
Tadahiro Fujitani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2981706/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct synthesis of triazines from alcohols and amidines using supported Pt nanoparticle catalysts <i>via</i> the acceptorless dehydrogenative methodology. Catalysis Science and Technology, 2022, 12, 4679-4687.	4.1	4
2	Selective monoallylation of anilines to <i>N</i> -allyl anilines using reusable zirconium dioxide supported tungsten oxide solid catalyst. RSC Advances, 2022, 12, 11877-11884.	3.6	2
3	Evaluation of Durability Performance of a Ru/MgO Catalyst for Ammonia Decomposition at an on-Site Hydrogen Fueling Station. Industrial & Engineering Chemistry Research, 2022, 61, 5778-5785.	3.7	7
4	Preferential Formation of Squalene Monoepoxides via Microflow Reaction of Squalene and <i>m</i> -Chloroperbenzoic Acid. Chemistry Letters, 2022, 51, 728-730.	1.3	0
5	Preparation of NiO /SiO2–Al2O3 catalysts by a homogenous precipitation method and their catalytic activity for ethylene oligomerization. Microporous and Mesoporous Materials, 2022, 338, 111955.	4.4	6
6	Hydrogenation of Formate Species Using Atomic Hydrogen on a Cu(111) Model Catalyst. Journal of the American Chemical Society, 2022, 144, 12158-12166.	13.7	8
7	Ethylene oligomerization over NiO /SiO2-Al2O3 catalysts prepared by a coprecipitation method. Molecular Catalysis, 2022, 528, 112478.	2.0	1
8	Mechanistic investigation on ethanolâ€toâ€butadiene conversion reaction over metal oxide clusters. International Journal of Quantum Chemistry, 2021, 121, e26494.	2.0	13
9	Kinetic-model-based design of industrial reactor for catalytic hydrogen production via ammonia decomposition. Chemical Engineering Research and Design, 2021, 165, 333-340.	5.6	3
10	Theoretical study of the side reactions of the catalytic conversion of ethanol to butadiene on metal oxide catalysts. Catalysis Communications, 2021, 149, 106239.	3.3	2
11	Ethanol–ethylene conversion mechanism on hydrogen boride sheets probed by <i>in situ</i> infrared absorption spectroscopy. Physical Chemistry Chemical Physics, 2021, 23, 7724-7734.	2.8	16
12	Pt-Catalyzed selective oxidation of alcohols to aldehydes with hydrogen peroxide using continuous flow reactors. Organic and Biomolecular Chemistry, 2021, 19, 1115-1121.	2.8	7
13	High-throughput development of highly active catalyst system to convert bioethanol to 1,3-butadiene. Reaction Chemistry and Engineering, 2021, 6, 1381-1385.	3.7	7
14	Flow reactor approach for the facile and continuous synthesis of efficient Pd@Pt core-shell nanoparticles for acceptorless dehydrogenative synthesis of pyrimidines from alcohols and amidines. Applied Catalysis A: General, 2021, 619, 118158.	4.3	9
15	Effects of rhodium catalyst support and particle size on dry reforming of methane at moderate temperatures. Molecular Catalysis, 2021, 509, 111623.	2.0	9
16	Carboxylative Cyclization of a Propargylic Amine with CO ₂ Catalyzed by a Silica-Coated Magnetite. Chemical and Pharmaceutical Bulletin, 2021, 69, 698-701.	1.3	1
17	Continuous-flow synthesis of Pd@Pt core-shell nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 620, 126607.	4.7	15
18	Silica-catalyzed carboxylative cyclization of propargylic amines with CO2. Tetrahedron Letters, 2020, 61, 152557.	1.4	5

