Pere-Joan Cardona i Iglesias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/298379/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparison between mid-nasal swabs and buccal swabs for SARS-CoV-2 detection in mild COVID-19 patients. Journal of Infection, 2022, 84, e78-e79.	1.7	1
2	The Origin and Maintenance of Tuberculosis Is Explained by the Induction of Smear-Negative Disease in the Paleolithic. Pathogens, 2022, 11, 366.	1.2	6
3	Validation study of an automated chemiluminiscence assay to detect HIV antibodies in oral fluid specimens. European Journal of Clinical Microbiology and Infectious Diseases, 2022, 41, 907-911.	1.3	1
4	Follow up of the Humoral Response in Healthcare Workers after the Administration of Two Dose of the Anti SARS-CoV-2 Vaccines—Effectiveness in Delta Variant Breakthrough Infections. Viruses, 2022, 14, 1385.	1.5	1
5	Dissemination of <i>Mycobacterium tuberculosis</i> is associated to a <i>SIGLEC1</i> null variant that limits antigen exchange via trafficking extracellular vesicles. Journal of Extracellular Vesicles, 2021, 10, e12046.	5.5	9
6	Protective Effect of Intestinal Helminthiasis Against Tuberculosis Progression Is Abrogated by Intermittent Food Deprivation. Frontiers in Immunology, 2021, 12, 627638.	2.2	6
7	Monitoring and Analysis of COVID-19 Pandemic: The Need for an Empirical Approach. Frontiers in Public Health, 2021, 9, 633123.	1.3	6
8	Robust estimation of diagnostic rate and real incidence of COVID-19 for European policymakers. PLoS ONE, 2021, 16, e0243701.	1.1	25
9	C3HeB/FeJ as a Key Mouse Strain for Testing Host-Directed Therapies Against Tuberculosis. , 2021, , 267-273.		1
10	ldentification of the most vulnerable populations in the psychosocial sphere: a cross-sectional study conducted in Catalonia during the strict lockdown imposed against the COVID-19 pandemic. BMJ Open, 2021, 11, e052140.	0.8	6
11	Mitofusin 2 in Macrophages Links Mitochondrial ROS Production, Cytokine Release, Phagocytosis, Autophagy, and Bactericidal Activity. Cell Reports, 2020, 32, 108079.	2.9	93
12	Macrophage mitochondrial MFN2 (mitofusin 2) links immune stress and immune response through reactive oxygen species (ROS) production. Autophagy, 2020, 16, 2307-2309.	4.3	35
13	A reaction-diffusion model to understand granulomas formation inside secondary lobule during tuberculosis infection. PLoS ONE, 2020, 15, e0239289.	1.1	3
14	Moving forward through the in silico modeling of tuberculosis: a further step with UISS-TB. BMC Bioinformatics, 2020, 21, 458.	1.2	11
15	Modelling the dynamics of tuberculosis lesions in a virtual lung: Role of the bronchial tree in endogenous reinfection. PLoS Computational Biology, 2020, 16, e1007772.	1.5	8
16	Origin of tuberculosis in the Paleolithic predicts unprecedented population growth and female resistance. Scientific Reports, 2020, 10, 42.	1.6	14
17	Protective Efficacy of Inhaled BCG Vaccination Against Ultra-Low Dose Aerosol M. tuberculosis Challenge in Rhesus Macaques. Pharmaceutics, 2020, 12, 394.	2.0	22
18	Empirical model for short-time prediction of COVID-19 spreading. PLoS Computational Biology, 2020, 16. e1008431.	1.5	23

#	Article	IF	CITATIONS
19	Cording Mycobacterium tuberculosis Bacilli Have a Key Role in the Progression towards Active Tuberculosis, Which is Stopped by Previous Immune Response. Microorganisms, 2020, 8, 228.	1.6	7
20	How Far Are we Away From an Improved Vaccine For Tuberculosis? Current Efforts and Future Prospects. Archivos De Bronconeumologia, 2019, 55, 373-377.	0.4	1
