Victoria Timchenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2983271/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A combined transient thermal model for laser hyperthermia of tumors with embedded gold nanoshells. International Journal of Heat and Mass Transfer, 2011, 54, 5459-5469.	4.8	119
2	Soft and Moldable Mgâ€Doped Liquid Metal for Conformable Skin Tumor Photothermal Therapy. Advanced Healthcare Materials, 2018, 7, e1800318.	7.6	116
3	Microchannel cooling of concentrator photovoltaics: A review. Renewable and Sustainable Energy Reviews, 2018, 90, 1041-1059.	16.4	114
4	Indirect heating strategy for laser induced hyperthermia: An advanced thermal model. International Journal of Heat and Mass Transfer, 2012, 55, 4688-4700.	4.8	107
5	Plasmonic "pump–probe―method to study semi-transparent nanofluids. Applied Optics, 2013, 52, 6041.	1.8	60
6	An algorithm to calculate interfacial area for multiphase mass transfer through the volume-of-fluid method. International Journal of Heat and Mass Transfer, 2016, 100, 573-581.	4.8	50
7	Numerical investigation on the velocity fields during droplet formation in a microfluidic T-junction. Chemical Engineering Science, 2016, 139, 99-108.	3.8	50
8	Modelling of natural convection in vertical and tilted photovoltaic applications. Energy and Buildings, 2012, 55, 810-822.	6.7	49
9	Importance of detailed chemical kinetics on combustion and soot modelling of ventilated and under-ventilated fires in compartment. International Journal of Heat and Mass Transfer, 2016, 96, 171-188.	4.8	48
10	Manifold microchannel heat sink topology optimisation. International Journal of Heat and Mass Transfer, 2021, 170, 121025.	4.8	44
11	An evaluation of synthetic jets for heat transfer enhancement in air cooled micro hannels. International Journal of Numerical Methods for Heat and Fluid Flow, 2007, 17, 263-283.	2.8	43
12	Three-dimensional modelling of fluid flow and heat transfer in micro-channels with synthetic jet. International Journal of Heat and Mass Transfer, 2012, 55, 198-213.	4.8	41
13	Heat transfer enhancement in micro-channel with multiple synthetic jets. Applied Thermal Engineering, 2012, 48, 275-288.	6.0	39
14	Comparison of detailed soot formation models for sooty and non-sooty flames in an under-ventilated ISO room. International Journal of Heat and Mass Transfer, 2017, 115, 717-729.	4.8	39
15	Optimal design of a natural convection heat sink for small thermoelectric cooling modules. Applied Thermal Engineering, 2019, 160, 114062.	6.0	39
16	Radiative heating of superficial human tissues with the use of water-filtered infrared-A radiation: A computational modeling. International Journal of Heat and Mass Transfer, 2015, 85, 311-320.	4.8	38
17	SIMPLIFIED APPROACHES TO RADIATIVE TRANSFER SIMULATIONS IN LASER-INDUCED HYPERTHERMIA OF SUPERFICIAL TUMORS. Computational Thermal Sciences, 2013, 5, 521-530.	0.9	38
18	Predicting the fire spread rate of a sloped pine needle board utilizing pyrolysis modelling with detailed gas-phase combustion. International lournal of Heat and Mass Transfer, 2018, 125, 310-322.	4.8	36