#	Article	IF	CITATIONS
19	Fundamental roles of ZnO and ZrO ₂ in the conversion of ethanol to 1,3-butadiene over ZnO–ZrO ₂ /SiO ₂ . Catalysis Science and Technology, 2020, 10, 7531-7541.	4.1	13
20	Selective <i>N</i> -formylation/ <i>N</i> -methylation of amines and <i>N</i> -formylation of amides and carbamates with carbon dioxide and hydrosilanes: promotion of the basic counter anions of the zinc catalyst. Green Chemistry, 2020, 22, 8414-8422.	9.0	38
21	Calcium carbide as a dehydrating agent for the synthesis of carbamates, glycerol carbonate, and cyclic carbonates from carbon dioxide. Green Chemistry, 2020, 22, 4231-4239.	9.0	47
22	Enhancement of the Catalytic Performance and Active Site Clarification of Cu/ZnO Based Catalysts for Methanol Synthesis by CO ₂ Hydrogenation. Journal of the Japan Petroleum Institute, 2020, 63, 43-51.	0.6	8
23	Effect of Catalyst Preparation Method on Ammonia Decomposition Reaction over Ru/MgO Catalyst. Bulletin of the Chemical Society of Japan, 2020, 93, 1186-1192.	3.2	16
24	H ₂ O Dissociation at the Perimeter Interface between Gold Nanoparticles and TiO ₂ Is Crucial for Oxidation of CO. ACS Catalysis, 2020, 10, 2517-2521.	11.2	29
25	Cracking of squalene into isoprene as chemical utilization of algae oil. Green Chemistry, 2020, 22, 3083-3087.	9.0	6
26	Chemoselective Epoxidation of Allyloxybenzene by Hydrogen Peroxide Over MFIâ€Type Titanosilicate. European Journal of Organic Chemistry, 2020, 2020, 2260-2263.	2.4	2
27	Epoxidation of microalgal biomass-derived squalene with hydrogen peroxide using solid heterogeneous tungsten-based catalyst. Tetrahedron, 2020, 76, 131109.	1.9	4
28	Hydrogenated Borophene Shows Catalytic Activity as Solid Acid. ACS Omega, 2019, 4, 14100-14104.	3.5	42
29	Carboxylative Cyclization of Propargylic Amines with Carbon DioxideÂ-Catalyzed by Poly(amidoamine)-Dendrimer-Encapsulated Gold Nanoparticles. Synlett, 2019, 30, 1914-1918.	1.8	8
30	Effects of promoters on the performance of a VO /SiO2 catalyst for the oxidation of methane to formaldehyde. Applied Catalysis A: General, 2019, 577, 44-51.	4.3	19
31	Carbon Dioxide Hydrosilylation to Methane Catalyzed by Zinc and Other First-Row Transition Metal Salts. Bulletin of the Chemical Society of Japan, 2019, 92, 1945-1949.	3.2	15
32	Dehydrative Allylation of Amine with Allyl Alcohol by Titanium Oxide Supported Molybdenum Oxide Catalyst. Synlett, 2019, 30, 287-292.	1.8	7
33	Direct transformation of terminal alkenes with H2O into primary alcohols over metal oxide-supported Pd catalysts. Applied Catalysis B: Environmental, 2019, 246, 100-110.	20.2	11
34	Efficient synthesis of 2-oxazolidinones and quinazoline-2,4(1H,3H)-diones from CO2 catalyzed by tetrabutylammonium fluoride. Tetrahedron, 2018, 74, 2914-2920.	1.9	29
35	Conversion of Bioethanol to Propylene over ZSM-5 Zeolites. Journal of the Japan Petroleum Institute, 2018, 61, 20-27.	0.6	5
36	Reverse water gas shift reaction using supported ionic liquid phase catalysts. Applied Catalysis B: Environmental, 2018, 232, 299-305.	20.2	35

#	Article	IF	CITATIONS
37	Vapor Phase Catalytic Transfer Hydrogenation (CTH) of Levulinic Acid to Î ³ -Valerolactone Over Copper Supported Catalysts Using Formic Acid as Hydrogen Source. Catalysis Letters, 2018, 148, 348-358.	2.6	54