21	Influence of Gut Microbiota on Progression to Tuberculosis Generated by High Fat Diet-Induced Obesity in C3HeB/FeJ Mice. Frontiers in Immunology, 2019, 10, 2464.	2.2	26
22	Regulatory T Cells in Mycobacterium tuberculosis Infection. Frontiers in Immunology, 2019, 10, 2139.	2.2	69
23	RUTI Vaccination Enhances Inhibition of Mycobacterial Growth ex vivo and Induces a Shift of Monocyte Phenotype in Mice. Frontiers in Immunology, 2019, 10, 894.	2.2	24
24	Global Assessment of Mycobacterium avium subsp. <i>hominissuis</i> Genetic Requirement for Growth and Virulence. MSystems, 2019, 4, .	1.7	31
25	Evaluation of the efficacy of RUTI and ID93/GLA-SE vaccines in tuberculosis treatment: in silico trial through UISS-TB simulator. , 2019, , .		6
26	Predicting the artificial immunity induced by RUTI® vaccine against tuberculosis using universal immune system simulator (UISS). BMC Bioinformatics, 2019, 20, 504.	1.2	27
27	How Far Are we Away From an Improved Vaccine For Tuberculosis? Current Efforts and Future Prospects. Archivos De Bronconeumologia, 2019, 55, 373-377.	0.4	3
28	Pathogenesis of tuberculosis and other mycobacteriosis. Enfermedades Infecciosas Y Microbiologia Clinica (English Ed), 2018, 36, 38-46.	0.2	26
29	Patogénesis de la tuberculosis y otras micobacteriosis. Enfermedades Infecciosas Y MicrobiologÃa ClÃnica, 2018, 36, 38-46.	0.3	42
30	The global burden of tuberculosis: results from the Global Burden of Disease Study 2015. Lancet Infectious Diseases, The, 2018, 18, 261-284.	4.6	246
31	Can systems immunology lead tuberculosis eradication?. Current Opinion in Systems Biology, 2018, 12, 53-60.	1.3	6
32	The burden of disease in Spain: Results from the Global Burden of Disease 2016. Medicina ClÃnica (English Edition), 2018, 151, 171-190.	0.1	37
33	A multi-antigenic MVA vaccine increases efficacy of combination chemotherapy against Mycobacterium tuberculosis. PLoS ONE, 2018, 13, e0196815.	1.1	14
34	A Beneficial Effect of Low-Dose Aspirin in a Murine Model of Active Tuberculosis. Frontiers in Immunology, 2018, 9, 798.	2.2	47
35	La carga de enfermedad en España: resultados del Estudio de la Carga Global de las Enfermedades 2016. Medicina ClÃnica, 2018, 151, 171-190.	0.3	113
36	Retrospective study of clinical and lesion characteristics of patients undergoing surgical treatment for Pulmonary Tuberculosis in Georgia. International Journal of Infectious Diseases, 2017, 56, 200-207.	1.5	12

#	Article	IF	CITATIONS
37	Proteoliposomal formulations of an HIV-1 gp41-based miniprotein elicit a lipid-dependent immunodominant response overlapping the 2F5 binding motif. Scientific Reports, 2017, 7, 40800.	1.6	12
38	Experimental animal modelling for TB vaccine development. International Journal of Infectious Diseases, 2017, 56, 268-273.	1.5	40
39	What We Have Learned and What We Have Missed in Tuberculosis Pathophysiology for a New Vaccine Design: Searching for the "Pink Swan― Frontiers in Immunology, 2017, 8, 556.	2.2	29
40	High Antigen Dose Is Detrimental to Post-Exposure Vaccine Protection against Tuberculosis. Frontiers in Immunology, 2017, 8, 1973.	2.2	40
41	Pilot, double-blind, randomized, placebo-controlled clinical trial of the supplement food Nyaditum resae® in adults with or without latent TB infection: Safety and immunogenicity. PLoS ONE, 2017, 12, e0171294.	1.1	14
42	Effect of low-dose aspirin in a murine model of active tuberculosis. , 2017, , .		0
43	Local Inflammation, Dissemination and Coalescence of Lesions Are Key for the Progression toward Active Tuberculosis: The Bubble Model. Frontiers in Microbiology, 2016, 7, 33.	1.5	22
