Moshe Lapidot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2982745/publications.pdf Version: 2024-02-01

MOSHELADIDOT

#	Article	IF	CITATIONS
1	Emerging Viral Diseases of Tomato Crops. Molecular Plant-Microbe Interactions, 2010, 23, 539-548.	2.6	264
2	World Management of Geminiviruses. Annual Review of Phytopathology, 2018, 56, 637-677.	7.8	247
3	Plant virus movement proteins. Cell, 1992, 69, 221-224.	28.9	236
4	Breeding for resistance to whitefly-transmitted geminiviruses. Annals of Applied Biology, 2002, 140, 109-127.	2.5	198
5	A New Israeli Tobamovirus Isolate Infects Tomato Plants Harboring Tm-22 Resistance Genes. PLoS ONE, 2017, 12, e0170429.	2.5	185
6	Molecular dissection of Tomato leaf curl virus resistance in tomato line TY172 derived from Solanum peruvianum. Theoretical and Applied Genetics, 2009, 119, 519-530.	3.6	174
7	A dysfunctional movement protein of tobacco mosaic virus that partially modifies the plasmodesmata and limits virus spread in transgenic plants. Plant Journal, 1993, 4, 959-970.	5.7	157
8	A defective movement protein of TMV in transgenic plants confers resistance to multipleviruses whereas the functional analog increases susceptibility. Virology, 1995, 206, 307-313.	2.4	150
9	Comparison of Resistance Level to Tomato Yellow Leaf Curl Virus Among Commercial Cultivars and Breeding Lines. Plant Disease, 1997, 81, 1425-1428.	1.4	129
10	Ultraviolet-Absorbing Plastic Sheets Protect Crops from Insect Pests and from Virus Diseases Vectored by Insects. Environmental Entomology, 1996, 25, 919-924.	1.4	127
11	A Novel Route Controlling Begomovirus Resistance by the Messenger RNA Surveillance Factor Pelota. PLoS Genetics, 2015, 11, e1005538.	3.5	127
12	A Novel Source of Resistance to Tomato Yellow Leaf Curl Virus Exhibiting a Symptomless Reaction to Viral Infection. Journal of the American Society for Horticultural Science, 1998, 123, 1004-1007.	1.0	122
13	Effect of Host Plant Resistance to Tomato yellow leaf curl virus (TYLCV) on Virus Acquisition and Transmission by Its Whitefly Vector. Phytopathology, 2001, 91, 1209-1213.	2.2	101
14	Ultraviolet-Deficient Greenhouse Environment Affects Whitefly Attraction and Flight-Behavior. Environmental Entomology, 2001, 30, 394-399.	1.4	98
15	Genetic Mapping of the Tsw Locus for Resistance to the Tospovirus Tomato spotted wilt virus in Capsicum spp. and Its Relationship to the Sw-5 Gene for Resistance to the Same Pathogen in Tomato. Molecular Plant-Microbe Interactions, 2000, 13, 673-682.	2.6	96
16	An Early Tobacco Mosaic Virus-Induced Oxidative Burst in Tobacco Indicates Extracellular Perception of the Virus Coat Protein. Plant Physiology, 2001, 126, 97-108.	4.8	96
17	Domains of the TMV movement protein involved in subcellular localization. Plant Journal, 1998, 15, 15-25.	5.7	81
18	Pyramiding of genes conferring resistance to <i>Tomato yellow leaf curl virus</i> from different wild tomato species. Plant Breeding, 2008, 127, 625-631.	1.9	81

Moshe Lapidot

#	Article	IF	CITATIONS
19	Ultraviolet-Absorbing Screens Serve as Optical Barriers to Protect Crops from Virus and Insect Pests. Journal of Economic Entomology, 1998, 91, 1401-1405.	1.8	79
20	Production of siRNA targeted against TYLCV coat protein transcripts leads to silencing of its expression and resistance to the virus. Transgenic Research, 2007, 16, 385-398.	2.4	76
21	Effects of terminal deletion mutations on function of the movement protein of tobacco mosaic virus. Virology, 1992, 187, 499-507.	2.4	75
22	Management of Whitefly-Transmitted Viruses in Open-Field Production Systems. Advances in Virus Research, 2014, 90, 147-206.	2.1	70
23	A Dysfunctional Movement Protein of Tobacco mosaic virus Interferes with Targeting of Wild-Type Movement Protein to Microtubules. Molecular Plant-Microbe Interactions, 2001, 14, 895-904.	2.6	66
24	Targeted mutagenesis using zinc-finger nucleases in perennial fruit trees. Planta, 2015, 241, 941-951.	3.2	63
25	Identification and characterization of a novel miR159 target not related to MYB in tomato. Planta, 2010, 232, 1009-1022.	3.2	53
26	Major Tomato Viruses in the Mediterranean Basin. Advances in Virus Research, 2012, 84, 31-66.	2.1	47
27	Tolerance to Cucumber Mosaic Virus in Pepper: Development of Advanced Breeding Lines and Evaluation of Virus Level. Plant Disease, 1997, 81, 185-188.	1.4	41
28	Characterization of a Synergistic Interaction Between Two Cucurbit-Infecting Begomoviruses: <i>Squash leaf curl virus</i> and <i>Watermelon chlorotic stunt virus</i> . Phytopathology, 2011, 101, 281-289.	2.2	40
29	TYLCV-Is movement in planta does not require V2 protein. Virology, 2015, 477, 56-60.	2.4	36
30	Management of Tomato yellow leaf curl virus: US and Israel Perspectives. , 2007, , 251-262.		36
31	Biolistic inoculation of plants with Tomato yellow leaf curl virus DNA. Journal of Virological Methods, 2007, 144, 143-148.	2.1	35
32	Protein blot analysis of virus receptors: identification and characterization of the sendai virus receptor. Biochimica Et Biophysica Acta - Biomembranes, 1986, 856, 19-26.	2.6	34
33	Using genomic analysis to identify tomato Tm-2 resistance-breaking mutations and their underlying evolutionary path in a new and emerging tobamovirus. Archives of Virology, 2018, 163, 1863-1875.	2.1	33
34	Identification and Mapping of Tomato Genome Loci Controlling Tolerance and Resistance to Tomato Brown Rugose Fruit Virus. Plants, 2021, 10, 179.	3.5	31
35	<i>Watermelon chlorotic stunt</i> and <i>Squash leaf curl</i> begomoviruses—New threats to cucurbit crops in the Middle East. Israel Journal of Plant Sciences, 2010, 58, 33-42.	0.5	27
36	Immunity to tomato yellow leaf curl virus in transgenic tomato is associated with accumulation of transgene small RNA. Archives of Virology, 2015, 160, 2727-2739.	2.1	26

