutics on glutamatergic excitotoxicity. Journal of Neurochemistry, 2016, 136, 971-980.	2.1	49
125	Fast direct neuronal signaling via the IL-4 receptor as therapeutic target in neuroinflammation. Science Translational Medicine, $2018,10,10$	5.8	49
126	Progressive change in primary progressive multiple sclerosis normal-appearing white matter: a serial diffusion magnetic resonance imaging study. Multiple Sclerosis Journal, 2004, 10, 182-187.	1.4	48

#	Article	IF	Citations
127	CNSâ€irrelevant Tâ€cells enter the brain, cause blood–brain barrier disruption but no glial pathology. European Journal of Neuroscience, 2007, 26, 1387-1398.	1.2	48
128	Ido (indolamine 2,3-dioxygenase) Expression and Function in the CNS. Advances in Experimental Medicine and Biology, 2003, 527, 113-118.	0.8	48
129	MRI Pattern Recognition in Multiple Sclerosis Normal-Appearing Brain Areas. PLoS ONE, 2011, 6, e21138.	1.1	46
130	Structural correlates for fatigue in early relapsing remitting multiple sclerosis. European Radiology, 2016, 26, 515-523.	2.3	46
131	Differential regulation of myelin phagocytosis by macrophages/microglia, involvement of target myelin, Fc receptors and activation by intravenous immunoglobulins. Journal of Neuroscience Research, 2002, 67, 185-190.	1.3	45
132	Early mitoxantrone-induced cardiotoxicity in secondary progressive multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2007, 78, 198-200.	0.9	45
133	Mouse model mimics multiple sclerosis in the clinico-radiological paradox. European Journal of Neuroscience, 2007, 26, 190-198.	1.2	45
134	Oligoclonal Band Status in Scandinavian Multiple Sclerosis Patients Is Associated with Specific Genetic Risk Alleles. PLoS ONE, 2013, 8, e58352.	1.1	45
135	Systemic IFN- \hat{l}^2 treatment induces apoptosis of peripheral immune cells in MS patients. Journal of Neuroimmunology, 2003, 137, 187-196.	1.1	44
136	Therapeutic targeting of chemokine signaling in Multiple Sclerosis. Journal of the Neurological Sciences, 2008, 274, 31-38.	0.3	44
137	Evidence for early, non-lesional cerebellar damage in patients with multiple sclerosis: DTI measures correlate with disability, atrophy, and disease duration. Multiple Sclerosis Journal, 2016, 22, 73-84.	1.4	43
138	New Insights into Adaptive Immunity in Chronic Neuroinflammation. Advances in Immunology, 2007, 96, 1-40.	1.1	42
139	Neurodegeneration in autoimmune demyelination: Recent mechanistic insights reveal novel therapeutic targets. Journal of Neuroimmunology, 2007, 184, 17-26.	1.1	42
140	In vivo imaging of lymphocytes in the CNS reveals different behaviour of $na\tilde{A}$ ve T cells in health and autoimmunity. Journal of Neuroinflammation, 2011, 8, 131.	3.1	42
141	Changes and variability of proton density and T1 relaxation times in early multiple sclerosis: MRI markers of neuronal damage in the cerebral cortex. European Radiology, 2016, 26, 2578-2586.	2.3	42
142	Polyspecific immunoglobulins (IVIg) suppress proliferation of human (auto)antigen-specific T cells without inducing apoptosis. Journal of Neuroimmunology, 2001, 114, 160-167.	1.1	41
143	GFAPÎ \pm IgG-associated encephalitis upon daclizumab treatment of MS. Neurology: Neuroimmunology and NeuroInflammation, 2018, 5, e481.	3.1	41
144	New developments in understanding and treating neuroinflammation. Journal of Molecular Medicine, 2008, 86, 975-985.	1.7	40

#	Article	IF	CITATIONS
145	Kinetics of IL-6 Production Defines T Effector Cell Responsiveness to Regulatory T Cells in Multiple Sclerosis. PLoS ONE, 2013, 8, e77634.	1.1	40
