Yiyi Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2983289/publications.pdf Version: 2024-02-01

VIVI CHEN

#	Article	IF	CITATIONS
1	Application of an Innovative SMA Ring Spring System for Self-Centering Steel Frames Subject to Seismic Conditions. Journal of Structural Engineering, 2018, 144, .	3.4	60
2	Behavior and Design of Self-Centering Energy Dissipative Devices Equipped with Superelastic SMA Ring Springs. Journal of Structural Engineering, 2019, 145, .	3.4	60
3	Seismic Performance of Self-centering Steel Frames with SMA-viscoelastic Hybrid Braces. Journal of Earthquake Engineering, 2022, 26, 5004-5031.	2.5	57
4	Loading protocols for experimental seismic qualification of members in conventional and emerging steel frames. Earthquake Engineering and Structural Dynamics, 2020, 49, 155-174.	4.4	55
5	Experimental Evaluation of Replaceable Energy Dissipation Connection for Moment-Resisting Composite Steel Frames. Journal of Structural Engineering, 2018, 144, .	3.4	44
6	Probabilistic economic seismic loss estimation of steel braced frames incorporating emerging self-centering technologies. Engineering Structures, 2021, 241, 112486.	5.3	43
7	Seismic Behavior of Self-Centering Modular Panel with Slit Steel Plate Shear Walls: Experimental Testing. Journal of Structural Engineering, 2018, 144, .	3.4	40
8	Bidirectional seismic performance of steel beam to circular tubular column connections with outer diaphragm. Earthquake Engineering and Structural Dynamics, 2011, 40, 1063-1081.	4.4	34
9	Seismic robustness of selfâ€centering braced frames suffering tendon failure. Earthquake Engineering and Structural Dynamics, 2021, 50, 1671-1691.	4.4	33
10	Dependence of the cyclic response of structural steel on loading history under large inelastic strains. Journal of Constructional Steel Research, 2015, 104, 64-73.	3.9	32
11	SMA-Based Low-Damage Solution for Self-Centering Steel and Composite Beam-to-Column Connections. Journal of Structural Engineering, 2020, 146, .	3.4	31
12	Experimental Investigation of Beam-Through Steel Frames with Self-Centering Modular Panels. Journal of Structural Engineering, 2017, 143, .	3.4	29
13	Experimental and numerical investigations of high strength steel welded h-section columns. International Journal of Steel Structures, 2013, 13, 209-218.	1.3	26
14	Cyclic stress-strain behavior of structural steel with yieldstrength up to 460 N/mm2. Frontiers of Structural and Civil Engineering, 2014, 8, 178-186.	2.9	19
15	Experiment and constitutive modeling on cyclic plasticity behavior of LYP100 under large strain range. Construction and Building Materials, 2019, 202, 507-521.	7.2	19
16	Auto-Regressive Integrated Moving-Average Machine Learning for Damage Identification of Steel Frames. Applied Sciences (Switzerland), 2021, 11, 6084.	2.5	17
17	Effect of Loading Protocols on the Hysteresis Behaviour of Hot-Rolled Structural Steel with Yield Strength up to 420 MPa. Advances in Structural Engineering, 2013, 16, 707-719.	2.4	16
18	Fracture resistance curve for single edge notched tension specimens under low cycle actions. Engineering Fracture Mechanics, 2019, 211, 47-60.	4.3	15

Υιγι Chen

#	Article	IF	CITATIONS
19	Experimental study on the static performance of steel reinforced concrete columns with high encased steel ratios. Structural Design of Tall and Special Buildings, 2018, 27, e1536.	1.9	13
20	Experimental and modeling study of uniaxial cyclic behaviors of structural steel under ascending/descending strain amplitude-controlled loading. Construction and Building Materials, 2021, 278, 122276.	7.2	13
21	Dynamic material performance of cold-formed steel hollow sections: a state-of-the-art review. Frontiers of Structural and Civil Engineering, 2017, 11, 209-227.	2.9	11
22	A constitutive model for various structural steels considering shared hysteretic behaviors. Journal of Constructional Steel Research, 2021, 176, 106421.	3.9	11
23	Three-Dimensional Cyclic Performance on New Ring-Beam Connection between Concrete-Filled Tubular Column and Reinforced-Concrete Beams. Advances in Structural Engineering, 2015, 18, 1287-1302.	2.4	10
24	A node release approach to estimate Jâ€R curve for singleâ€edgeâ€notched tension specimen under reversed loading. Fatigue and Fracture of Engineering Materials and Structures, 2019, 42, 1595-1608.	3.4	9
25	Experimental and modeling study of cyclic plasticity and ductile fracture of thin structural steel sheets. Thin-Walled Structures, 2021, 162, 107658.	5.3	9
26	Damage-control evaluation of high-strength steel frames with energy dissipation bays. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2017, 170, 677-692.	0.8	8
27	A ductile tearing assessment diagram to estimate load resistance versus crack extension for welded connections with surface cracks. Thin-Walled Structures, 2021, 169, 108435.	5.3	8
28	Experimental investigation on fatigue behavior of steel reinforced concrete composite beam-to-girder joints. International Journal of Steel Structures, 2012, 12, 461-472.	1.3	7
29	Experimental behavior of transfer story connections for high-rise SRC structures under seismic loading. Earthquake Engineering and Structural Dynamics, 2011, 40, 961-975.	4.4	5
30	Experimental study on cyclic behavior of cast steel connectors for beam-to-column joints. Advances in Structural Engineering, 2016, 19, 1677-1695.	2.4	5
31	Parametric analysis and design equation of ultimate capacity for unstiffened overlapped CHS K-joints. Frontiers of Architecture and Civil Engineering in China, 2008, 2, 107-115.	0.4	4
32	Seismic performance of floor-by-floor assembled steel braced structures with stiffened connections. IES Journal Part A: Civil and Structural Engineering, 2013, 6, 112-118.	0.4	4
33	A reversed η approach to estimate load-deformation curves for fracture specimens and surface-cracked pipes. Theoretical and Applied Fracture Mechanics, 2020, 106, 102485.	4.7	4
34	Initial stiffness and moment resistance of reinforced joint with end-plate connection. Frontiers of Architecture and Civil Engineering in China, 2009, 3, 345-351.	0.4	2
35	High-strength steel for resilience of beam-through frames. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2017, 170, 664-676.	0.8	2
36	Strength of tubular welded joints of roof trusses in Shanghai Qizhong Tennis Center. Frontiers of Architecture and Civil Engineering in China, 2008, 2, 30-36.	0.4	1

Υιγι Chen

#	Article	IF	CITATIONS
37	Seismic performance of prestressed concrete stand structure supporting retractable steel roof. Frontiers of Architecture and Civil Engineering in China, 2009, 3, 117-124.	0.4	1
38	Details of H-Beam-to-RHS Column Joints with through Diaphragm for Progressive Collapse Prevention. Advances in Structural Engineering, 2015, 18, 1723-1736.	2.4	1
39	11.14: Seismic performance of high-strength-steel frame with buckling hinge beams in energy dissipation bays. Ce/Papers, 2017, 1, 2946-2955.	0.3	1
40	Experimental investigation on fatigue strength of joints between SRC beams and concrete-filled RHS columns. KSCE Journal of Civil Engineering, 2017, 21, 1802-1811.	1.9	1
41	Tests on impact effect of partial fracture at steel frame connections. Frontiers of Architecture and Civil Engineering in China, 2008, 2, 295-301.	0.4	0