
Masa-aki Haga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2984140/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Photo-Hydrogen-Evolving Molecular Device Driving Visible-Light-Induced EDTA-Reduction of Water into Molecular Hydrogen. Journal of the American Chemical Society, 2006, 128, 4926-4927.	13.7	398
2	Highly Phosphorescent Iridium Complexes Containing Both Tridentate Bis(benzimidazolyl)-benzene or -pyridine and Bidentate Phenylpyridine:Â Synthesis, Photophysical Properties, and Theoretical Study of Ir-Bis(benzimidazolyl)benzene Complex. Inorganic Chemistry, 2006, 45, 8907-8921.	4.0	203
3	Construction of Highly Ordered Lamellar Nanostructures through Langmuirâ^'Blodgett Deposition of Molecularly Thin Titania Nanosheets Tens of Micrometers Wide and Their Excellent Dielectric Properties. ACS Nano, 2009, 3, 1097-1106.	14.6	171
4	Fabrication of Densely Packed Titania Nanosheet Films on Solid Surface by Use of Langmuirâ^'Blodgett Deposition Method without Amphiphilic Additives. Langmuir, 2005, 21, 6590-6595.	3.5	144
5	Syntheses and Phosphorescent Properties of Blue Emissive Iridium Complexes with Tridentate Pyrazolyl Ligands. Inorganic Chemistry, 2008, 47, 7154-7165.	4.0	143
6	Synthesis and protonation-deprotonation reactions of ruthenium(II) complexes containing 2, 2′-bibenzimidazole and related ligands. Inorganica Chimica Acta, 1983, 75, 29-35.	2.4	137
7	Proton-Induced Tuning of Electrochemical and Photophysical Properties in Mononuclear and Dinuclear Ruthenium Complexes Containing 2,2â€~-Bis(benzimidazol-2-yl)-4,4â€~-bipyridine: Synthesis, Molecular Structure, and Mixed-Valence State and Excited-State Propertiesâ€. Inorganic Chemistry, 1996. 35. 3335-3347.	4.0	126
8	Syntheses and Properties of Emissive Iridium(III) Complexes with Tridentate Benzimidazole Derivatives. Inorganic Chemistry, 2005, 44, 4737-4746.	4.0	122
9	Molecular design of a proton-induced molecular switch based on rod-shaped Ru dinuclear complexes with bis-tridentate 2,6-bis(benzimidazol-2-yl)pyridine derivatives. Dalton Transactions, 2003, , 2069-2079.	3.3	121
10	Fabrication and functions of surface nanomaterials based on multilayered or nanoarrayed assembly of metal complexes. Coordination Chemistry Reviews, 2007, 251, 2688-2701.	18.8	119
11	Syntheses, characterization, and photo-hydrogen-evolving properties of tris(2,2′-bipyridine)ruthenium(ii) derivatives tethered to a cis-Pt(ii)Cl2unit: insights into the structure–activity relationship. Dalton Transactions, 2007, , 1197-1206.	3.3	104
12	Proton-Induced Switching of Electron Transfer Pathways in Dendrimer-Type Tetranuclear RuOs3 Complexes. Angewandte Chemie International Edition in English, 1996, 35, 76-78.	4.4	99
13	Prospects and Problems of Single Molecule Information Devices. Japanese Journal of Applied Physics, 2000, 39, 3835-3849.	1.5	95
14	Fabrication and Placement of a Ring Structure of Nanoparticles by a Laser-Induced Micronanobubble on a Gold Surface. Langmuir, 2011, 27, 8605-8610.	3.5	95
15	Tuning of Redox Potentials by Introducing a Cyclometalated Bond to Bis-tridentate Ruthenium(II) Complexes Bearing Bis(<i>N</i> -methylbenzimidazolyl)benzene or -pyridine Ligands. Inorganic Chemistry, 2012, 51, 890-899.	4.0	88
16	Luminescent Langmuirâ^'Blodgett Films of Platinum(II) Complex [Pt(L18)Cl](PF6) (L18 =) Tj ETQq0 0 0 rgBT /Ove	rlock 10 T 4.0	f 50 142 Td (