146	Tumor-necrosis-factor-related apoptosis-inducing-ligand (TRAIL)-mediated death of neurons in living human brain tissue is inhibited by flupirtine-maleate. Journal of Neuroimmunology, 2005, 167, 204-209.	1.1	39
147	Incidence of therapy-related acute leukaemia in mitoxantrone-treated multiple sclerosis patients in Germany. Therapeutic Advances in Neurological Disorders, 2012, 5, 75-79.	1.5	39
148	Changes in brain functional connectivity patterns are driven by an individual lesion in MS: a resting-state fMRI study. Brain Imaging and Behavior, 2016, 10, 1117-1126.	1.1	39
149	Death Ligands and Autoimmune Demyelination. Neuroscientist, 2006, 12, 305-316.	2.6	38
150	SEVERE CARDIAC FAILURE IN A PATIENT WITH MULTIPLE SCLEROSIS FOLLOWING LOW-DOSE MITOXANTRONE TREATMENT. Neurology, 2009, 73, 991-993.	1.5	38
151	Increased cortical curvature reflects white matter atrophy in individual patients with early multiple sclerosis. NeuroImage: Clinical, 2014, 6, 475-487.	1.4	38
152	Sunlight exposure exerts immunomodulatory effects to reduce multiple sclerosis severity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	38
153	FTY720 (fingolimod) treatment tips the balance towards less immunogenic antigen-presenting cells in patients with multiple sclerosis. Multiple Sclerosis Journal, 2015, 21, 1811-1822.	1.4	37
154	Lamotrigine-antiparkinsonian activity by blockade of glutamate release?. Journal of Neural Transmission Parkinson's Disease and Dementia Section, 1993, 5, 67-75.	1.2	36
155	Power estimation for non-standardized multisite studies. Neurolmage, 2016, 134, 281-294.	2.1	36
156	Multiple sclerosis following etanercept treatment for ankylosing spondylitis. Scandinavian Journal of Rheumatology, 2008, 37, 397-399.	0.6	34
157	Genome-wide significant association of ANKRD 55 rs 6859219 and multiple sclerosis risk. Journal of Medical Genetics, 2013, 50, 140-143.	1.5	34
158	Genome-wide significant association with seven novel multiple sclerosis risk loci. Journal of Medical Genetics, 2015, 52, 848-855.	1.5	34
159	Flow cytometric analysis of T cell/monocyte ratio in clinically isolated syndrome identifies patients at risk of rapid disease progression. Multiple Sclerosis Journal, 2016, 22, 483-493.	1.4	33
160	EGFL7 reduces CNS inflammation in mouse. Nature Communications, 2018, 9, 819.	5.8	33
161	Development of ulcerative colitis in a patient with multiple sclerosis following treatment with interferon \hat{l}^2 1a. World Journal of Gastroenterology, 2007, 13, 3638.	1.4	33
162	Dual effect of glucocorticoids on apoptosis of human autoreactive and foreign antigen-specific T cells. Journal of Neuroimmunology, 2000, 110, 214-222.	1.1	32

#	Article	IF	CITATIONS
163	MR spectroscopy (MRS) and magnetisation transfer imaging (MTI), lesion load and clinical scores in early relapsing remitting multiple sclerosis: a combined cross-sectional and longitudinal study. European Radiology, 2009, 19, 2066-2074.	2.3	32
164	Protein kinase CK2 governs the molecular decision between encephalitogenic T _H 17 cell and T _{reg} cell development. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10145-10150.	3.3	32
165	Multi-parametric quantitative MRI of normal appearing white matter in multiple sclerosis, and the effect of disease activity on T2. Brain Imaging and Behavior, 2017, 11, 744-753.	1.1	32
166	l̂²1-Integrin– and KV1.3 channel–dependent signaling stimulates glutamate release from Th17 cells. Journal of Clinical Investigation, 2020, 130, 715-732.	3.9	32
167	Elevated Bcl-XL levels correlate with T cell survival in multiple sclerosis. Journal of Neuroimmunology, 2002, 126, 213-220.	1.1	31