44	The Small Breathing Amplitude at the Upper Lobes Favors the Attraction of Polymorphonuclear Neutrophils to Mycobacterium tuberculosis Lesions and Helps to Understand the Evolution toward Active Disease in An Individual-Based Model. Frontiers in Microbiology, 2016, 7, 354.	1.5	15
45	The Progress of Therapeutic Vaccination with Regard to Tuberculosis. Frontiers in Microbiology, 2016, 7, 1536.	1.5	43
46	Reactivation or reinfection in adult tuberculosis: Is that the question?. International Journal of Mycobacteriology, 2016, 5, 400-407.	0.3	32
47	Development of the food supplement Nyaditum resae as a new tool to reduce the risk of tuberculosis development. International Journal of Mycobacteriology, 2016, 5, S101-S102.	0.3	8
48	Modeling tuberculosis in Barcelona. A solution to speed-up agent-based simulations. , 2015, , .		5
49	The key role of exudative lesions and their encapsulation: lessons learned from the pathology of human pulmonary tuberculosis. Frontiers in Microbiology, 2015, 6, 612.	1.5	34
50	Draft Genome Sequences of Mycobacterium setense Type Strain DSM-45070 and the Nonpathogenic Strain Manresensis, Isolated from the Bank of the Cardener River in Manresa, Catalonia, Spain. Genome Announcements, 2015, 3, .	0.8	11
51	Deletion of zmp1 improves Mycobacterium bovis BCG-mediated protection in a guinea pig model of tuberculosis. Vaccine, 2015, 33, 1353-1359.	1.7	45
52	Phase I, double-blind, randomized, placebo-controlled clinical trial with the probiotic Nyaditum resae® in adults with or without latent Tuberculosis infection. Clinical Therapeutics, 2015, 37, e106.	1.1	0
53	Host-Directed Therapies for Tackling Multi-Drug Resistant Tuberculosis: Learning From the Pasteur-Bechamp Debates: Table 1 Clinical Infectious Diseases, 2015, 61, 1432-1438.	2.9	38
54	Towards host-directed therapies for tuberculosis. Nature Reviews Drug Discovery, 2015, 14, 511-512.	21.5	110

#	Article	IF	CITATIONS
55	Oral Administration of Heat-Killed Mycobacterium manresensis Delays Progression toward Active Tuberculosis in C3HeB/FeJ Mice. Frontiers in Microbiology, 2015, 6, 1482.	1.5	29
56	Individual-Based Modeling of Tuberculosis in a User-Friendly Interface: Understanding the Epidemiological Role of Population Heterogeneity in a City. Frontiers in Microbiology, 2015, 6, 1564.	1.5	8
57	Safety, Tolerability, and Immunogenicity of the Novel Antituberculous Vaccine RUTI: Randomized, Placebo-Controlled Phase II Clinical Trial in Patients with Latent Tuberculosis Infection. PLoS ONE, 2014, 9, e89612.	1.1	101
58	Multiple Consecutive Infections Might Explain the Lack of Protection by BCG. PLoS ONE, 2014, 9, e94736.	1.1	10
59	To Achieve an Earlier IFN-Î ³ Response Is Not Sufficient to Control Mycobacterium tuberculosis Infection in Mice. PLoS ONE, 2014, 9, e100830.	1.1	19
60	The lack of a big picture in tuberculosis: the clinical point of view, the problems of experimental modeling and immunomodulation. The factors we should consider when designing novel treatment strategies. Frontiers in Microbiology, 2014, 5, 55.	1.5	15
61	Therapeutic vaccines for tuberculosis—A systematic review. Vaccine, 2014, 32, 3162-3168.	1.7	66
62	Damaging role of neutrophilic infiltration in a mouse model of progressive tuberculosis. Tuberculosis, 2014, 94, 55-64.	0.8	97
63	Assessment of Goat Tuberculosis Model for Use in Vaccine Trials. Procedia in Vaccinology, 2014, 8, 43-49.	0.4	3