Victoria Timchenko

#	Article	IF	CITATIONS
19	Open manifold microchannel heat sink for high heat flux electronic cooling with a reduced pressure drop. International Journal of Heat and Mass Transfer, 2020, 163, 120395.	4.8	36
20	Large-eddy simulation of natural convection in an asymmetrically-heated vertical parallel-plate channel: Assessment of subgrid-scale models. Computers and Fluids, 2012, 59, 101-116.	2.5	34
21	Numerical study of fire spread using the level-set method with large eddy simulation incorporating detailed chemical kinetics gas-phase combustion model. Journal of Computational Science, 2018, 24, 8-23.	2.9	33
22	On the influences of key modelling constants of large eddy simulations forÂlarge-scale compartment fires predictions. International Journal of Computational Fluid Dynamics, 2017, 31, 324-337.	1.2	32
23	A critical review on liquid-gas mass transfer models for estimating gaseous emissions from passive liquid surfaces in wastewater treatment plants. Water Research, 2018, 130, 388-406.	11.3	30
24	Numerical investigation of passive cooling in open vertical channels. Applied Thermal Engineering, 2012, 39, 121-131.	6.0	26
25	Effects of short-pulsed laser radiation on transient heating of superficial human tissues. International Journal of Heat and Mass Transfer, 2014, 78, 488-497.	4.8	26
26	Large-Eddy Simulation of Turbulent Natural Convection in Vertical Parallel-Plate Channels. Numerical Heat Transfer, Part B: Fundamentals, 2011, 59, 259-287.	0.9	25
27	Improved volume-of-fluid (VOF) model for predictions of velocity fields and droplet lengths in microchannels. Flow Measurement and Instrumentation, 2016, 51, 105-115.	2.0	23
28	Heat transfer from nanoparticles for targeted destruction of infectious organisms. International Journal of Hyperthermia, 2018, 34, 157-167.	2.5	22
29	Flow structure generated by two synthetic jets in a channel: Effect of phase and frequency. Sensors and Actuators A: Physical, 2012, 184, 98-111.	4.1	21
30	The Effect of Gold Nanorods Clustering on Near-Infrared Radiation Absorption. Applied Sciences (Switzerland), 2018, 8, 1132.	2.5	21
31	Vortical Intensification of Heat Transfer in Microchannels with Oval Dimples. Heat Transfer Research, 2010, 41, 413-424.	1.6	19
32	Computational Study of Wet Steam Flow to Optimize Steam Ejector Efficiency for Potential Fire Suppression Application. Applied Sciences (Switzerland), 2019, 9, 1486.	2.5	18
33	Heat and mass transfer model to predict the operational performance of a steam sterilisation autoclave including products. International Journal of Heat and Mass Transfer, 2015, 90, 800-811.	4.8	17
34	Manifold configurations for uniform flow via topology optimisation and flow visualisation. Applied Thermal Engineering, 2021, 183, 116227.	6.0	16
35	Numerical modelling of an industrial steam–air sterilisation process with experimental validation. Applied Thermal Engineering, 2015, 75, 122-134.	6.0	15
36	Variable Porous Electrode Compression for Redox Flow Battery Systems. Batteries, 2018, 4, 53.	4.5	15