Moshe Lapidot

#	Article	IF	CITATIONS
37	Screening Common Bean (Phaseolus vulgaris) for Resistance to Tomato yellow leaf curl virus. Plant Disease, 2002, 86, 429-432.	1.4	25
38	Effect of a single amino acid substitution in the NLS domain of Tomato yellow leaf curl virus-Israel (TYLCV-IL) capsid protein (CP) on its activity and on the virus life cycle. Virus Research, 2011, 158, 8-11.	2.2	24
39	Frequent migration of introduced cucurbit-infecting begomoviruses among Middle Eastern countries. Virology Journal, 2014, 11, 181.	3.4	23
40	Appearance and Expansion of TYLCV: a Historical Point of View. , 2007, , 3-12.		22
41	Broomrape Can Acquire Viruses from Its Hosts. Phytopathology, 2009, 99, 1321-1329.	2.2	21
42	Fusion-mediated microinjection of liposome-enclosed DNA into cultured cells with the aid of influenza virus glycoproteins. Experimental Cell Research, 1990, 189, 241-246.	2.6	20
43	Breeding tomatoes for resistance to tomato yellow leaf curl begomovirus. EPPO Bulletin, 2000, 30, 317-321.	0.8	20
44	Inoculation of plants with begomoviruses by particle bombardment without cloning: Using rolling circle amplification of total DNA from infected plants and whiteflies. Journal of Virological Methods, 2010, 168, 87-93.	2.1	20
45	Screening for TYLCV-Resistance Plants using Whitefly-Mediated Inoculation. , 2007, , 329-342.		19
46	Biological and molecular characterization of Tomato spotted wilt Virus in Israel. Phytoparasitica, 1997, 25, 319-330.	1.2	17
47	Resistance to Tomato yellow leaf curl virus in Tomato. , 2006, , 503-520.		13
48	Interference with Ultraviolet Vision of Insects to Impede Insect Pests and Insect-Borne Plant Viruses. , 2001, , 331-350.		12
49	The recent association of a DNA betasatellite with Tomato yellow leaf curl virus in Israel $\hat{a} \in A$ new threat to tomato production. Crop Protection, 2020, 128, 104995.	2.1	12
50	Genetic variation and evolutionary forces shaping <i>Cucumber vein yellowing virus</i> populations: risk of emergence of virulent isolates in Europe. Plant Pathology, 2016, 65, 847-856.	2.4	10
51	Coordinate activation of a target gene by KDM1C histone demethylase and OTLD1 histone deubiquitinase in Arabidopsis. Epigenetics, 2019, 14, 602-610.	2.7	10
52	Tomato yellow leaf curl virus effects on chloroplast biogenesis and cellular structure. Physiological and Molecular Plant Pathology, 2015, 92, 51-58.	2.5	9
53	Induction of serotonin release from mast cells by lymphocyte activators is dependent upon implantation of lymphocyte plasma membrane components. Experimental Cell Research, 1991, 194, 228-231.	2.6	6
54	Fusogenic properties of reconstituted hybrid vesicles containing Sendai and influenza envelope glycoproteins: fluorescence dequenching and fluorescence microscopy studies. Biochimica Et Biophysica Acta - Biomembranes, 1989, 980, 281-290.	2.6	5

#	Article	IF	CITATIONS
55	HandGun-Mediated Inoculation of Plants with Viral Pathogens for Mechanistic Studies. Methods in Molecular Biology, 2013, 940, 53-62.	0.9	4
56	Leaf Plasmodesmata Respond Differently to TMV, ToBRFV and TYLCV Infection. Plants, 2021, 10, 1442.	3.5	3
57	The Annual Convention of the Israeli Fund for Advancement of Research on and Development of Pesticides. Phytoparasitica, 1998, 26, 149-152.	1.2	0