168	Closing the case of <i>APOE </i> i>in multiple sclerosis: no association with disease risk in over 29â€000 subjects: Figure 1. Journal of Medical Genetics, 2012, 49, 558-562.	1.5	31
169	The impact of isolated lesions on white-matter fiber tracts in multiple sclerosis patients. NeuroImage: Clinical, 2015, 8, 110-116.	1.4	31
170	Assessment of cortical damage in early multiple sclerosis with quantitative <i>T</i> ₂ relaxometry. NMR in Biomedicine, 2016, 29, 444-450.	1.6	31
171	A woman with acute myelopathy in pregnancy: case outcome. BMJ: British Medical Journal, 2009, 339, b4026-b4026.	2.4	31
172	Identification of Inflammatory Neuronal Injury and Prevention of Neuronal Damage in Multiple Sclerosis. JAMA Neurology, 2013, 70, 1569-74.	4.5	30
173	A human post-mortem brain model for the standardization of multi-centre MRI studies. NeuroImage, 2015, 110, 11-21.	2.1	30
174	CCR7 on CD4+ T Cells Plays a Crucial Role in the Induction of Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2018, 200, 2554-2562.	0.4	30
175	Functional characteristics of Th1, Th17, and ex-Th17 cells in EAE revealed by intravital two-photon microscopy. Journal of Neuroinflammation, 2020, 17, 357.	3.1	30
176	Pro-inflammatory T helper 17 directly harms oligodendrocytes in neuroinflammation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	30
177	Linkage disequilibrium screening for multiple sclerosis implicates JAG1 and POU2AF1 as susceptibility genes in Europeans. Journal of Neuroimmunology, 2006, 179, 108-116.	1.1	29
178	Cladribine exerts an immunomodulatory effect on human and murine dendritic cells. International Immunopharmacology, 2014, 18, 347-357.	1.7	28
179	The Role of ERK Signaling in Experimental Autoimmune Encephalomyelitis. International Journal of Molecular Sciences, 2017, 18, 1990.	1.8	28
180	Diversity of the anti-T-cell receptor immune response and its implications for T-cell vaccination therapy of multiple sclerosis. Brain, 1998, 121, 1395-1407.	3.7	27

#	Article	IF	CITATIONS
181	Geranylgeranylation but Not GTP Loading Determines Rho Migratory Function in T Cells. Journal of Immunology, 2007, 179, 6024-6032.	0.4	27
182	Roles of the kallikrein/kinin system in the adaptive immune system. International Immunopharmacology, 2008, 8, 155-160.	1.7	27
183	Induction of TRAIL-mediated glioma cell death by human T cells. Journal of Neuroimmunology, 2002, 122, 117-124.	1.1	26
184	A gene pathway analysis highlights the role of cellular adhesion molecules in multiple sclerosis susceptibility. Genes and Immunity, 2014, 15, 126-132.	2.2	26
185	Identification of cortical lesions using DIR and FLAIR in early stages of multiple sclerosis. Journal of Neurology, 2015, 262, 1473-1482.	1.8	26
186	The farnesoid-X-receptor in myeloid cells controls CNS autoimmunity in an IL-10-dependent fashion. Acta Neuropathologica, 2016, 132, 413-431.	3.9	26
187	Dendritic cells as therapeutic targets in neuroinflammation. Cellular and Molecular Life Sciences, 2016, 73, 2425-2450.	2.4	26
188	Longitudinal cortical network reorganization in early relapsing–remitting multiple sclerosis. Therapeutic Advances in Neurological Disorders, 2019, 12, 175628641983867.	1.5	26
189	Ocrelizumab initiation in patients with MS. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	3.1	26
190	Encephalitis with Autoantibodies against the Glutamate Kainate Receptors <scp>GluK2</scp> . Annals of Neurology, 2021, 90, 101-117.	2.8	26
