Braulio Garcia-Camara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2984442/publications.pdf

Version: 2024-02-01

70 papers

2,219 citations

236925 25 h-index 223800 46 g-index

71 all docs

71 docs citations

times ranked

71

2005 citing authors

#	Article	IF	CITATIONS
1	Refractive index sensing by all-dielectric metasurfaces supporting quasi-bound states in the continuum. , 2022 , , .		O
2	Allâ€Dielectric Toroidal Metasurfaces for Angularâ€Dependent Resonant Polarization Beam Splitting. Advanced Optical Materials, 2021, 9, 2002143.	7.3	21
3	Light Technology for Efficient and Effective Photodynamic Therapy: A Critical Review. Cancers, 2021, 13, 3484.	3.7	86
4	Design and Experimental Implementation of a Multi-Cloak Paraxial Optical System. Photonics, 2021, 8, 358.	2.0	0
5	Recent Advances in Biomedical Photonic Sensors: A Focus on Optical-Fibre-Based Sensing. Sensors, 2021, 21, 6469.	3.8	28
6	Photodynamic Therapy: A Compendium of Latest Reviews. Cancers, 2021, 13, 4447.	3.7	134
7	Ultra-Narrow Spectral Response of a Hybrid Plasmonic-Grating Sensor. IEEE Sensors Journal, 2020, 20, 3520-3528.	4.7	5
8	Cylindrical and Powell Liquid Crystal Lenses With Positive-Negative Optical Power. IEEE Photonics Technology Letters, 2020, 32, 1057-1060.	2.5	14
9	Engineering Aspheric Liquid Crystal Lenses by Using the Transmission Electrode Technique. Crystals, 2020, 10, 835.	2.2	10
10	A monolithic nanostructured-perovskite/silicon tandem solar cell: feasibility of light management through geometry and materials selection. Scientific Reports, 2020, 10, 2271.	3.3	18
11	Boosting ultrathin aSi-H solar cells absorption through a nanoparticle cross-packed metasurface. Solar Energy, 2020, 202, 10-16.	6.1	19
12	Electrical Behavior of Liquid Crystal Devices with Dielectric Nanoparticles. Journal of Nanomaterials, 2020, 2020, 1-7.	2.7	10
13	Allâ€Dielectric Silicon Metasurface with Strong Subterahertz Toroidal Dipole Resonance. Advanced Optical Materials, 2019, 7, 1900777.	7.3	32
14	Toroidal metasurface resonances in microwave waveguides. Scientific Reports, 2019, 9, 7544.	3.3	29
15	Efficient Light Management in a Monolithic Tandem Perovskite/Silicon Solar Cell by Using a Hybrid Metasurface. Nanomaterials, 2019, 9, 791.	4.1	16
16	Recent Advances in Adaptive Liquid Crystal Lenses. Crystals, 2019, 9, 272.	2.2	82
17	Ultrahigh-quality factor resonant dielectric metasurfaces based on hollow nanocuboids. Optics Express, 2019, 27, 6320.	3.4	72
18	Analysis of the Substrate Effect on the Zero-Backward Scattering Condition of a Cu2O Nanoparticle under Non-Normal Illumination. Nanomaterials, 2019, 9, 536.	4.1	8

#	Article	IF	CITATIONS
19	Anapole Modes in Hollow Nanocuboid Dielectric Metasurfaces for Refractometric Sensing. Nanomaterials, 2019, 9, 30.	4.1	56
20	Resolving the multipolar scattering modes of a submicron particle using parametric indirect microscopic imaging. Photonics and Nanostructures - Fundamentals and Applications, 2018, 30, 7-13.	2.0	2
21	An indirect method of imaging the Stokes parameters of a submicron particle with sub-diffraction scattering. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 213, 35-40.	2.3	8
22	Chiral all-dielectric trimer nanoantenna. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 208, 71-77.	2.3	16
23	Infiltrated Photonic Crystal Fibers for Sensing Applications. Sensors, 2018, 18, 4263.	3.8	49
24	Wireless Temperature Sensor Based on a Nematic Liquid Crystal Cell as Variable Capacitance. Sensors, 2018, 18, 3436.	3.8	13
25	Light scattering by subwavelength Cu2O particles. Nanotechnology, 2017, 28, 134002.	2.6	20
26	Tunable liquid crystal multifocal microlens array. Scientific Reports, 2017, 7, 17318.	3.3	55
27	Liquid crystal spherical microlens array with high fill factor and optical power. Optics Express, 2017, 25, 605.	3.4	29
28	Low aberration and fast switching microlenses based on a novel liquid crystal mixture. Optics Express, 2017, 25, 14795.	3.4	28
29	Selective Dielectric Metasurfaces Based on Directional Conditions of Silicon Nanopillars. Nanomaterials, 2017, 7, 177.	4.1	23
30	Exploring the scattering directionality and light interaction in nanoparticle dimers of different semiconductors. Photonics Letters of Poland, 2017, 9, 42.	0.4	O
31	Induced Magnetic Anisotropy in Liquid Crystals Doped with Resonant Semiconductor Nanoparticles. Journal of Nanomaterials, 2016, 2016, 1-9.	2.7	1
32	Liquid Crystal Microlenses for Autostereoscopic Displays. Materials, 2016, 9, 36.	2.9	25
33	Optimized Minimum-Forward Light Scattering by Dielectric Nanopillars. IEEE Photonics Technology Letters, 2016, 28, 2160-2163.	2.5	4
34	Optical Tuning of Nanospheres Through Phase Transition: An Optical Nanocircuit Analysis. IEEE Photonics Technology Letters, 2016, 28, 2878-2881.	2.5	2
35	Thermally tunable polarization by nanoparticle plasmonic resonance in photonic crystal fibers. Optics Express, 2015, 23, 28935.	3.4	7
36	Simulation of the thickness dependence of the optical properties of suspended particle devices. Solar Energy Materials and Solar Cells, 2015, 143, 613-622.	6.2	47