Victoria Timchenko

#	Article	IF	CITATIONS
37	Modeling the Response of Magnetorheological Fluid Dampers under Seismic Conditions. Applied Sciences (Switzerland), 2019, 9, 4189.	2.5	15
38	Experimental and numerical investigation of blade–tower interaction noise. Journal of Sound and Vibration, 2019, 443, 362-375.	3.9	15
39	Nano-Enhanced Phase Change Materials for Thermal Energy Storage: A Bibliometric Analysis. Energies, 2022, 15, 3426.	3.1	15
40	Study of Morphology and Optical Properties of Gold Nanoparticle Aggregates under Different pH Conditions. Langmuir, 2018, 34, 10340-10352.	3.5	14
41	A CFD model for the coupling of multiphase, multicomponent and mass transfer physics for micro-scale simulations. International Journal of Heat and Mass Transfer, 2017, 113, 922-934.	4.8	13
42	NUMERICAL AND EXPERIMENTAL INVESTIGATION OF UNSTEADY NATURAL CONVECTION IN A VERTICAL OPEN-ENDED CHANNEL. Computational Thermal Sciences, 2012, 4, 443-456.	0.9	13
43	On Computational Fluid Dynamics Study of Magnetic Drug Targeting. Journal of Computational Multiphase Flows, 2015, 7, 43-56.	0.8	12
44	Numerical Modeling of Magnetic Nanoparticle and Carrier Fluid Interactions Under Static and Double-Shear Flows. IEEE Nanotechnology Magazine, 2017, 16, 798-805.	2.0	12
45	Numerical simulation of blade-passage noise. Journal of the Acoustical Society of America, 2017, 142, 1575-1586.	1.1	12
46	Numerical investigation of formation and dissolution of CO2 bubbles within silicone oil in a cross-junction microchannel. Microfluidics and Nanofluidics, 2017, 21, 1.	2.2	10
47	Detailed flow development and indicators of transition in a natural convection flow in a vertical channel. International Journal of Heat and Mass Transfer, 2019, 143, 118502.	4.8	10
48	Mass Transport Optimization for Redox Flow Battery Design. Applied Sciences (Switzerland), 2020, 10, 2801.	2.5	10
49	Modelling Rayleigh-Bénard convection coupled with electro-vortex flow in liquid metal batteries. Journal of Power Sources, 2021, 501, 229988.	7.8	10
50	Large-eddy simulation of turbulent buoyancy-driven flow in a rectangular cavity. International Journal of Heat and Fluid Flow, 2013, 39, 28-41.	2.4	9
51	The intersection marker method for 3D interface tracking of deformable surfaces in finite volumes. International Journal for Numerical Methods in Fluids, 2016, 81, 220-244.	1.6	9
52	The predominant effect of stroke length on velocity profiles at the exit of axisymmetric synthetic jet actuators. International Journal of Heat and Fluid Flow, 2017, 66, 197-208.	2.4	9
53	Impact of external temperature distribution on the convective mass flow rate in a vertical channel – A theoretical and experimental study. International Journal of Heat and Mass Transfer, 2018, 121, 1264-1272.	4.8	9
54	Effects of radiation on turbulent natural convection in channel flows. International Journal of Heat and Fluid Flow, 2019, 77, 122-133.	2.4	9

VICTORIA ΤΙΜCΗΕΝΚΟ

#	Article	IF	CITATIONS
55	EFFECT OF OPERATING FREQUENCY ON HEAT TRANSFER IN A MICROCHANNEL WITH SYNTHETIC JET. Computational Thermal Sciences, 2009, 1, 361-383.	0.9	9
56	RECONSTRUCTION AND ADVECTION OF A MOVING INTERFACE IN THREE DIMENSIONS ON A FIXED GRID. Numerical Heat Transfer, Part B: Fundamentals, 1998, 34, 121-138.	0.9	8
57	Wind friction parametrisation used in emission models for wastewater treatment plants: A critical review. Water Research, 2017, 124, 49-66.	11.3	8
58	Bubble flow simulations using the intersection marker (ISM) interface tracking method. International Journal of Numerical Methods for Heat and Fluid Flow, 2018, 28, 118-137.	2.8	8
59	Thermal modelling of controlled scalp hypothermia using a thermoelectric cooling cap. Journal of Thermal Biology, 2018, 76, 8-20.	2.5	8
60	Evaluation of an adaptive tutorial supporting the teaching of mathematics. European Journal of Engineering Education, 2019, 44, 787-804.	2.3	8
61	Numerical and experimental studies of a channel flow with multiple circular synthetic jets. EPJ Web of Conferences, 2012, 25, 01094.	0.3	7
62	Enhanced Reactant Distribution in Redox Flow Cells. Molecules, 2019, 24, 3877.	3.8	7
63	Natural Convection in a PV-Integrated Double-Skin Façade using Large-Eddy Simulation. Procedia Engineering, 2011, 14, 3277-3284.	1.2	6
64	Numerical Computation and Investigation of the Characteristics of Microscale Synthetic Jets. Modelling and Simulation in Engineering, 2011, 2011, 1-8.	0.7	6
65	Large Eddy Simulation of turbulent buoyancy-driven flow withÂalternating staggered heating walls. Applied Thermal Engineering, 2015, 89, 558-568.	6.0	6
66	Transitional natural convection flow in a vertical channel: Impact of the external thermal stratification. International Journal of Heat and Mass Transfer, 2020, 151, 119476.	4.8	6
67	Enabling contactless rapid on-demand debonding and rebonding using hysteresis heating of ferrimagnetic nanoparticles. Materials and Design, 2021, 210, 110076.	7.0	6
68	Modelling of binary alloy solidification in the MEPHISTO experiment. Comptes Rendus - Mecanique, 2004, 332, 403-411.	2.1	5
69	Influence of the fetch parameter on results from empirical correlations for estimating odorous emissions at passive liquid surfaces. Water Science and Technology, 2016, 74, 2384-2391.	2.5	5
70	High order accurate dual-phase-lag numerical model for microscopic heating in multiple domains. International Communications in Heat and Mass Transfer, 2016, 78, 21-28.	5.6	5
71	Effect of heat loss on turbulent buoyancy-driven flow in a rectangular cavity using the large-eddy simulation. Numerical Heat Transfer; Part A: Applications, 2016, 70, 689-706.	2.1	5
72	EFFECT OF VARIABLE PROPERTIES ON HEAT TRANSFER IN A MICRO-CHANNEL WITH A SYNTHETIC JET. Computational Thermal Sciences, 2013, 5, 369-388.	0.9	5

