Christopher C Bowland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2983693/publications.pdf

Version: 2024-02-01

35	923	16	29
papers	citations	h-index	g-index
35	35	35	1154
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	An Engineered Multifunctional Composite for Passive Sensing, Power Harvesting, and In Situ Damage Identification with Enhanced Mechanical Performance. Advanced Materials Technologies, 2022, 7, .	5.8	6
2	Multifunctional fiber-reinforced composites for passive sensing and energy harvesting with enhanced mechanical performance. , 2022, , .		0
3	Enhancing functionalities in carbon fiber composites by titanium dioxide nanoparticles. Composites Science and Technology, 2021, 201, 108491.	7.8	30
4	Synthesis of High-Performance Lignin-Based Inverse Thermoplastic Vulcanizates with Tailored Morphology and Properties. ACS Applied Polymer Materials, 2021, 3, 2911-2920.	4.4	10
5	Editorial for the Special Issue on Advanced Fiber-Reinforced Polymer Composites. Journal of Composites Science, 2021, 5, 241.	3.0	O
6	Design of tough adhesive from commodity thermoplastics through dynamic crosslinking. Science Advances, 2021, 7, eabk2451.	10.3	66
7	Effects of graphene surface functionalities towards controlled reinforcement of a lignin based renewable thermoplastic rubber. Composites Science and Technology, 2020, 199, 108352.	7.8	10
8	Tunable Electromechanical Liquid Crystal Elastomer Actuators. Advanced Intelligent Systems, 2020, 2, 2000022.	6.1	27
9	Fractionation of Lignin for Selective Shape Memory Effects at Elevated Temperatures. Materials, 2020, 13, 1940.	2.9	3
10	A fundamental understanding of whole biomass dissolution in ionic liquid for regeneration of fiber by solution-spinning. Green Chemistry, 2019, 21, 4354-4367.	9.0	22
11	An Ionomeric Renewable Thermoplastic from Ligninâ€Reinforced Rubber. Macromolecular Rapid Communications, 2019, 40, e1900059.	3.9	10
12	Butanol-Based Organosolv Lignin and Reactive Modification of Poly(ethylene-glycidyl methacrylate). Industrial & Description of Poly(ethylene-glycidyl methacrylate).	3.7	8
13	Responsive lignin for shape memory applications. Polymer, 2019, 160, 210-222.	3.8	16
14	Data of thermally active lignin-linkages and shape memory of lignin-rubber composites. Data in Brief, 2019, 22, 392-399.	1.0	1
15	Enhanced piezoresistive sensing of fiber-reinforced composites via embedded nanoparticles., 2019,,.		0
16	An Acrylonitrile–Butadiene–Lignin Renewable Skin with Programmable and Switchable Electrical Conductivity for Stress/Strain-Sensing Applications. Macromolecules, 2018, 51, 115-127.	4.8	38
17	A path for lignin valorization via additive manufacturing of high-performance sustainable composites with enhanced 3D printability. Science Advances, 2018, 4, eaat4967.	10.3	131
18	Roll-to-Roll Processing of Silicon Carbide Nanoparticle-Deposited Carbon Fiber for Multifunctional Composites. ACS Applied Materials & D. (2018, 10, 26576-26585).	8.0	15

#	Article	IF	CITATIONS
19	A general method to improve 3D-printability and inter-layer adhesion in lignin-based composites. Applied Materials Today, 2018, 12, 138-152.	4.3	145
20	Mechanical, thermal, morphological, and rheological characteristics of high performance 3D-printing lignin-based composites for additive manufacturing applications. Data in Brief, 2018, 19, 936-950.	1.0	21
21	The effect of nanoparticle enhanced sizing on the structural health monitoring sensitivity and mechanical properties of carbon fiber composites. , $2018, , .$		0
22	Barium Titanate Film Interfaces for Hybrid Composite Energy Harvesters. ACS Applied Materials & Samp; Interfaces, 2017, 9, 4057-4065.	8.0	28
23	Piezoelectric interfaces enabled energy harvesting and tailored damping in fiber composites. Proceedings of SPIE, 2017, , .	0.8	2
24	Development of nanoparticle embedded sizing for enhanced structural health monitoring of carbon fiber composites. Proceedings of SPIE, 2017, , .	0.8	2
25	Ultra-long vertically aligned lead titanate nanowire arrays for energy harvesting in extreme environments. Nano Energy, 2017, 31, 168-173.	16.0	30
26	Hydrothermal synthesis of tetragonal phase BaTiO3 on carbon fiber with enhanced electromechanical coupling. Journal of Materials Science, 2017, 52, 7893-7906.	3.7	6
27	Conformal Growth of Textured Barium Titanate Films on Patterned Silicon Wafer. , 2016, , .		0
28	Conformal BaTiO ₃ Films with High Piezoelectric Coupling through an Optimized Hydrothermal Synthesis. ACS Applied Materials & Samp; Interfaces, 2016, 8, 21446-21453.	8.0	24
29	Structure–Property Relationships in Aligned Electrospun Barium Titanate Nanofibers. Journal of the American Ceramic Society, 2016, 99, 3902-3908.	3.8	20
30	Lead-free 0.5Ba(Zr _{0.2} Ti _{0.8})O ₃ –0.5(Ba _{0.7} Ca _{0.3})TiO <s for energy harvesting. Nanoscale, 2016, 8, 5098-5105.</s 	ub 5.3 <td>o>69nowires</td>	o> 69 nowires
31	Vertically Aligned Lead Titanate Nanowire Arrays for High Temperature Energy Harvesting., 2015,,.		4
32	Highly aligned arrays of high aspect ratio barium titanate nanowires via hydrothermal synthesis. Applied Physics Letters, 2015, 106, .	3.3	21
33	Growth of highly textured PbTiO ₃ films on conductive substrate under hydrothermal conditions. Nanotechnology, 2015, 26, 345602.	2.6	5
34	Synthesis of calcium copper titanate (CaCu3Ti4O12) nanowires with insulating SiO2 barrier for low loss high dielectric constant nanocomposites. Nano Energy, 2015, 17, 302-307.	16.0	131
35	Multifunctional Barium Titanate Coated Carbon Fibers. Advanced Functional Materials, 2014, 24, 6303-6308.	14.9	22