17	Self-Organization of Au Nanoparticles Protected by 2,6-Bis(1â€~-(8-thiooctyl)benzimidazol-2-yl)pyridine. Journal of the American Chemical Society, 2000, 122, 4237-4238.	13.7	83
18	Photoelectrochemical Properties of Alternating Multilayer Films Composed of Titania Nanosheets and Zn Porphyrin. Langmuir, 2007, 23, 6730-6736.	3.5	82

#	Article	IF	CITATIONS
19	Electronic Band Structure of Exfoliated Titanium- and/or Niobium-Based Oxide Nanosheets Probed by Electrochemical and Photoelectrochemical Measurements. Journal of Physical Chemistry C, 2012, 116, 12426-12433.	3.1	74
20	Humidity-controlled rectification switching in ruthenium-complex molecular junctions. Nature Nanotechnology, 2018, 13, 117-121.	31.5	68
21	Synthesis and Proton-Coupled Electron-Transfer Reaction of Self-Assembled Monolayers of a Ruthenium(II) Complex Containing Tridentate 2,6-Bis(benzimidazol-2-yl)pyridine on a Gold Surface:Â Comparison of Acid/Base Chemistry with Bulk Solution Chemistry. Inorganic Chemistry, 2000, 39, 4566-4573.	4.0	67
22	Synthesis and proton transfer-linked redox tuning of ruthenium(II) complexes with tridentate 2,6-bis(benzimidazol-2-yl)pyridine ligands. Journal of the Chemical Society Dalton Transactions, 1993, , 2477.	1.1	65
23	Trinuclear Ruthenium Complex with a Face-Capping Benzene Ligand. Hapticity Change Induced by Two-Electron Redox Reaction. Journal of the American Chemical Society, 1997, 119, 625-626.	13.7	63
24	Long-Range Electron Transport of Ruthenium-Centered Multilayer Films <i>via</i> a Stepping-Stone Mechanism. ACS Nano, 2012, 6, 1988-1999.	14.6	62
25	A practical one-pot synthesis of 2,3-disubstituted indoles from unactivated anilines. Tetrahedron Letters, 2001, 42, 3865-3868.	1.4	59
26	Glycine Crystallization in Solution by CW Laser-Induced Microbubble on Gold Thin Film Surface. ACS Applied Materials & Interfaces, 2012, 4, 1158-1163.	8.0	58
27	Soft nano-wrapping on graphene oxide by using metal–organic network films composed of tannic acid and Fe ions. Physical Chemistry Chemical Physics, 2015, 17, 8609-8613.	2.8	58
28	Syntheses and photophysical properties of optical-active blue-phosphorescent iridium complexes bearing asymmetric tridentate ligands. Dalton Transactions, 2009, , 1700.	3.3	53
29	Luminescent lr(<scp>iii</scp>) complexes containing benzothiazole-based tridentate ligands: synthesis, characterization, and application to organic light-emitting diodes. Dalton Transactions, 2012, 41, 44-46.	3.3	52
30	A Peanutâ€Shaped Polyaromatic Capsule: Solventâ€Dependent Transformation and Electronic Properties of a Nonâ€Contacted Fullerene Dimer. Angewandte Chemie - International Edition, 2019, 58, 8463-8467.	13.8	52
31	Memory Effects in Molecular Films of Freeâ€Standing Rodâ€Shaped Ruthenium Complexes on an Electrode. Angewandte Chemie - International Edition, 2011, 50, 6287-6291.	13.8	51
32	Photoexcited states of dinuclear Ru complexes bridged by proton-dissociable benzimidazole derivatives. Coordination Chemistry Reviews, 1994, 132, 99-104.	18.8	47
33	Synthesis and proton-coupled redox properties of mononuclear or asymmetric dinuclear complexes of ruthenium, rhodium and/or osmium containing 2,2′-bis(2-pyridyl)-6,6′-bibenzimidazole. Journal of the Chemical Society Dalton Transactions, 1994, , 263-272.	1.1	47
34	Self-assembled monolayer and multilayer formation using redox-active Ru complex with phosphonic acids on silicon oxide surface. Applied Surface Science, 2009, 255, 8824-8830.	6.1	45