191	Identification and functional characterization of a highly polymorphic region in the human TRAIL promoter in multiple sclerosis. Journal of Neuroimmunology, 2004, 149, 195-201.	1.1	25
192	Two laboratory-confirmed cases of Japanese encephalitis imported to Germany by travelers returning from Southeast Asia. Journal of Clinical Virology, 2012, 54, 282-285.	1.6	24
193	The Role of CD8+ T Cells and Their Local Interaction with CD4+ T Cells in Myelin Oligodendrocyte Glycoprotein35–55–Induced Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2013, 191, 4960-4968.	0.4	24
194	NR1H3 p.Arg415Gln Is Not Associated to Multiple Sclerosis Risk. Neuron, 2016, 92, 333-335.	3.8	24
195	Can we predict cognitive decline after initial diagnosis of multiple sclerosis? Results from the German National early MS cohort (KKNMS). Journal of Neurology, 2019, 266, 386-397.	1.8	24
196	NfL predicts relapse-free progression in a longitudinal multiple sclerosis cohort study. EBioMedicine, 2021, 72, 103590.	2.7	24
197	CD95 expression and CD95-mediated apoptosis of T cells in multiple sclerosis. Journal of Neuroimmunology, 1998, 81, 168-172.	1.1	23
198	No evidence for shared genetic basis of common variants in multiple sclerosis and amyotrophic lateral sclerosis. Human Molecular Genetics, 2014, 23, 1916-1922.	1.4	23

#	Article	IF	CITATIONS
199	Increased frequency of proinflammatory CD4 T cells and pathological levels of serum neurofilament light chain in adult drugâ€resistant epilepsy. Epilepsia, 2021, 62, 176-189.	2.6	23
200	Regulation of Self-Reactive T Cells by Human Immunoglobulins- Implications for Multiple Sclerosis Therapy. Current Pharmaceutical Design, 2003, 9, 245-256.	0.9	23
201	Multiple sclerosis associated amino acids of polymorphic regions relevant for the HLA antigen binding are confined to HLA-DR2. Human Immunology, 2000, 61, 1021-1030.	1.2	22
202	Novel therapeutic options and drug targets in MS. Nature Reviews Neurology, 2013, 9, 72-73.	4.9	22
203	Targeting Voltage-Dependent Calcium Channels with Pregabalin Exerts a Direct Neuroprotective Effect in an Animal Model of Multiple Sclerosis. NeuroSignals, 2018, 26, 77-93.	0.5	22
204	MAPK3 deficiency drives autoimmunity via DC arming. European Journal of Immunology, 2010, 40, 1486-1495.	1.6	21
205	Independent replication of STAT3 association with multiple sclerosis risk in a large German case–control sample. Neurogenetics, 2012, 13, 83-86.	0.7	21
206	Remyelinating strategies in multiple sclerosis. Expert Review of Neurotherapeutics, 2014, 14, 1315-1334.	1.4	21
207	Imaging in mice and men: Pathophysiological insights into multiple sclerosis from conventional and advanced MRI techniques. Progress in Neurobiology, 2019, 182, 101663.	2.8	21
208	Mitoxantrone Induces Natural Killer Cell Maturation in Patients with Secondary Progressive Multiple Sclerosis. PLoS ONE, 2012, 7, e39625.	1.1	21
209	Perioperative fluctuations of lamotrigine serum levels in patients undergoing epilepsy surgery. Seizure: the Journal of the British Epilepsy Association, 2007, 16, 479-484.	0.9	20
210	High-field diffusion tensor imaging of mouse brain in vivo using single-shot STEAM MRI. Journal of Neuroscience Methods, 2007, 161, 112-117.	1.3	20
211	Treatment approaches to patients with multiple sclerosis and coexisting autoimmune disorders. Therapeutic Advances in Neurological Disorders, 2021, 14, 175628642110355.	1.5	20
212	Neuroprotection and enhanced neurogenesis by extract from the tropical plant Knema laurina after inflammatory damage in living brain tissue. Journal of Neuroimmunology, 2009, 206, 91-99.	1.1	19
