
Nathan C Lindquist

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2982306/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Single-Molecule SERS Hotspot Dynamics in Both Dry and Aqueous Environments. Journal of Physical Chemistry C, 2022, 126, 7117-7126.	1.5	8
2	Ultra-High-Speed Dynamics in Surface-Enhanced Raman Scattering. Journal of Physical Chemistry C, 2021, 125, 7523-7532.	1.5	11
3	Nanoâ€Optical Tweezers: Methods and Applications for Trapping Single Molecules and Nanoparticles. ChemPhysChem, 2021, 22, 1409-1420.	1.0	12
4	Nanoâ€Optical Tweezers: Methods and Applications for Trapping Single Molecules and Nanoparticles. ChemPhysChem, 2021, 22, 1408-1408.	1.0	2
5	Digital plasmonic holography with iterative phase retrieval for sensing. Optics Express, 2021, 29, 3026.	1.7	0
6	Dynamic Imaging of Multiple SERS Hotspots on Single Nanoparticles. ACS Photonics, 2020, 7, 434-443.	3.2	24
7	High-Speed Fluctuations in Surface-Enhanced Raman Scattering Intensities from Various Nanostructures. Applied Spectroscopy, 2020, 74, 1398-1406.	1.2	9
8	High-speed imaging of surface-enhanced Raman scattering fluctuations from individual nanoparticles. Nature Nanotechnology, 2019, 14, 981-987.	15.6	115
9	Real-Time Sensing with Patterned Plasmonic Substrates and a Compact Imager Chip. Methods in Molecular Biology, 2019, 2027, 87-100.	0.4	0
10	Digital plasmonic holography. Light: Science and Applications, 2018, 7, 52.	7.7	17
11	Chemically imaging bacteria with super-resolution SERS on ultra-thin silver substrates. Scientific Reports, 2017, 7, 9135.	1.6	37
12	Holographic Plasmonic Nanotweezers for Dynamic Trapping and Manipulation. Nano Letters, 2017, 17, 7920-7925.	4.5	56
13	Direct spectral imaging of plasmonic nanohole arrays for real-time sensing. Nanotechnology, 2016, 27, 184001.	1.3	19
14	Split-Wedge Antennas with Sub-5 nm Gaps for Plasmonic Nanofocusing. Nano Letters, 2016, 16, 7849-7856.	4.5	54
15	Super-Resolution Chemical Imaging with Plasmonic Substrates. ACS Photonics, 2016, 3, 329-336.	3.2	43
16	Dynamic Placement of Plasmonic Hotspots for Super-resolution Surface-Enhanced Raman Scattering. ACS Nano, 2014, 8, 10941-10946.	7.3	45
17	Template fabricated plasmonic nanoholes on analyte-sensitive substrates for real-time vapor sensing. RSC Advances, 2014, 4, 15115-15121.	1.7	8
18	Plasmonic nanofocusing with a metallic pyramid and an integrated C-shaped aperture. Scientific Reports, 2013, 3, 1857.	1.6	43

NATHAN C LINDQUIST

#	Article	IF	CITATIONS
19	Tip-based plasmonics: squeezing light with metallic nanoprobes. Laser and Photonics Reviews, 2013, 7, 453-477.	4.4	39
20	Real-time full-spectral imaging and affinity measurements from 50 microfluidic channels using nanohole surface plasmon resonance. Lab on A Chip, 2012, 12, 3882.	3.1	74
21	Effect of Nanohole Spacing on the Self-Imaging Phenomenon Created by the Three-Dimensional Propagation of Light through Periodic Nanohole Arrays. Journal of Physical Chemistry C, 2012, 116, 19958-19967.	1.5	9
22	Ultrasmooth metallic films with buried nanostructures for backside reflectionâ€mode plasmonic biosensing. Annalen Der Physik, 2012, 524, 687-696.	0.9	40
23	Engineering metallic nanostructures for plasmonics and nanophotonics. Reports on Progress in Physics, 2012, 75, 036501.	8.1	427
24	Monolithic Integration of Continuously Tunable Plasmonic Nanostructures. Nano Letters, 2011, 11, 3526-3530.	4.5	59
25	Recent progress in SERS biosensing. Physical Chemistry Chemical Physics, 2011, 13, 11551.	1.3	598
26	Template-Stripped Smooth Ag Nanohole Arrays with Silica Shells for Surface Plasmon Resonance Biosensing. ACS Nano, 2011, 5, 6244-6253.	7.3	203
27	Three-Dimensional Plasmonic Nanofocusing. Nano Letters, 2010, 10, 1369-1373.	4.5	167
28	Plasmonic Nanoholes in a Multichannel Microarray Format for Parallel Kinetic Assays and Differential Sensing. Analytical Chemistry, 2009, 81, 2854-2859.	3.2	112
29	Ultrasmooth Patterned Metals for Plasmonics and Metamaterials. Science, 2009, 325, 594-597.	6.0	770
30	Sub-micron resolution surface plasmon resonance imaging enabled by nanohole arrays with surrounding Bragg mirrors for enhanced sensitivity and isolation. Lab on A Chip, 2009, 9, 382-387.	3.1	126
31	Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells. Applied Physics Letters, 2008, 93, 123308.	1.5	165
32	Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells. , 2008, , .		0
33	Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors. Applied Physics Letters, 2007, 90, 243110.	1.5	254
34	Lateral confinement of surface plasmons and polarization-dependent optical transmission using nanohole arrays with a surrounding rectangular Bragg resonator. Applied Physics Letters, 2007, 91, 253105.	1.5	20