35	Oxidative Addition of Allylic Substrates to Coordinatively Unsaturated Ruthenium Compounds, [Ru(η5-C5Me5)(η-amidinate)]: Preparation, Structure Elucidation, and Catalysis of Novel Ruthenium (IV)-η3-Allyl Complexes. Bulletin of the Chemical Society of Japan, 2001, 74, 1927-1937.	3.2	43
36	Simultaneous Formation and Spatial Patterning of ZnO on ITO Surfaces by Local Laser-Induced Generation of Microbubbles in Aqueous Solutions of [Zn(NH ₃) ₄] ²⁺ . ACS Applied Materials & Interfaces, 2017, 9, 8413-8419.	8.0	41

#	Article	IF	CITATIONS
37	Selective formation of HCO2â^' and C2O42â^' in electrochemical reduction of CO2 catalyzed by mono- and di-nuclear ruthenium complexes. Chemical Communications, 1998, , 249-250.	4.1	40
38	Synthesis, electrochemical, and molecular inclusion properties of †canopied' trinuclear ruthenium complexes with six anchoring groups on an ITO electrode. Dalton Transactions, 2008, , 4846.	3.3	39
39	Facile Cleavage of Carbon-Palladium Bonds in C60Pdnwith Phosphines and Phosphites. An Alternative Route to (η2-C60)PdL2and Discovery of Fluxionarity Suggesting the Rotation of C60on the PdL2Species in Solution. Chemistry Letters, 1993, 22, 2153-2156.	1.3	38
40	Electrochemical and photoelectrochemical study on exfoliated Nb3O8 nanosheet. Journal of Physics and Chemistry of Solids, 2008, 69, 1288-1291.	4.0	37
41	Analysis of Multiply Charged Ions of Ruthenium(II) Tetranuclear Complexes by Electrospray Ionization Mass Spectrometry. Inorganic Chemistry, 1995, 34, 2464-2467.	4.0	36
42	A tris(2,2′-bipyridine)ruthenium(ii) derivative tethered to a cis-PtCl2(amine)2moiety: syntheses, spectroscopic properties, and visible-light-induced scission of DNA. Dalton Transactions, 2006, , 3300-3305.	3.3	35
43	Synthesis and electrochemical properties of binuclear molybdenum carbonyl complexes with bridging α,α′-diimine ligands. Inorganica Chimica Acta, 1985, 104, 47-50.	2.4	33
44	The outer-sphere interactions in ruthenium and osmium complexes I. Spectrophotometric and voltammetric studies on the hydrogen bonding interactions of bis(2,2′-bipyridine)(2-(2′-pyridyl)-benzimidazole)ruthenium(II)cation and its derivatives with aromatic nitrogen heterocycles. Inorganica Chimica Acta, 1989, 164, 137-142.	2.4	33
45	Multiply charged ions of ruthenium(II), rhodium(III) and cobalt(III) complexes in electrospray ionization mass spectrometry. Organic Mass Spectrometry, 1994, 29, 289-294.	1.3	33
46	Photoresponsive Molecular Memory Films Composed of Sequentially Assembled Heterolayers Containing Ruthenium Complexes. Chemistry - A European Journal, 2016, 22, 1658-1667.	3.3	33
47	Electric Conduction Properties of Self-assembled Monolayer Films of Ru Complexes with Disulfide/Phosphonate Anchors in a Au–(Molecular Ensemble)–(Au Nanoparticle) Junction. Chemistry Letters, 2009, 38, 416-417.	1.3	32
48	Layer-by-layer grown scalable redox-active ruthenium-based molecular multilayer thin films for electrochemical applications and beyond. Nanoscale, 2015, 7, 17685-17692.	5.6	32
49	Tuning of Metal–Metal Interactions in Mixed-Valence States of Cyclometalated Dinuclear Ruthenium and Osmium Complexes Bearing Tetrapyridylpyrazine or -benzene. Organometallics, 2014, 33, 4893-4904.	2.3	31
50	Visible Light-Induced Electron Transfers in Titania Nanosheet and Mesoporous Silica Integrated Films. Bulletin of the Chemical Society of Japan, 2006, 79, 386-396.	3.2	30