64	Construction, characterization and preclinical evaluation of MTBVAC, the first live-attenuated M. tuberculosis-based vaccine to enter clinical trials. Vaccine, 2013, 31, 4867-4873.	1.7	211
65	Evolution and role of corded cell aggregation in Mycobacterium tuberculosis cultures. Tuberculosis, 2013, 93, 690-698.	0.8	22
66	Chemo-enzymatic synthesis and glycosidase inhibitory properties of DAB and LAB derivatives. Organic and Biomolecular Chemistry, 2013, 11, 2005.	1.5	25
67	Targeting multidrug-resistant tuberculosis (MDR-TB) by therapeutic vaccines. Medical Microbiology and Immunology, 2013, 202, 95-104.	2.6	63
68	Ibuprofen Therapy Resulted in Significantly Decreased Tissue Bacillary Loads and Increased Survival in a New Murine Experimental Model of Active Tuberculosis. Journal of Infectious Diseases, 2013, 208, 199-202.	1.9	189
69	The Scavenger Protein Apoptosis Inhibitor of Macrophages (AIM) Potentiates the Antimicrobial Response against Mycobacterium tuberculosis by Enhancing Autophagy. PLoS ONE, 2013, 8, e79670.	1.1	44
70	Chemoenzymatic synthesis, structural study and biological activity of novel indolizidine and quinolizidine iminocyclitols. Organic and Biomolecular Chemistry, 2012, 10, 6309.	1.5	30
71	Low Dose Aerosol Fitness at the Innate Phase of Murine Infection Better Predicts Virulence amongst Clinical Strains of Mycobacterium tuberculosis. PLoS ONE, 2012, 7, e29010.	1.1	14
72	Experimental Model of Tuberculosis in the Domestic Goat after Endobronchial Infection with Mycobacterium caprae. Vaccine Journal, 2011, 18, 1872-1881.	3.2	58

Pere-Joan Cardona i Iglesias

#	Article	IF	CITATIONS
73	The secret trumps, impelling the pathogenicity of tubercle bacilli. Enfermedades Infecciosas Y MicrobiologÃa ClÃnica, 2011, 29, 14-19.	0.3	13
74	Prophylactic Effect of a Therapeutic Vaccine against TB Based on Fragments of Mycobacterium tuberculosis. PLoS ONE, 2011, 6, e20404.	1.1	49
75	A multistage tuberculosis vaccine that confers efficient protection before and after exposure. Nature Medicine, 2011, 17, 189-194.	15.2	494
76	A Spotlight on Liquefaction: Evidence from Clinical Settings and Experimental Models in Tuberculosis. Clinical and Developmental Immunology, 2011, 2011, 1-9.	3.3	27
77	Newborn Mice Vaccination with BCG.HIVA ²²² + MVA.HIVA Enhances HIV-1-Specific Immune Responses: Influence of Age and Immunization Routes. Clinical and Developmental Immunology, 2011, 2011, 1-11.	3.3	19
78	Revisiting the Natural History of Tuberculosis. Archivum Immunologiae Et Therapiae Experimentalis, 2010, 58, 7-14.	1.0	50
79	Tuberculin immunotherapy: its history and lessons to be learned. Microbes and Infection, 2010, 12, 99-105.	1.0	17
80	Granuloma Encapsulation Is a Key Factor for Containing Tuberculosis Infection in Minipigs. PLoS ONE, 2010, 5, e10030.	1.1	97
81	Mathematical Modeling of Tuberculosis Bacillary Counts and Cellular Populations in the Organs of Infected Mice. PLoS ONE, 2010, 5, e12985.	1.1	39
82	Fast Standardized Therapeutic-Efficacy Assay for Drug Discovery against Tuberculosis. Antimicrobial Agents and Chemotherapy, 2010, 54, 2262-2264.	1.4	59
83	Molecular Characterization of Heterologous HIV-1gp120 Gene Expression Disruption inMycobacterium bovisBCG Host Strain: A Critical Issue for Engineering Mycobacterial Based-Vaccine Vectors. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-10.	3.0	18
84	Double-blind, randomized, placebo-controlled Phase I Clinical Trial of the therapeutical antituberculous vaccine RUTI®. Vaccine, 2010, 28, 1106-1116.	1.7	119