VICTORIA ΤΙΜCΗΕΝΚΟ

1

#	Article	IF	CITATIONS
73	Simulation of Blood Flow and Nanoparticle Transport in a Stenosed Carotid Bifurcation and Pseudo-Arteriole. Journal of Computational Multiphase Flows, 2012, 4, 85-101.	0.8	4
74	Real-time monitoring of heat transfer between gold nanoparticles and tethered bilayer lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183334.	2.6	4
75	Heat Generation in Irradiated Gold Nanoparticle Solutions for Hyperthermia Applications. Processes, 2021, 9, 368.	2.8	4
76	Modelling atmospheric emissions from wastewater treatment plants: Implications of land-to-water roughness change. Science of the Total Environment, 2021, 792, 148330.	8.0	4
77	Eddie Leonardi Memorial Lecture: "Natural Convection From Earth to Spaceâ€, Journal of Heat Transfer, 2012, 134, .	2.1	3
78	Numerical modelling of magnetic nanoparticle and carrier fluid interactions. , 2016, , .		3
79	Directivity of blade-tower interaction noise. JASA Express Letters, 2021, 1, .	1.1	3
80	LASER INDUCED HYPERTHERMIA OF SUPERFICIAL TUMORS: A TRANSIENT THERMAL MODEL FOR INDIRECT HEATING STRATEGY. Computational Thermal Sciences, 2012, 4, 457-475.	0.9	3
81	ANALYSIS OF THE GROWTH OF SPHERICAL AIR BUBBLES IN WATER DUE TO THE INTERFACIAL MASS TRANSFER BY A 3D FRONT-TRACKING METHOD. , 2018, , .		3
82	Tethered Bilayer Lipid Membranes to Monitor Heat Transfer between Gold Nanoparticles and Lipid Membranes. Journal of Visualized Experiments, 2020, , .	0.3	3
83	Compressibility Effects in Micro Synthetic Jets. , 2004, , 273.		2
84	Computational Fluid Dynamics and Its Applications 2012. Modelling and Simulation in Engineering, 2012, 2012, 1-2.	0.7	2
85	Natural Convection in an Asymmetrically-Heated Open-Ended Channel: A Three-Dimensional Computational Study. , 2013, , .		2
86	Controlling the clustering behavior of particulate colloidal systems using alternating and rotating magnetic fields. Computational Particle Mechanics, 0, , 1.	3.0	2
87	Three-Dimensional Simulation of Vapor Bubble Growth in Superheated Water Due to the Convective Action by an Interface Tracking Method. Journal of Fluids Engineering, Transactions of the ASME, 2022, 144, .	1.5	2
88	Heat Generation in Gold Nanorods Solutions due to Absorption of Near-Infrared Radiation. , 2017, , .		2
89	Unsteady Flow Physics of the Blade-Tower Interaction of a Pylon-Mounted Fan. , 2017, , .		2