51	Synthesis, Structures, and Spectroscopic, Magnetic, and Electrochemical Properties of (1¼-Alkoxo)bis(1¼-carboxylato)diruthenium Complexes, M[Ru2(dhpta)(1¼-O2CR)2] (M = Na and K, dhptaH5=) Tj	E4.Qq110	0 .28 4314 rg
52	Fabrication of DNA Nanowires by Orthogonal Self-Assembly and DNA Intercalation on a Au Patterned Si/SiO ₂ Surface. Langmuir, 2008, 24, 13203-13211.	3.5	27
53	Synthesis and Singleâ€Molecule Conductance Study of Redoxâ€Active Ruthenium Complexes with Pyridyl and Dihydrobenzo[<i>b</i>]thiophene Anchoring Groups. Chemistry - A European Journal, 2016, 22, 12732-12740.	3.3	26
54	Manipulation of Single DNA Using a Micronanobubble Formed by Local Laser Heating on a Au-coated Surface. Chemistry Letters, 2010, 39, 92-93.	1.3	25

#	Article	IF	CITATIONS
55	Protonâ€Induced Tuning of Metal–Metal Communication in Rackâ€Type Dinuclear Ru Complexes Containing Benzimidazolyl Moieties. Chemistry - A European Journal, 2011, 17, 6954-6963.	3.3	25
56	Energy-Storage Applications for a pH Gradient between Two Benzimidazole-Ligated Ruthenium Complexes That Engage in Proton-Coupled Electron-Transfer Reactions in Solution. Inorganic Chemistry, 2017, 56, 6419-6428.	4.0	25
57	Synthesis, electrochemistry and photoexcited-state properties of dinuclear ruthenium complexes bridged by 2,6′-bis(2-pyridyl)-2,2′:6,2″-thiazolo[4,5-d]-benzothiazole. Inorganica Chimica Acta, 1994, 226 17-24.	, 2.4	24
58	Metal coordination to amphiphilic Ru complexes at the air–water interface. Supramolecular Science, 1998, 5, 337-342.	0.7	24
59	Effect of Subphase pH and Metal Ion on the Molecular Aggregates of Amphiphilic Ru Complexes Containing 2,2â€~:6â€~,2â€~Ââ€~-Terpyridine-4â€~-phosphonic Acid at the Airâ^'Water Interface. Langmuir, 2002, 1 3528-3536.	l &, .5	24
60	Synthesis and reactivity of some isocyanide complexes of iridium(I). Journal of Organometallic Chemistry, 1973, 60, 363-373.	1.8	23
61	Ruthenium(II)Cl2-Bis(oxazolinyl)bipyridine Complex. Its Structure and Reactivity. Chemistry Letters, 1994, 23, 1111-1114.	1.3	23
62	1,8-Diphenylocta-1,3,5,7-tetraene Complexes of Ruthenium(II):Â Crystal Structures of [μ-(s-cis-1,2,3,4-η:s-cis-5,6,7,8-η-PhCHCHCHCHCHCHCHPh)(RuClCp*)2] and [μ-(s-trans-1,2,3,4-η:s-trans-5,6,7,8-η-PhCHCHCHCHCHCHCHCHCHPh){Ru(acac)2}2]. Organometallics, 1998, 17, 410-414.	2.3	23
63	Stable anchoring chemistry for room temperature charge transport through graphite-molecule contacts. Science Advances, 2017, 3, e1602297.	10.3	23
64	Ruthenium(II) complexes with the tetradentate 6,6′-bis(oxazolinyl or benzimidazolyl)-2,2′-bipyridine ligand: synthesis, electrochemical properties, and catalytic reactivities. Inorganica Chimica Acta, 1997, 261, 175-180.	2.4	22
65	Thermally Reversible Photochemical Haptotropic Rearrangement of Diiron Carbonyl Complexes Bearing a Bridging Acenaphthylene or Aceanthrylene Ligand. Organometallics, 2004, 23, 635-646.	2.3	22
66	2,6-Bis(1-methylbenzimidazol-2-yl)pyridine: A New Ancillary Ligand for Efficient Thiocyanate-Free Ruthenium Sensitizer in Dye-Sensitized Solar Cell Applications. ACS Applied Materials & Interfaces, 2013, 5, 11623-11630.	8.0	21
67	Controlling the Adsorption of Ruthenium Complexes on Carbon Surfaces through Noncovalent Bonding with Pyrene Anchors: An Electrochemical Study. Langmuir, 2016, 32, 4141-4152.	3.5	20