85	LTBI: latent tuberculosis infection or lasting immune responses to M. tuberculosis? A TBNET consensus statement. European Respiratory Journal, 2009, 33, 956-973.	3.1	487
86	Evolution of foamy macrophages in the pulmonary granulomas of experimental tuberculosis models. Tuberculosis, 2009, 89, 175-182.	0.8	68
87	A Dynamic Reinfection Hypothesis of Latent Tuberculosis Infection. Infection, 2009, 37, 80-86.	2.3	112
88	Effectiveness and Safety of a Treatment Regimen Based on Isoniazid Plus Vaccination with <i>Mycobacterium tuberculosis</i> cells' Fragments: Field‧tudy with Naturally <i>Mycobacterium caprae</i> â€Infected Goats. Scandinavian Journal of Immunology, 2009, 69, 500-507.	1.3	30
89	Foamy macrophages and the progression of the human tuberculosis granuloma. Nature Immunology, 2009, 10, 943-948.	7.0	673
90	Extended safety studies of the attenuated live tuberculosis vaccine SO2 based on phoP mutant. Vaccine, 2009, 27, 2499-2505.	1.7	47

#	Article	IF	CITATIONS
91	P17-17. Newborn mice vaccination with rBCG:HIVA + MVA:HIVA enhances HIV-1-specific immune responses. Influence of age and immunization routes. Retrovirology, 2009, 6, .	0.9	0
92	The Tuberculin Skin Test Increases the Responses Measured by T Cell Interferonâ€Gamma Release Assays. Scandinavian Journal of Immunology, 2008, 67, 610-617.	1.3	33
93	Foamy Macrophages from Tuberculous Patients' Granulomas Constitute a Nutrient-Rich Reservoir for M. tuberculosis Persistence. PLoS Pathogens, 2008, 4, e1000204.	2.1	606
94	Role of the chemokine decoy receptor D6 in balancing inflammation, immune activation, and antimicrobial resistance in <i>Mycobacterium tuberculosis</i> infection. Journal of Experimental Medicine, 2008, 205, 2075-2084.	4.2	94
95	Induction of a Specific Strong Polyantigenic Cellular Immune Response after Short-Term Chemotherapy Controls Bacillary Reactivation in Murine and Guinea Pig Experimental Models of Tuberculosis. Vaccine Journal, 2008, 15, 1229-1237.	3.2	36
96	Mice with Pulmonary Tuberculosis Treated with <i>Mycobacterium vaccae</i> Develop Strikingly Enhanced Recall Gamma Interferon Responses to <i>M. vaccae</i> Cell Wall Skeleton. Vaccine Journal, 2008, 15, 893-896.	3.2	9
97	Enhanced Gamma Interferon Responses of Mouse Spleen Cells following Immunotherapy for Tuberculosis Relapse. Vaccine Journal, 2008, 15, 1742-1744.	3.2	7
98	New Insights on the Nature of Latent Tuberculosis Infection and its Treatment. Inflammation and Allergy: Drug Targets, 2007, 6, 27-39.	1.8	35
99	The thymus as a target for mycobacterial infections. Microbes and Infection, 2007, 9, 1521-1529.	1.0	39
100	The live Mycobacterium tuberculosis phoP mutant strain is more attenuated than BCG and confers protective immunity against tuberculosis in mice and guinea pigs. Vaccine, 2006, 24, 3408-3419.	1.7	193
101	Intragranulomatous necrosis in pulmonary granulomas is not related to resistance against Mycobacterium tuberculosis infection in experimental murine models induced by aerosol. International Journal of Experimental Pathology, 2006, 87, 139-149.	0.6	19
102	Usefulness of acr Expression for Monitoring Latent Mycobacterium tuberculosis Bacilli in 'In Vitro' and 'In Vivo' Experimental Models. Scandinavian Journal of Immunology, 2006, 64, 30-39.	1.3	18
103	Determinant role for Toll-like receptor signalling in acute mycobacterial infection in the respiratory tract. Microbes and Infection, 2006, 8, 1790-1800.	1.0	36
104	Passive serum therapy with polyclonal antibodies against Mycobacterium tuberculosis protects against post-chemotherapy relapse of tuberculosis infection in SCID mice. Microbes and Infection, 2006, 8, 1252-1259.	1.0	83
