## Zhong-Xiu Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2984186/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Rapid unfolding of pig pancreas α-amylase: Kinetics, activity and structure evolution. Food Chemistry, 2022, 368, 130795.                                                                                                                                                                                                         | 8.2 | 9         |
| 2  | l-Arginine inhibits the activity of α-amylase: Rapid kinetics, interaction and functional implications.<br>Food Chemistry, 2022, 380, 131836.                                                                                                                                                                                     | 8.2 | 9         |
| 3  | Inhibition of starch digestion: The role of hydrophobic domain of both α-amylase and substrates. Food<br>Chemistry, 2021, 341, 128211.                                                                                                                                                                                            | 8.2 | 12        |
| 4  | The relationship between alkylamide compound content and pungency intensity of <i>Zanthoxylum<br/>bungeanum</i> based on sensory evaluation and ultraâ€performance liquid chromatographyâ€mass<br>spectrometry/ mass spectrometry (UPLCâ€MS/MS) analysis. Journal of the Science of Food and<br>Agriculture, 2019, 99, 1475-1483. | 3.5 | 28        |
| 5  | Molecular basis and potential applications of capsaicinoids and capsinoids against the elongation of etiolated wheat (Triticum aestivum L.) coleoptiles in foods. Food Chemistry, 2019, 301, 125229.                                                                                                                              | 8.2 | 4         |
| 6  | Quantitative structureâ€retention relationships of the chromatographic retentions of phthalic acid ester contaminants in foods. Journal of Separation Science, 2019, 42, 2771-2778.                                                                                                                                               | 2.5 | 1         |
| 7  | Improved hydrolysis of α-tocopherol acetate emulsion and its bioaccessibility in the presence of polysaccharides and PEG2000. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 581, 123837.                                                                                                                | 4.7 | 4         |
| 8  | Synergistic interaction between exogenous and endogenous emulsifiers and its impact on in vitro digestion of lipid in crowded medium. Food Chemistry, 2019, 299, 125164.                                                                                                                                                          | 8.2 | 1         |
| 9  | Multiple quantitative structure–pungency correlations of capsaicinoids. Food Chemistry, 2019, 283, 611-620.                                                                                                                                                                                                                       | 8.2 | 11        |
| 10 | Catalytic behavior of pancreatic lipase in crowded medium for hydrolysis of medium-chain and<br>long-chain lipid: An isothermal titration calorimetry study. Thermochimica Acta, 2019, 672, 70-78.                                                                                                                                | 2.7 | 14        |
| 11 | Difference in Binding of Long- and Medium-Chain Fatty Acids with Serum Albumin: The Role of<br>Macromolecular Crowding Effect. Journal of Agricultural and Food Chemistry, 2018, 66, 1242-1250.                                                                                                                                   | 5.2 | 21        |
| 12 | New reference standards for pungency intensity evaluation based on human sensory differentiations.<br>Journal of Sensory Studies, 2018, 33, e12332.                                                                                                                                                                               | 1.6 | 5         |
| 13 | Influence of polysaccharides on the dynamic self-assembly of medium-chain fatty acid vesicles and hydrolysis of decanoic acid anhydrides. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555, 772-780.                                                                                                   | 4.7 | 4         |
| 14 | Evaluation of the pungency intensity and timeâ€related aspects of Chinese <i>Zanthoxylum bungeanum</i> based on human sensation. Journal of Sensory Studies, 2018, 33, e12465.                                                                                                                                                    | 1.6 | 15        |
| 15 | Pungency Evaluation of Hydroxyl-Sanshool Compounds After Dissolution in Taste Carriers Per<br>Time-Related Characteristics. Chemical Senses, 2017, 42, 575-584.                                                                                                                                                                   | 2.0 | 25        |
| 16 | Thermodynamics and Structural Evolution during a Reversible Vesicle–Micelle Transition of a<br>Vitamin-Derived Bolaamphiphile Induced by Sodium Cholate. Journal of Agricultural and Food<br>Chemistry, 2016, 64, 1977-1988.                                                                                                      | 5.2 | 22        |
| 17 | Phase Transition of Phospholipid Vesicles Induced by Fatty Acids in Macromolecular Crowding: a<br>Differential Scanning Calorimetry Study. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2016, 32,<br>2027-2038.                                                                                                             | 4.9 | 3         |
| 18 | Chain-Length-Dependent Autocatalytic Hydrolysis of Fatty Acid Anhydrides in Polyethylene Glycol.<br>Journal of Physical Chemistry B, 2014, 118, 3461-3468.                                                                                                                                                                        | 2.6 | 10        |

ZHONG-XIU CHEN

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Influence of carboxymethyl cellulose and sodium alginate on sweetness intensity of Aspartame. Food<br>Chemistry, 2014, 164, 278-285.                                                                      | 8.2 | 10        |
| 20 | Controllable Self-Assembly of Sodium Caseinate with a Zwitterionic Vitamin-Derived Bolaamphiphile.<br>Journal of Agricultural and Food Chemistry, 2013, 61, 10582-10589.                                  | 5.2 | 6         |
| 21 | Molecular Recognition of Melamine by Vesicles Spontaneously Formed from Orotic Acid Derived<br>Bolaamphiphiles. Journal of Physical Chemistry B, 2011, 115, 1798-1806.                                    | 2.6 | 21        |
| 22 | Thermodynamics of the interaction of sweeteners and lactisole with fullerenols as an artificial sweet taste receptor model. Food Chemistry, 2011, 128, 134-144.                                           | 8.2 | 13        |
| 23 | Isothermal Titration Calorimetry Study of the Interaction of Sweeteners with Fullerenols as an<br>Artificial Sweet Taste Receptor Model. Journal of Agricultural and Food Chemistry, 2009, 57, 2945-2954. | 5.2 | 14        |
| 24 | Micellization and synergistic interaction of binary surfactant mixtures based on sodium nonylphenol polyoxyethylene ether sulfate. Journal of Colloid and Interface Science, 2008, 318, 389-396.          | 9.4 | 37        |