68	Spectroelectrochemical Analysis of the Intervalence Band in Mixed-Valence Di- and Tetranuclear Ru Complexes by the Flow-Through Method. Inorganic Chemistry, 1998, 37, 2320-2324.	4.0	19
69	Proton-Rocking-Chair-Type Redox Capacitors Based on Indium Tin Oxide Electrodes with Multilayer Films Containing Ru Complexes. ACS Applied Materials & Interfaces, 2018, 10, 26990-27000.	8.0	19
70	Synthesis and properties of tris(2,2′-bibenzimidazole)ruthenium(II) dication, [Ru(BiBzImH2)3]2+. Inorganica Chimica Acta, 1983, 77, L39-L41.	2.4	18
71	Synthesis and Photoinduced Electron Transfer Processes in Ru(II)(bpy)2/Os(III)(bpy)2-Based Triad Complexes Containing Functionalized Diimide Ligands. Chemistry Letters, 1997, 26, 573-574.	1.3	18
72	Two-Electron Reduction of [{(bpy)2Ru(dmbbbpy)}3Ru]8+from (BNA)2via Photoinduced Electron Transfer [dmbbbpy = 2,2â€-Bis(N-methylbenzimidazole-2-yl)-4,4â€-bipyridine]. Inorganic Chemistry, 1998, 37, 6176-6180.	4.0	18

Masa-aki Haga

#	Article	IF	CITATIONS
73	Syntheses, Spectroelectrochemistry and Photoinduced Electron-Transfer Processes of Novel Ru and Os Dyad and Triad Complexes with Functionalized Diimide Ligands. Collection of Czechoslovak Chemical Communications, 2001, 66, 307-337.	1.0	18
74	Synchronized Collective Proton-Assisted Electron Transfer in Solid State by Hydrogen-Bonding Ru(II)/Ru(III) Mixed-Valence Molecular Crystals. Inorganic Chemistry, 2017, 56, 8513-8526.	4.0	18
75	Stabilities of crystal faces of anhydrite (CaSO4) compared by AFM observation of facet formation processes in aqueous solutions. Journal of Crystal Growth, 2010, 312, 573-579.	1.5	17
76	pH controllable photocurrent switching and molecular half-subtractor calculations based on a monolayer composite film of a dinuclear Ru ^{II} complex and graphene oxide. Journal of Materials Chemistry C, 2017, 5, 3390-3396.	5.5	17
77	pH-induced photocurrent switching based on a highly stable drop-casting film of imidazole moiety-containing dinuclear Ru(II) Complex. Electrochimica Acta, 2014, 146, 776-783.	5.2	16
78	Synthesis and Crystal Structure of a Cationic Trinuclear Ruthenium(II) Complex, [Ru3(μ2-Cl)3(μ3-Cl)2{1,2-bis(diphenylphosphino)benzene}3]PF6. Inorganic Chemistry, 1997, 36, 2908-2912.	4.0	14
79	Luminescent Ir(III) complexes bearing benzothiazole or benzoxazole-based pincer ligand. Journal of Organometallic Chemistry, 2017, 845, 189-195.	1.8	14
80	Electronic structures and redox properties of silylmethylated C60. Tetrahedron, 1996, 52, 5053-5064.	1.9	13
81	Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of self-assembled monolayers of ruthenium complexes on gold. Rapid Communications in Mass Spectrometry, 2000, 14, 1301-1306.	1.5	13
82	Synthesis and tuning of chemical properties by protonation/deprotonation of novel dinuclear ruthenium complexes containing 2,6,2′,6′-tetra(4,5-dimethylbenzimidazol-2-yl)-4, 4′-bipyridine. Inorganic Chemistry Communication, 2000, 3, 35-38.	3.9	13
83	Electrical Conductivity of Lambda DNA-Pd Wire. Japanese Journal of Applied Physics, 2005, 44, L955-L957.	1.5	13
84	Point-to-point capture of DNA with the aid of intercalation by immobilized rod-shaped Ru complexes at solid surface towards nanowiring. Thin Solid Films, 2006, 499, 201-206.	1.8	13
85	Electron hopping rate measurements in ITO junctions: Charge diffusion in a layer-by-layer deposited ruthenium(II)-bis(benzimidazolyl)pyridine-phosphonate–TiO2 film. Journal of Electroanalytical Chemistry, 2011, 657, 196-201.	3.8	13