90 An Experimental and Numerical Study of a Micro-Synthetic Jet in a Shallow Cavity. , 2008, , .

6

#	Article	IF	CITATIONS
91	A Simplified Model of Laser Hyperthermia of Superficial Tumors Including Variation of Human Tissue Optical Properties With Thermal Damage. , 2012, , .		1
92	Three-dimensional modeling of flow and deformation in idealized mild and moderate arterial vessels. Computer Methods in Biomechanics and Biomedical Engineering, 2016, 19, 1395-1408.	1.6	1
93	Gravity-Driven Bubble Rise Simulation. , 2019, , 1-37.		1
94	NATURAL CONVECTIVE FLOW ANALYSIS IN VERTICAL CHANNEL. , 2017, , .		1
95	Eddie Leonardi Memorial Lecture: Natural Convection from Earth to Space. , 2010, , .		1
96	The Effect of Orientation on the Performance of Small Free-Convection Heat Sinks for Use With a Thermoelectric Cryotherapy Device. Journal of Thermal Science and Engineering Applications, 2021, 13, .	1.5	1
97	An Experimental Study of a Synthetic Jet in Cross Flow in a Microchannel. , 2010, , .		0
98	Advances in Computational Fluid Dynamics and Its Applications. Modelling and Simulation in Engineering, 2011, 2011, 1-3.	0.7	0
99	Forced Convection in Micro-Channel With Synthetic Jet: Effect of Operating Frequency. , 2012, , .		0
100	Preface: Advanced Thermal Strategies in Cancer Therapy and Diagnostics. Critical Reviews in Biomedical Engineering, 2020, 48, v-vii.	0.9	0
101	Numerical Investigation of Rising Vapour Bubble in Convective Boiling Using an Advanced 3D Hybrid Numerical Method. , 0, , .		0
102	Three-Dimensional Modelling of Heat Transfer in Micro-Channels With Synthetic Jet. , 2010, , .		0
103	EFFECT OF CHANNEL PRESSURE DIFFERENCE IN HEAT TRANSFER ENHANCEMENT IN MICRO-CHANNEL WITH SYNTHETIC JET. , 2012, , .		0
104	LASER INDUCED HYPERTHERMIA OF SUPERFICIAL TUMORS: A TRANSIENT THERMAL MODEL FOR INDIRECT HEATING STRATEGY. , 2012, , .		0
105	NUMERICAL AND EXPERIMENTAL INVESTIGATION OF UNSTEADY NATURAL CONVECTION IN AN OPEN CHANNEL. , 2012, , .		0
106	Three-Dimensional Computational Study of Natural Convection in a Non-Uniformly Heated Vertical Open-Ended Channel. , 2014, , .		0
107	Absorption of Short-Pulsed Laser Radiation in Superficial Human Tissues: Transient vs Quasi-Steady Radiative Transfer. , 2014, , .		0
108	Heat and Mass Transfer Modelling of an Industrial Autoclave to Minimise Steam Consumption. , 2014, , .		0

#	Article	IF	CITATIONS
109	Heat Generation in Gold Nanorods Solutions due to Absorption of Near-Infrared Radiation. , 2017, , .		0
110	IMPACT OF EXTERNAL TEMPERATURE DISTRIBUTION ON THE TURBULENT AND THERMAL FIELDS IN A VERTICAL UNIFORMLY HEATED CHANNEL. , 2018, , .		0
111	Validation Problems in Computational Modelling of Natural Convection. , 2020, , 689-718.		0