213	Cardiotoxicity of Mitoxantrone Treatment in a German Cohort of 639 Multiple Sclerosis Patients.		

#	Article	IF	CITATIONS
217	Cross-sectional and longitudinal analysis of myelin-reactive T cells in patients with multiple sclerosis. Journal of Neurology, 2004, 251, 1111-1120.	1.8	18
218	Dendritic cells tip the balance towards induction of regulatory T cells upon priming in experimental autoimmune encephalomyelitis. Journal of Autoimmunity, 2017, 76, 108-114.	3.0	18
219	Diagnosis of multiple sclerosis: a multicentre study to compare revised McDonald-2010 and Filippi-2010 criteria. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 316-318.	0.9	18
220	Implementing the 2017 McDonald criteria for the diagnosis of multiple sclerosis. Nature Reviews Neurology, 2019, 15, 441-445.	4.9	18
221	CNS-localized myeloid cells capture living invading T cells during neuroinflammation. Journal of Experimental Medicine, 2020, 217, .	4.2	18
222	Covarying patterns of white matter lesions and cortical atrophy predict progression in early MS. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	3.1	18
223	Impact of Dietary Intervention on Serum Neurofilament Light Chain in Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .	3.1	18
224	Lamotrigine in Parkinson's disease â€" a double blind study. Journal of Neural Transmission Parkinson's Disease and Dementia Section, 1995, 10, 199-206.	1.2	17
225	Dysregulated Epstein-Barr virus infection in patients with CIDP. Journal of Neuroimmunology, 2010, 218, 107-111.	1.1	17
226	Down-regulation of neuronal L1 cell adhesion molecule expression alleviates inflammatory neuronal injury. Acta Neuropathologica, 2016, 132, 703-720.	3.9	17
227	Continuous reorganization of cortical information flow in multiple sclerosis: A longitudinal fMRI effective connectivity study. Scientific Reports, 2020, 10, 806.	1.6	17
228	Subcortical Volumes as Early Predictors of Fatigue in Multiple Sclerosis. Annals of Neurology, 2022, 91, 192-202.	2.8	17
229	Inhibition of the enzyme autotaxin reduces cortical excitability and ameliorates the outcome in stroke. Science Translational Medicine, 2022, 14, eabk0135.	5.8	17
230	Glutamine synthetase actiity in patients with Parkinson's disease. Acta Neurologica Scandinavica, 1998, 97, 300-302.	1.0	16
231	A new window in multiple sclerosis pathology: non-conventional quantitative magnetic resonance imaging outcomes. Journal of the Neurological Sciences, 2009, 287, S24-S29.	0.3	16
232	Targeting prohibitins at the cell surface prevents Th17â€mediated autoimmunity. EMBO Journal, 2018, 37, .	3. 5	16
233	Epigallocatechin Gallate in Relapsing-Remitting Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	3.1	16
234	Improved prediction of early cognitive impairment in multiple sclerosis combining blood and imaging biomarkers. Brain Communications, 2022, 4, .	1.5	16

#	Article	IF	Citations
235	Rhabdomyolysis during interferon-beta 1a treatment. Journal of Neurology, Neurosurgery and Psychiatry, 2002, 72, 274-274.	0.9	15
236	How to treat tumefactive demyelinating disease?. Multiple Sclerosis Journal, 2014, 20, 631-633.	1.4	15
237	Successful Replication of GWAS Hits for Multiple Sclerosis in 10,000 Germans Using the Exome Array. Genetic Epidemiology, 2015, 39, 601-608.	0.6	15
238	Lack of efficacy of mitoxantrone in primary progressive Multiple Sclerosis irrespective of pharmacogenetic factors: A multi-center, retrospective analysis. Journal of Neuroimmunology, 2015, 278, 277-279.	1.1	15
239	Role of IL-17-producing lymphocytes in severity of multiple sclerosis upon natalizumab treatment. Multiple Sclerosis Journal, 2017, 23, 567-576.	1.4	15
240	Intrathecal B-cell accumulation and axonal damage distinguish MRI-based benign from aggressive onset in MS. Neurology: Neuroimmunology and NeuroInflammation, 2019, 6, e595.	3.1	15