86	Molecular Nanostamp Based on One-Dimensional Porphyrin Polymers. ACS Applied Materials & Interfaces, 2013, 5, 6879-6885.	8.0	13
87	Bio-inspired protonic memristor devices based on metal complexes with proton-coupled electron transfer. Faraday Discussions, 2019, 213, 99-113.	3.2	13
88	Stepwise fabrication of donor/acceptor thin films with a charge-transfer molecular wire motif. Chemical Communications, 2016, 52, 13983-13986.	4.1	11
89	Electrospray and Collision-induced Dissociation Mass Analysis of Star-burst Type Tetranuclear Complexes. Journal of Mass Spectrometry, 1996, 31, 861-866.	1.6	10
90	A novel ruthenium surfactant: electronic spectra, ZINDO analysis and Langmuir–Blodgett studies of trans-dichloro(6,6′-bis(N-dodecylbenzimidazol-2-yl)-2,2′-bipyridine)ruthenium(II) â€. Dalton Transactions RSC, 2000, , 2357-2366.	2.3	10

#	Article	IF	CITATIONS
91	Characterization of Langmuir Monolayers of the Amphiphilic Ru Complex at the Air/Water Interface by Ultraviolet Photoelectron Yield Spectroscopy. Langmuir, 2003, 19, 9226-9230.	3.5	10
92	Immobilization of a Redox-active Catecholato Pt(II) Complex on an Indium-doped Tin Oxide Electrode via Phosphonate Anchors. Chemistry Letters, 2014, 43, 1189-1191.	1.3	10
93	Robust Nanowrapping of Reduced Graphene Oxide by Metal–Organic Network Films between Fe Ions and Tetra(Catechol-Substituted) Porphyrin. Langmuir, 2018, 34, 2952-2958.	3.5	10
94	SYNTHESIS AND PROPERTIES OF MIXED-LIGAND RUTHENIUM(II) COMPLEXES CONTAINING 2-(2-PYRIDYL)-BENZIMIDAZOLE AND RELATED LIGANDS. Chemistry Letters, 1979, 8, 863-864.	1.3	9
95	A redox-active porous coordination network film based on a Ru complex as a building block on an ITO electrode. Dalton Transactions, 2013, 42, 16166.	3.3	9
96	Mie Resonance-Enhanced Light Absorption of FeS ₂ Nanocubes in a Near-Infrared Region: Intraparticulate Synergy between Electronic Absorption and Mie Resonances. ACS Applied Energy Materials, 2019, 2, 6472-6483.	5.1	9
97	Electrochemical interfacing of Prussian blue nanocrystals with an ITO electrode modified with a thin film containing a Ru complex. Journal of Materials Chemistry C, 2019, 7, 12491-12501.	5.5	9
98	Kinetics of the addition reactions of tetracyanoethylene towards rhodium(I) cationic isocyanide complexes. Inorganica Chimica Acta, 1975, 12, 93-97.	2.4	8
99	Preparation and stereochemistry of rhodium—olefin complexes containing asymmetric picolinaldimine ligands. Journal of Organometallic Chemistry, 1977, 128, 265-273.	1.8	8
100	Synthesis, X-Ray Analysis, and Electrochemical Study of Some Manganese Carbonyl Derivatives with 1,1′-Bis(diphenylphosphino)ferrocene, dppfe. Bulletin of the Chemical Society of Japan, 1994, 67, 2440-2446.	3.2	8
101	Protoneninduziertes Umschalten von Elektronentransferâ€Wegen in dendritischen, vierkernigen RuOs ₃ â€Komplexen. Angewandte Chemie, 1996, 108, 85-87.	2.0	8
102	Chiral Bead-like Trimer of Tris(2,4-pentanedionato)ruthenium(III). Chemistry Letters, 2008, 37, 716-717.	1.3	8
103	Electrochemical Properties of Dinuclear Ru Complex Langmuir-Blodgett Films towards Molecular Electronics. Molecular Crystals and Liquid Crystals, 1999, 337, 89-92.	0.3	7
104	Electrochemical Behavior of Sequentially Assembled Homo and Heterolayer Molecular Films Based on Dinuclear Ruthenium Complexes. Electrochimica Acta, 2016, 204, 235-244.	5.2	7
105	Formation and Structure of Mixed Quaternary Chelates with Late-Lanthanide Metal Ions. Chemistry Letters, 1998, 27, 1173-1174.	1.3	6
