Dung Suk Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2984120/publications.pdf Version: 2024-02-01

DUNC SUK KIM

#	Article	IF	CITATIONS
1	Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature, 2021, 592, 381-385.	27.8	2,095
2	Methylammonium Chloride Induces Intermediate Phase Stabilization for Efficient Perovskite Solar Cells. Joule, 2019, 3, 2179-2192.	24.0	1,228
3	Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science, 2020, 369, 1615-1620.	12.6	1,122
4	Conformal quantum dot–SnO ₂ layers as electron transporters for efficient perovskite solar cells. Science, 2022, 375, 302-306.	12.6	872
5	High Performance of Planar Perovskite Solar Cells Produced from PbI ₂ (DMSO) and PbI ₂ (NMP) Complexes by Intramolecular Exchange. Advanced Materials Interfaces, 2016, 3, 1500768.	3.7	206
6	High-Temperature–Short-Time Annealing Process for High-Performance Large-Area Perovskite Solar Cells. ACS Nano, 2017, 11, 6057-6064.	14.6	142
7	Enhanced electrical properties of Li-salts doped mesoporous TiO2 in perovskite solar cells. Joule, 2021, 5, 659-672.	24.0	127
8	Large-area perovskite solar cells employing spiro-Naph hole transport material. Nature Photonics, 2022, 16, 119-125.	31.4	123
9	Fluorine Functionalized Graphene Nano Platelets for Highly Stable Inverted Perovskite Solar Cells. Nano Letters, 2017, 17, 6385-6390.	9.1	106
10	High colloidal stability ZnO nanoparticles independent on solvent polarity and their application in polymer solar cells. Scientific Reports, 2020, 10, 18055.	3.3	25
11	Ternary Halide Perovskites for Highly Efficient Solution-Processed Hybrid Solar Cells. ACS Energy Letters, 2016, 1, 712-718.	17.4	24
12	High-Performance Perovskite Light-Emitting Diodes with Surface Passivation of CsPbBr <i>_x</i> I _{3–<i>x</i>} Nanocrystals via Antisolvent-Triggered Ion-Exchange. ACS Applied Materials & Interfaces, 2020, 12, 31582-31590.	8.0	22
13	A highly robust and stable graphene-encapsulated Cu-grid hybrid transparent electrode demonstrating superior performance in organic solar cells. Journal of Materials Chemistry A, 2018, 6, 24805-24813.	10.3	21
14	Effects of cation size and concentration of cationic chlorides on the properties of formamidinium lead iodide based perovskite solar cells. Sustainable Energy and Fuels, 2020, 4, 3753-3763.	4.9	17
15	Fabrication of perovskite solar cell with high short-circuit current density (JSC) using moth-eye structure of SiOX. Nano Research, 2020, 13, 1156-1161.	10.4	17
16	A Roundabout Approach to Control Morphological Orientation and Solarâ€Cell Performance by Modulating Sideâ€Chain Branching Position in Benzodithiopheneâ€Based Polymers. ChemPhysChem, 2015, 16, 1305-1314.	2.1	15
17	Selectively patterned TiO2 nanorods as electron transport pathway for high performance perovskite solar cells. Nano Research, 2019, 12, 601-606.	10.4	14
18	The introduction of a perovskite seed layer for high performance perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 20138-20144.	10.3	12

#	ARTICLE	IF	CITATIONS
19	Influence of the Crystalline Nature of Small Donors Molecules on the Efficiency and Stability of Organic Photovoltaic Devices. Solar Rrl, 2018, 2, 1700235.	5.8	11
20	Hexagonal array micro-convex patterned substrate for improving diffused transmittance in perovskite solar cells. Thin Solid Films, 2018, 660, 682-687.	1.8	6