
Antonella Tramutola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2981951/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-Fat Diet Leads to Reduced Protein O-GlcNAcylation and Mitochondrial Defects Promoting the Development of Alzheimer's Disease Signatures. International Journal of Molecular Sciences, 2021, 22, 3746.	4.1	17
2	Protein Oxidative Damage in UV-Related Skin Cancer and Dysplastic Lesions Contributes to Neoplastic Promotion and Progression. Cancers, 2020, 12, 110.	3.7	8
3	The BACH1/Nrf2 Axis in Brain in Down Syndrome and Transition to Alzheimer Disease-Like Neuropathology and Dementia. Antioxidants, 2020, 9, 779.	5.1	21
4	Brain insulin resistance triggers early onset Alzheimer disease in Down syndrome. Neurobiology of Disease, 2020, 137, 104772.	4.4	54
5	Biliverdin Reductase-A Mediates the Beneficial Effects of Intranasal Insulin in Alzheimer Disease. Molecular Neurobiology, 2019, 56, 2922-2943.	4.0	70
6	Greater circulating DPP4 activity is associated with impaired flow-mediated dilatation in adults with type 2 diabetes mellitus. Nutrition, Metabolism and Cardiovascular Diseases, 2019, 29, 1087-1094.	2.6	19
7	Shining a light on defective autophagy by proteomics approaches: implications for neurodegenerative illnesses. Expert Review of Proteomics, 2019, 16, 951-964.	3.0	9
8	Reduced biliverdin reductase-A levels are associated with early alterations of insulin signaling in obesity. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1490-1501.	3.8	29
9	Restoration of aberrant mTOR signaling by intranasal rapamycin reduces oxidative damage: Focus on HNE-modified proteins in a mouse model of down syndrome. Redox Biology, 2019, 23, 101162.	9.0	46
10	Loss of biliverdin reductase-A favors Tau hyper-phosphorylation in Alzheimer's disease. Neurobiology of Disease, 2019, 125, 176-189.	4.4	55
11	Therapeutic potential of rescuing protein O-GlcNAcylation in tau-related pathologies. Expert Review of Neurotherapeutics, 2019, 19, 1-3.	2.8	15
12	Early and Selective Activation and Subsequent Alterations to the Unfolded Protein Response in Down Syndrome Mouse Models. Journal of Alzheimer's Disease, 2018, 62, 347-359.	2.6	19
13	mTOR in Down syndrome: Role in Aß and tau neuropathology and transition to Alzheimer disease-like dementia. Free Radical Biology and Medicine, 2018, 114, 94-101.	2.9	72
14	Intranasal rapamycin ameliorates Alzheimer-like cognitive decline in a mouse model of Down syndrome. Translational Neurodegeneration, 2018, 7, 28.	8.0	76
15	Protein nitration profile of CD3+ lymphocytes from Alzheimer disease patients: Novel hints on immunosenescence and biomarker detection. Free Radical Biology and Medicine, 2018, 129, 430-439.	2.9	20
16	Biliverdin reductase-A impairment links brain insulin resistance with increased Aβ production in an animal model of aging: Implications for Alzheimer disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 3181-3194.	3.8	49
17	Poly-ubiquitin profile in Alzheimer disease brain. Neurobiology of Disease, 2018, 118, 129-141.	4.4	29
18	Proteomic identification of altered protein O-GlcNAcylation in a triple transgenic mouse model of Alzheimer's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 3309-3321.	3.8	29

Antonella Tramutola

#	Article	IF	CITATIONS
19	Role of 4-hydroxy-2-nonenal (HNE) in the pathogenesis of alzheimer disease and other selected age-related neurodegenerative disorders. Free Radical Biology and Medicine, 2017, 111, 253-261.	2.9	190
20	Targeting mTOR to reduce Alzheimer-related cognitive decline: from current hits to future therapies. Expert Review of Neurotherapeutics, 2017, 17, 33-45.	2.8	55
21	Modulation of GLP-1 signaling as a novel therapeutic approach in the treatment of Alzheimer's disease pathology. Expert Review of Neurotherapeutics, 2017, 17, 59-75.	2.8	29
22	Polyubiquitinylation Profile in Down Syndrome Brain Before and After the Development of Alzheimer Neuropathology. Antioxidants and Redox Signaling, 2017, 26, 280-298.	5.4	38
23	It Is All about (U)biquitin: Role of Altered Ubiquitin-Proteasome System and UCHL1 in Alzheimer Disease. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-12.	4.0	88
24	Cathepsin D as a therapeutic target in Alzheimer's disease. Expert Opinion on Therapeutic Targets, 2016, 20, 1393-1395.	3.4	41
25	Activation of p53 in Down Syndrome and in the Ts65Dn Mouse Brain is Associated with a Pro-Apoptotic Phenotype. Journal of Alzheimer's Disease, 2016, 52, 359-371.	2.6	35
26	Impairment of biliverdin reductase-A promotes brain insulin resistance in Alzheimer disease: A new paradigm. Free Radical Biology and Medicine, 2016, 91, 127-142.	2.9	98
27	Increased Mammalian Target of Rapamycin Signaling Contributes to the Accumulation of Protein Oxidative Damage in a Mouse Model of Down's Syndrome. Neurodegenerative Diseases, 2016, 16, 62-68.	1.4	35
28	Oxidative signature of cerebrospinal fluid from mild cognitive impairment and Alzheimer disease patients. Free Radical Biology and Medicine, 2016, 91, 1-9.	2.9	74
29	Alteration of mTOR signaling occurs early in the progression of Alzheimer disease (AD): analysis of brain from subjects with preâ€clinical AD, amnestic mild cognitive impairment and lateâ€stage AD. Journal of Neurochemistry, 2015, 133, 739-749.	3.9	276
30	Age-related changes in the proteostasis network in the brain of the naked mole-rat: Implications promoting healthy longevity. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 2213-2224.	3.8	47
31	Aeration and supplementation with heme and menaquinone affect survival to stresses and antioxidant capability of Lactobacillus caseiÂstrains. LWT - Food Science and Technology, 2015, 60, 817-824.	5.2	30
32	Antiretroviral agents increase NO production in gp120/IFNγ-stimulated cultures of rat microglia via an arginase-dependent mechanism. Journal of Neuroimmunology, 2014, 266, 24-32.	2.3	16
33	Redox proteomics analysis of HNE-modified proteins in Down syndrome brain: clues for understanding the development of Alzheimer disease. Free Radical Biology and Medicine, 2014, 71, 270-280.	2.9	87
34	Rapid detection assay for oxygen consumption in the Lactobacillus casei group. Annals of Microbiology, 2014, 64, 1861-1864.	2.6	14
35	Neuropathological role of PI3K/Akt/mTOR axis in Down syndrome brain. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1144-1153.	3.8	127
36	Transplacental Exposure to AZT Induces Adverse Neurochemical and Behavioral Effects in a Mouse Model: Protection by L-Acetylcarnitine. PLoS ONE, 2013, 8, e55753.	2.5	12

#	Article	IF	CITATIONS
37	Maternal exposure to low levels of corticosterone during lactation increases social play behavior in rat adolescent offspring. Reviews in the Neurosciences, 2012, 23, 723-30.	2.9	2
38	Modulatory effects of the CCR5 antagonist maraviroc on microglial proâ€inflammatory activation elicited by gp120. Journal of Neurochemistry, 2012, 120, 106-114.	3.9	33
39	Trigeminal satellite cells express functional calcitonin gene-related peptide receptors, whose activation enhances interleukin-1β pro-inflammatory effects. Journal of Neuroimmunology, 2011, 237, 39-46.	2.3	44