106	Spontaneous Construction of Nanoneedles Using Ruthenium Complex-conjugated Porphyrins on Substrates. Chemistry Letters, 2014, 43, 1201-1203.	1.3	6
107	"Janus-type―Ruthenium Complex Bearing Both Phosphonic Acids and Pyrene Groups for Functionalization of ITO and HOPG Surfaces. Chemistry Letters, 2015, 44, 160-162.	1.3	6
108	Effects of Fe cations in ruthenium-complex multilayers fabricated by a layer-by-layer method. Physical Chemistry Chemical Physics, 2016, 18, 9005-9012.	2.8	6

Masa-aki Haga

#	Article	IF	CITATIONS
109	Electron Transfer, Energy Transfer, and Excited-State Annihilation in Binuclear Compounds of Ruthenium(II). Advances in Chemistry Series, 1991, , 215-228.	0.6	5
110	Self-assembled Dinuclear Platinum(II) Complexes with 6,6′-Bis(1-methylbenzimidazol-2-yl)-2,2′-bipyridine: Synthesis, X-Ray Structure, and Solution Behaviors. Chemistry Letters, 1995, 24, 1143-1144.	1.3	5
111	Absorption and emission behavior of bis(2,2′-bipyridine)[2-(2-pyridyl)benzimidazole]ruthenium(ii) doped in silica gel matrices. Journal of Materials Chemistry, 1999, 9, 3041-3044.	6.7	5
112	Observation of an Orientation Change in Highly Oriented Layer-by-Layer Films of a Ruthenium Complex upon Oxidation Reaction. Langmuir, 2015, 31, 10327-10330.	3.5	5
113	Controlling the Molecular Direction of Dinuclear Ruthenium Complexes on HOPG Surface through Noncovalent Bonding. Langmuir, 2017, 33, 11901-11910.	3.5	5
114	Electrochemical metallization ReRAMs (ECM) - Experiments and modelling: general discussion. Faraday Discussions, 2019, 213, 115-150.	3.2	5
115	Electrochemistry of "piano-stool―type pentamethylcyclopentadienyl-ruthenium complexes. Journal of Organometallic Chemistry, 1989, 377, C77-C80.	1.8	4
116	Chemical Transformation of Amphiphilic Ru Complexes Containing 2,6-Pyridinedicarboxylate at the Air-Water Interface. Molecular Crystals and Liquid Crystals, 2000, 342, 225-230.	0.3	4
117	Synthesis and Redox Property of Cyclic Mixed-Metal Complexes from Diethynylbiferrocene. Chemistry Letters, 2001, 30, 996-997.	1.3	4
118	Photoresponse enhancement by mixing of an alcohol-soluble C60 derivative into a ruthenium complex monolayer. Physical Chemistry Chemical Physics, 2013, 15, 16586.	2.8	4
119	Dynamic pattern formation of liquid crystals using binary self-assembled monolayers on an ITO surface under DC voltage. Physical Chemistry Chemical Physics, 2014, 16, 25008-25013.	2.8	4
120	Potential Tuning of Nanoarchitectures Based on Phthalocyanine Nanopillars: Construction of Effective Photocurrent Generation Systems. ACS Applied Materials & Interfaces, 2015, 7, 19098-19103.	8.0	4
121	Hydrogen-bonded metallo-supramolecular polymers based on ruthenium or iron complexes for the selective extraction of single-walled carbon nanotubes. Dalton Transactions, 2018, 47, 14195-14203.	3.3	4
122	Synthesis, X-ray structure, photophysical properties, and theoretical studies of six-membered cyclometalated iridium(<scp>iii</scp>) complexes: revisiting lr(pnbi) ₂ (acac). Dalton Transactions, 2019, 48, 15212-15219.	3.3	4
123	(2,2′-Bipyridine)chloro(4′-tolyl-2,2′:6′,2′′-terpyridine)iridium(III) bis(hexafluorophosphate) acetor disolvate. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, m1357-m1359.	nitrile 0.2	3
124	Controlling the Direction of the Molecular Axis of Rodâ€Shaped Binuclear Ruthenium Complexes on Singleâ€Walled Carbon Nanotubes. Chemistry - A European Journal, 2016, 22, 6575-6582.	3.3	3