241	Increased cerebrospinal fluid albumin and immunoglobulin A fractions forecast cortical atrophy and longitudinal functional deterioration in relapsing-remitting multiple sclerosis. Multiple Sclerosis Journal, 2019, 25, 338-343.	1.4	15
242	Revised diagnostic criteria for neuromyelitis opticaâ€"incorporation of NMO-lgG status. Nature Clinical Practice Neurology, 2007, 3, E1-E1.	2.7	15
243	A case of recurrent Miller Fisher syndrome mimicking botulism. Neurological Sciences, 2006, 27, 424-425.	0.9	14
244	Geranylgeranylation but Not GTP-Loading of Rho GTPases Determines T Cell FunctionA presentation from the 11th Joint Meeting of the Signal Transduction Society (STS), Signal Transduction: Receptors, Mediators and Genes, Weimar, Germany, 1 to 3 November 2007 Science Signaling, 2008, 1 , pt3.	1.6	14
245	Two-Photon Imaging of Immune Cells in Neural Tissue. Cold Spring Harbor Protocols, 2013, 2013, pdb.prot073528.	0.2	14
246	A "kissing lesion― In-vivo 7T evidence of meningeal inflammation in early multiple sclerosis. Multiple Sclerosis Journal, 2017, 23, 1167-1169.	1.4	14
247	Dimethyl fumarate treatment restrains the antioxidative capacity of T cells to control autoimmunity. Brain, 2021, 144, 3126-3141.	3.7	14
248	A genome-wide German screen for linkage disequilibrium in multiple sclerosis. Journal of Neuroimmunology, 2003, 143, 79-83.	1.1	13
249	Bilateral stroke following pituitary apoplexy. Journal of Clinical Neuroscience, 2009, 16, 1670-1673.	0.8	13
250	FRET based ratiometric Ca2+ imaging to investigate immune-mediated neuronal and axonal damage processes in experimental autoimmune encephalomyelitis. Journal of Neuroscience Methods, 2015, 249, 8-15.	1.3	13
251	Analysis of Plasminogen Genetic Variants in Multiple Sclerosis Patients. G3: Genes, Genomes, Genetics, 2016, 6, 2073-2079.	0.8	13
252	Transient enlargement of brain ventricles during relapsing-remitting multiple sclerosis and experimental autoimmune encephalomyelitis. JCI Insight, 2020, 5, .	2.3	13

#	Article	IF	CITATIONS
253	The Relationship between Gray Matter Quantitative MRI and Disability in Secondary Progressive Multiple Sclerosis. PLoS ONE, 2016, 11, e0161036.	1.1	13
254	Treatment-resistant chronic headaches and focal pachymeningitis in a 46-year-old man: a rare presentation of Wegener's granulomatosis. Lancet Neurology, The, 2008, 7, 368-372.	4.9	12
255	Association of smoking but not HLA-DRB1*15:01, <i>APOE</i> or body mass index with brain atrophy in early multiple sclerosis. Multiple Sclerosis Journal, 2019, 25, 661-668.	1.4	12
256	Investigation of bax, bcl-2, bcl-x and p53 gene polymorphisms in multiple sclerosis. Journal of Neuroimmunology, 2002, 129, 154-160.	1.1	11
257	Modulation of Dendritic Cell Immunobiology via Inhibition of 3-Hydroxy-3-Methylglutaryl-CoA (HMG-CoA) Reductase. PLoS ONE, 2014, 9, e100871.	1.1	11
258	Is APOE $\hat{l}\mu 4$ associated with cognitive performance in early MS?. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, e728.	3.1	11
259	Interleukin-4 receptor signaling modulates neuronal network activity. Journal of Experimental Medicine, 2022, 219, .	4.2	11
260	Role of Sortilin in Models of Autoimmune Neuroinflammation. Journal of Immunology, 2015, 195, 5762-5769.	0.4	10
261	Detecting ongoing disease activity in mildly affected multiple sclerosis patients under first-line therapies. Multiple Sclerosis and Related Disorders, 2022, 63, 103927.	0.9	10
262	Bilateral meralgia paresthetica after cesarian section with epidural analgesia. Journal of the Peripheral Nervous System, 2006, 11 , $98-99$.	1.4	9
263	Cross-Recognition of a Myelin Peptide by CD8 ⁺ T Cells in the CNS Is Not Sufficient to Promote Neuronal Damage. Journal of Neuroscience, 2015, 35, 4837-4850.	1.7	9