105	The production of a new extracellular putative long-chain saturated polyester by smooth variants of Mycobacterium vaccae interferes with Th1-cytokine production. Antonie Van Leeuwenhoek, 2006, 90, 93-108.	0.7	12
106	Neutral-red reaction is related to virulence and cell wall methyl-branched lipids in Mycobacterium tuberculosis. Microbes and Infection, 2006, 8, 183-190.	1.0	36
107	Intragranulomatous necrosis in lungs of mice infected by aerosol with Mycobacterium tuberculosis is related to bacterial load rather than to any one cytokine or T cell type. Microbes and Infection, 2006, 8, 628-636.	1.0	39
108	RUTI: A new chance to shorten the treatment of latent tuberculosis infection. Tuberculosis, 2006, 86, 273-289.	0.8	135

#	Article	IF	CITATIONS
109	Polymeric IgR knockout mice are more susceptible to mycobacterial infections in the respiratory tract than wild-type mice. International Immunology, 2006, 18, 807-816.	1.8	69
110	Association between the Infectivity ofMycobacterium tuberculosisStrains and Their Efficiency for Extrarespiratory Infection. Journal of Infectious Diseases, 2005, 192, 2059-2065.	1.9	58
111	Immunotherapy with fragmented Mycobacterium tuberculosis cells increases the effectiveness of chemotherapy against a chronical infection in a murine model of tuberculosis. Vaccine, 2005, 23, 1393-1398.	1.7	90
112	On the nature of Mycobacterium tuberculosis-latent bacilli. European Respiratory Journal, 2004, 24, 1044-1051.	3.1	93
113	Catalase–peroxidase activity has no influence on virulence in a murine model of tuberculosis. Tuberculosis, 2003, 83, 351-359.	0.8	20
114	Widespread Bronchogenic Dissemination Makes DBA/2 Mice More Susceptible than C57BL/6 Mice to Experimental Aerosol Infection with Mycobacterium tuberculosis. Infection and Immunity, 2003, 71, 5845-5854.	1.0	89
115	Production of Antibodies against Glycolipids from the Mycobacterium tuberculosis Cell Wall in Aerosol Murine Models of Tuberculosis. Scandinavian Journal of Immunology, 2002, 55, 639-645.	1.3	19
116	Towards a â€~Human-like' Model of Tuberculosis: Intranasal Inoculation of LPS Induces Intragranulomatous Lung Necrosis in Mice Infected Aerogenically with Mycobacterium tuberculosis. Scandinavian Journal of Immunology, 2001, 53, 65-71.	1.3	27
117	Evolution of Granulomas in Lungs of Mice Infected Aerogenically with Mycobacterium tuberculosis. Scandinavian Journal of Immunology, 2000, 52, 156.	1.3	97
118	The Intravenous Model of Murine Tuberculosis is Less Pathogenic Than the Aerogenic Model Owing to a More Rapid Induction of Systemic Immunity. Scandinavian Journal of Immunology, 1999, 49, 362-366.	1.3	59
119	Risk factors for lower airway bacterial colonization in chronic bronchitis. European Respiratory Journal, 1999, 13, 338-342.	3.1	149
120	Comparison of a Nonradiometric System with Bactec 12B and Culture on Egg-Based Media for Recovery of Mycobacteria from Clinical Specimens. European Journal of Clinical Microbiology and Infectious Diseases, 1998, 17, 773-777.	1.3	20
121	Evaluation of Meridian ImmunoCard Mycoplasma Test for the Detection of Mycoplasma Pneumoniae-specific IgM in Paediatric Patients. Scandinavian Journal of Infectious Diseases, 1998, 30, 289-293.	1.5	41
122	Rapid Diagnosis of Extrapulmonary Tuberculosis by Ligase Chain Reaction Amplification. Journal of Clinical Microbiology, 1998, 36, 1324-1329.	1.8	46
123	The Hidden History of Tuberculin. , 0, , .		0

124 Ten Questions to Challenge the Natural History of Tuberculosis. , 0, , .