125	Wisely Designed Phthalocyanine Derivative for Convenient Molecular Fabrication on a Substrate. Langmuir, 2018, 34, 1321-1326.	3.5	3
126	Regulation of Ion Transport in Prussian Blue MOF Films by a Ru-Complex Primer Nanolayer on an ITO Electrode and Its Energy Storage Application. ACS Applied Electronic Materials, 2021, 3, 3962-3971.	4.3	3

#	Article	lF	CITATIONS
127	Molecular Architecture of Redox-Active Multilayered Metal Complexes Based on Surface Coordination Chemistry. , 2006, , 141-154.		2
128	Observation of DNA pinning at laser focal point on Au surface and its application to single DNA nanowire and cross-wire formation. Bioelectrochemistry, 2010, 80, 26-30.	4.6	2
129	Supramolecular assemblies composed of polymer brushes and conjugated molecules for organic photovoltaics. Molecular Crystals and Liquid Crystals, 2018, 676, 24-29.	0.9	2
130	RELATIONS BETWEEN ¹³ C NMR SPECTRA AND OXIDATION POTENTIALS OF RUTHENIUM(II) POLYPYRIDINE COMPLEXES. Analytical Sciences, 1991, 7, 1723-1724.	1.6	1
131	Highly Ordered LB Films of a Novel Ferric Schiff Base Complex. Molecular Crystals and Liquid Crystals, 1999, 337, 133-136.	0.3	1
132	pH-Dependent Electrochemical Behaviors of Ruthenium Complex/Carbon Nanotube Composites on Platinum and Pencil-lead Electrodes. Chemistry Letters, 2013, 42, 1059-1061.	1.3	1
133	Nano Structures of Thin Films of Block Copolymers with Oligothiophene Side Chains. Molecular Crystals and Liquid Crystals, 2015, 617, 58-66.	0.9	1
134	Electrochemical Elucidation of Nano-Functions of Metal Complexes and the Application to Nanodevices. Review of Polarography, 2018, 64, 59-70.	0.1	1
135	Three-phase electrochemistry of a highly lipophilic neutral ru-complex having tridentate bis(benzimidazolate)pyridine ligands. Electrochimica Acta, 2020, 362, 137090.	5.2	1
136	Coordination Chemical Approach to Surface Molecular Devices: Molecular Basis toward Surface Programming. Bulletin of Japan Society of Coordination Chemistry, 2012, 60, 2-23.	0.2	1
137	REACTIVITY AND STRUCTURE OF SOME TETRAKIS(ARYLISOCYANIDE) RHODIUM(I) AND -IRIDIUM(I) COMPLEXES. Annals of the New York Academy of Sciences, 1974, 239, 55-59.	3.8	0
138	Comparison with Several Oxidation States of Ruthenium Binuclear Complexes; Ruthenium Analogue for Iron- Protein Active Site Model. Molecular Crystals and Liquid Crystals, 1996, 286, 127-132.	0.3	0
139	Proton-gated Molecular Devices Based on Rod-shaped Metal Complexes Immobilized on Solid Surface. Materials Research Society Symposia Proceedings, 2001, 679, 1.	0.1	0
140	é,化物ãfŠāfŽā,•ãf¼ãf^ã,'甓ã"ã¥ãfŠãfŽå‰é>»å‰æ•薄膜. Hyomen Gijutsu/Journal of the Surface	Fi ois hing S	Society of Jap
141	Back Cover: Proton-Induced Tuning of Metal-Metal Communication in Rack-Type Dinuclear Ru Complexes Containing Benzimidazolyl Moieties (Chem. Eur. J. 25/2011). Chemistry - A European Journal, 2011, 17, 6874-6874.	3.3	0
142	Surface-Confined Ruthenium Complexes Bearing Benzimidazole Derivatives: Toward Functional Devices. , 0, , .		0
143	Fabrication of Nanostructures Toward Molecular Devices Based on Surface Coordination Chemistry of Molecular Units. Hyomen Kagaku, 2006, 27, 138-144.	0.0	Ο

#	Article	IF	CITATIONS
145	Surface Coordination Nanochemistry Based on Functional Metal Complexes. Bulletin of Japan Society of Coordination Chemistry, 2020, 76, 5-20.	0.2	Ο