264	Increase of Alternatively Activated Antigen Presenting Cells in Active Experimental Autoimmune Encephalomyelitis. Journal of NeuroImmune Pharmacology, 2016, 11, 721-732.	2.1	9
265	A novel automated segmentation method for retinal layers in OCT images proves retinal degeneration after optic neuritis. British Journal of Ophthalmology, 2016, 100, 484-490.	2.1	9
266	Multiple sclerosis therapy consensus group (MSTCG): answers to the discussion questions. Neurological Research and Practice, 2021, 3, 44.	1.0	9
267	Long-Term Performance of the Bovine Pericardium Patch in Conventional Carotid Endarterectomy. Thoracic and Cardiovascular Surgeon, 2015, 63, 168-174.	0.4	8
268	Preservation of neuronal function as measured by clinical and MRI endpoints in relapsing-remitting multiple sclerosis: how effective are current treatment strategies? Expert Review of Neurotherapeutics, 2018, 18, 203-219.	1.4	8
269	Neuronal ICAM-5 Plays a Neuroprotective Role in Progressive Neurodegeneration. Frontiers in Neurology, 2019, 10, 205.	1.1	8
270	Soluble CD95 (Fas/APO-1) in malignant glioma: (no) implications for CD95-based immunotherapy?. Journal of Neuro-Oncology, 1998, 40, 233-235.	1.4	7

#	Article	IF	Citations
271	Cell–cell communication by Endocannabinoids during Immune Surveillance of the Central Nervous System. , 2006, 43, 281-305.		7
272	AAN unveils new guidelines for MS disease-modifying therapy. Nature Reviews Neurology, 2018, 14, 384-386.	4.9	7
273	Genetic determinants of the humoral immune response in MS. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, e827.	3.1	7
274	T cell–neuron interaction in inflammatory and progressive multiple sclerosis biology. Current Opinion in Neurobiology, 2022, 75, 102588.	2.0	7
275	Evidence for a white matter lesion size threshold to support the diagnosis of relapsing remitting multiple sclerosis. Multiple Sclerosis and Related Disorders, 2019, 29, 124-129.	0.9	6
276	The neuroinflammation collection: a vision for expanding neuro-immune crosstalk in Brain. Brain, 2021, 144, e59-e59.	3.7	6
277	Serum levels of soluble CD95 are not associated with amelioration of multiple sclerosis during pregnancy. Journal of the Neurological Sciences, 2007, 252, 83-87.	0.3	5
278	Celiac antibodies in the diagnostic workup of white matter lesions. Neurology, 2008, 71, 223-225.	1.5	5
279	Supplementary medication in multiple sclerosis: Real-world experience and potential interference with neurofilament light chain measurement. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2020, 6, 205521732093631.	0.5	5
280	Serum neurofilament levels reflect outer retinal layer changes in multiple sclerosis. Therapeutic Advances in Neurological Disorders, 2021, 14, 175628642110034.	1.5	5
281	Reply. Annals of Neurology, 1998, 44, 426-426.	2.8	4
282	Partial synergy of bisindolylmaleimide with apoptotic stimulus in antigen-specific T cells $\hat{a} \in \mathbb{C}^n$ implications for multiple sclerosis 1 This work was supported by grants from the DFG, the Hertie-Stiftung and the DMSG.1. Journal of Neuroimmunology, 2000, 103, 69-75.	1.1	4
283	Bilateral vertebral artery dissection, agenesis of both ICAs, and connective tissue aberrations. Neurology, 2013, 80, 1442-1443.	1.5	4
284	Experimental Applications of TNF-Reporter Mice with Far-Red Fluorescent Label. Methods in Molecular Biology, 2014, 1155, 151-162.	0.4	4
285	Discriminative power of intra-retinal layers in early multiple sclerosis using 3D OCT imaging. Journal of Neurology, 2018, 265, 2284-2294.	1.8	4
286	The frequency of follicular T helper cells differs in acute and chronic neuroinflammation. Scientific Reports, 2020, 10, 20485.	1.6	4
287	Targeting Immune Modulators in Glioma While Avoiding Autoimmune Conditions. Cancers, 2021, 13, 3524.	1.7	4
288	No role of IFITM3 in brain tumor formation <i>in vivo</i> . Oncotarget, 2016, 7, 86388-86405.	0.8	4