#	Article	IF	Citations
37	High-Sensitivity Fabry-Pérot Temperature Sensor Based on Liquid Crystal Doped With Nanoparticles. IEEE Photonics Technology Letters, 2015, 27, 292-295.	2.5	9
38	Liquid Crystal Temperature Sensor Based on Three Electrodes and a High-Resistivity Layer. IEEE Sensors Journal, 2015, 15, 5222-5227.	4.7	6
39	Temperature-Phase Converter Based on a LC Cell as a Variable Capacitance. Sensors, 2015, 15, 5594-5608.	3.8	2
40	Fiber Optic Temperature Sensor Based on Amplitude Modulation of Metallic and Semiconductor Nanoparticles in a Liquid Crystal Mixture. Journal of Lightwave Technology, 2015, 33, 2451-2455.	4.6	22
41	Cylindrical Liquid Crystal Microlens Array With Rotary Optical Power and Tunable Focal Length. IEEE Electron Device Letters, 2015, 36, 582-584.	3.9	24
42	Size Dependence of the Directional Scattering Conditions on Semiconductor Nanoparticles. IEEE Photonics Technology Letters, 2015, 27, 2059-2062.	2.5	7
43	All-Optical Nanometric Switch Based on the Directional Scattering of Semiconductor Nanoparticles. Journal of Physical Chemistry C, 2015, 119, 19558-19564.	3.1	28
44	Generation of Optical Vortices by an Ideal Liquid Crystal Spiral Phase Plate. IEEE Electron Device Letters, 2014, 35, 856-858.	3.9	30
45	Liquid Crystal Lensacons, Logarithmic and Linear Axicons. Materials, 2014, 7, 2593-2604.	2.9	15
46	A Novel High-Sensitivity, Low-Power, Liquid Crystal Temperature Sensor. Sensors, 2014, 14, 6571-6583.	3.8	28
47	Directional Scattering of Semiconductor Nanoparticles Embedded in a Liquid Crystal. Materials, 2014, 7, 2784-2794.	2.9	7
48	Modal liquid crystal microaxicon array. Optics Letters, 2014, 39, 3476.	3.3	17
49	Theoretical modeling of a Localized Surface Plasmon Resonance (LSPR) based fiber optic temperature sensor. Proceedings of SPIE, 2014, , .	0.8	1
50	Liquid Crystal Temperature Sensor Based on a Micrometric Structure and a Metallic Nanometric Layer. IEEE Electron Device Letters, 2014, 35, 666-668.	3.9	13
51	An Autostereoscopic Device for Mobile Applications Based on a Liquid Crystal Microlens Array and an OLED Display. Journal of Display Technology, 2014, 10, 713-720.	1.2	34
52	Using an Analytical Model to Design Liquid Crystal Microlenses. IEEE Photonics Technology Letters, 2014, 26, 793-796.	2.5	7
53	Sensing with magnetic dipolar resonances in semiconductor nanospheres. Optics Express, 2013, 21, 23007.	3.4	67
54	Editorial: Thermal, power and timing modeling, design and simulation. IET Circuits, Devices and Systems, 2012, 6, 271.	1.4	0

#	Article	IF	CITATIONS
55	Electric and magnetic optical response of dielectric nanospheres: Optical forces and scattering anisotropy. Photonics and Nanostructures - Fundamentals and Applications, 2012, 10, 345-352.	2.0	18
56	Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere. Nature Communications, 2012, 3, 1171.	12.8	466
57	Directionality in scattering by nanoparticles: Kerker's null-scattering conditions revisited. Optics Letters, 2011, 36, 728.	3.3	59
58	Quantum devices and optical computing. , 2011, , .		0
59	Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces. Journal of Nanophotonics, 2011, 5, 053512.	1.0	179
60	Electric and magnetic dipolar response of dielectric nanospheres: Scattering anisotropy and optical forces. , $2011, , .$		1
61	Light scattering resonances in small particles with electric and magnetic optical properties. NATO Science for Peace and Security Series C: Environmental Security, 2011, , 117-136.	0.2	O
62	Nanoparticles with unconventional scattering properties: Size effects. Optics Communications, 2010, 283, 490-496.	2.1	22
63	Distance limit of the directionality conditions for the scattering of nanoparticles. Metamaterials, 2010, 4, 15-23.	2.2	6
64	Light scattering by an array of electric and magnetic nanoparticles. Optics Express, 2010, 18, 10001.	3.4	47
65	Linear polarization degree for detecting magnetic properties of small particles. Optics Letters, 2010, 35, 4084.	3.3	13
66	Light scattering resonances in small particles with electric and magnetic properties. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2008, 25, 327.	1.5	49
67	Exception for the zero-forward-scattering theory. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2008, 25, 2875.	1.5	26
68	Interaction of nanoparticles with substrates: effects on the dipolar behaviour of the particles. Optics Express, 2008, 16, 12487.	3.4	32
69	Comment on "Experimental Evidence of Zero Forward Scattering by Magnetic Spheres― Physical Review Letters, 2007, 98, .	7.8	13
70	On the Optical Response of Nanoparticles: Directionality Effects and Optical Forces. , 0, , .		2