#	Article	IF	Citations
289	A lymphocyte-glia connection sets the pace for smoldering inflammation. Cell, 2021, 184, 5696-5698.	13.5	4
290	Network alterations underlying anxiety symptoms in early multiple sclerosis. Journal of Neuroinflammation, 2022, 19 , .	3.1	4
291	Progression in multiple sclerosis – a long-term problem. Current Opinion in Neurology, 2022, 35, 293-298.	1.8	4
292	Modulating T cell signaling cascades by HMG-CoA reductase inhibitors. Signal Transduction, 2005, 5, 231-244.	0.7	3
293	Putaminal alteration in multiple sclerosis patients with spinal cord lesions. Journal of Neural Transmission, 2015, 122, 1465-1473.	1.4	3
294	Growth-Promoting Treatment Screening for Corticospinal Neurons in Mouse and Man. Cellular and Molecular Neurobiology, 2020, 40, 1327-1338.	1.7	3
295	Correspondence to Sand et al. "Critical Reappraisal of a Catechol-O-Methyltransferase Transversion Variant in Schizophrenia― Biological Psychiatry, 2010, 67, e45-e48.	0.7	2
296	No Association Between Genetic Polymorphism at Codon 129 of the Prion Protein Gene and Primary Progressive Multiple Sclerosis. Archives of Neurology, 2011, 68, 264-5.	4.9	2
297	Intracranial spreading of a spinal anaplastic astrocytoma. Journal of Neurology, 2012, 259, 768-770.	1.8	2
298	Implications of extreme serum neurofilament light chain levels for the management of patients with relapsing multiple sclerosis. Therapeutic Advances in Neurological Disorders, 2021, 14, 175628642110019.	1.5	2
299	Preventing disease progression in multiple sclerosis—insights from large real-world cohorts. Genome Medicine, 2022, 14, 41.	3.6	2
300	Peripheral blood cell bulk cultures are not suitable for the analysis of the genetic control of T-cell cytokine function. Immunology Letters, 2001, 78, 21-27.	1.1	1
301	A new light source for multimodal multiphoton microscopy including CARS. , 2009, , .		1
302	An improved anatomical MRI technique with suppression of fixative fluid artifacts for the investigation of human postmortem brain phantoms. Magnetic Resonance in Medicine, 2017, 77, 1115-1123.	1.9	1
303	Studying the blood–brain barrier will provide new insights into neurodegeneration – Commentary. Multiple Sclerosis Journal, 2018, 24, 1026-1028.	1.4	1
304	The Rare IL22RA2 Signal Peptide Coding Variant rs28385692 Decreases Secretion of IL-22BP Isoform-1, -2 and -3 and Is Associated with Risk for Multiple Sclerosis. Cells, 2020, 9, 175.	1.8	1
305	Genetik neuroimmunologischer Erkrankungen. , 0, , .		0
306	No Evidence for Generation of Th-2-like MBP-Specific T-Cell Lines by Blockade of the Costimulatory Molecule B7-1. Scandinavian Journal of Immunology, 2000, 52, 510-514.	1.3	0

#	Article	IF	CITATIONS
307	Multiple Sklerose – weit mehr als eine Entmarkungskrankheit. E-Neuroforum, 2004, 10, 188-194.	0.2	O
308	SFB TRR43: Das Gehirn als Ziel von entzýndlichen Prozessen. E-Neuroforum, 2008, 14, 248-250.	0.2	0
309	11th International Neuroscience Winter Conference Symposium: Neuronal damage and repair in multiple sclerosis. Future Neurology, 2009, 4, 395-397.	0.9	O
310	Past, present and future of immunology in Mainz. Cellular Immunology, 2016, 308, 1-6.	1.4	0
311	Phenotype of Antigen Unexperienced TH Cells in the Inflamed Central Nervous System in Experimental Autoimmune Encephalomyelitis. Journal of NeuroImmune Pharmacology, 2017, 12, 305-313.	2.1	O
312	EGFL7 – a potential therapeutic target for multiple sclerosis? Expert Opinion on Therapeutic Targets, 2018, 22, 899-902.	1.5	0
313	Betreuung von Patienten mit multipler Sklerose. , 2015, , 393-402.		O
314	Neue, experimentelle und zukünftige TherapieansÃæe. , 2015, , 361-368.		0
315	Risikomanagement und alltagspraktische Aspekte. , 2018, , 361-369.		O
316	Neue, experimentelle und zukünftige TherapieansÃæe. , 2018, , 353-359.		0