38	Versatile etherification of alcohols with allyl alcohol by a titanium oxide-supported molybdenum oxide catalyst: gradual generation from titanium oxide and molybdenum oxide. Catalysis Science and Technology, 2018, 8, 4618-4625.	4.1	8
39	Phosgene-Free Synthesis of Carbamates Using CO2 and Titanium Alkoxides. Bulletin of the Chemical Society of Japan, 2018, 91, 1481-1486.	3.2	20
40	Adsorption and thermal reactivity of dimethyl trisulfide on a Au(111) single-crystal surface. Surface Science, 2018, 677, 186-192.	1.9	5
41	Catalytic transfer hydrogenation of biomass-derived levulinic acid and its esters to γ-valerolactone over ZrO 2 catalyst supported on SBA-15 silica. Catalysis Today, 2017, 281, 418-428.	4.4	129
42	Effect of SiO ₂ support properties on the performance of Cu–SiO ₂ catalysts for the hydrogenation of levulinic acid to gamma valerolactone using formic acid as a hydrogen source. Catalysis Science and Technology, 2017, 7, 3073-3083.	4.1	62
43	Catalytic performance of H-ZSM-5 zeolites for conversion of ethanol or ethylene to propylene: Effect of reaction pressure and SiO2/Al2O3 ratio. Catalysis Communications, 2017, 91, 62-66.	3.3	36
44	Comment on "Active sites for CO ₂ hydrogenation to methanol on Cu/ZnO catalysts― Science, 2017, 357, .	12.6	69
45	Chemisorption-Induced Activation of MgCl ₂ Film as Realistic Route for Heterogeneous Ziegler–Natta Surfaces under Ultrahigh Vacuum. Journal of Physical Chemistry C, 2017, 121, 24085-24092.	3.1	2
46	Highly selective catalytic conversion of ethanol to propylene over yttrium-modified zirconia catalyst. Catalysis Communications, 2017, 90, 10-13.	3.3	32
47	Conversion of levulinic acid to BTX over different zeolite catalysts. Catalysis Communications, 2017, 88, 26-29.	3.3	28
48	Kinetic Analysis of Decomposition of Ammonia over Nickel and Ruthenium Catalysts. Journal of Chemical Engineering of Japan, 2016, 49, 22-28.	0.6	50
49	Role of metal oxide supports in NH 3 decomposition over Ni catalysts. Applied Catalysis A: General, 2016, 524, 45-49.	4.3	65
50	Removal of Phosphate from Aqueous Solution Using Layered Double Hydroxide Prepared from Waste Iron-Making Slag. Bulletin of the Chemical Society of Japan, 2016, 89, 472-480.	3.2	22
51	Mechanism and active sites of CO oxidation over single-crystal Au surfaces and a Au/TiO 2 (110) model surface. Chinese Journal of Catalysis, 2016, 37, 1676-1683.	14.0	8
52	Effects of particle size on catalytic conversion of ethanol to propylene over H-ZSM-5 catalysts—Smaller is better. Catalysis Communications, 2016, 73, 27-33.	3.3	30
53	Effect of oxomolybdate species dispersion on direct methanol oxidation to dimethoxymethane over MoO _{<i>x</i>} /TiO ₂ catalysts. Energy Science and Engineering, 2015, 3, 115-125.	4.0	17
54	Conversion of Methyl Lactate to Acrylates over Modified NaY Zeolite Catalysts. Bulletin of the Chemical Society of Japan, 2015, 88, 1581-1583.	3.2	3

Tadahiro Fujitani

#	Article	IF	CITATIONS
55	A Career in Catalysis: Masatake Haruta. ACS Catalysis, 2015, 5, 4699-4707.	11.2	74
56	Microscope Analysis of Au–Pd/TiO2 Glycerol Oxidation Catalysts Prepared by Deposition–Precipitation Method. Catalysis Letters, 2014, 144, 2167-2175.	2.6	21
57	Esterification of levulinic acid with ethanol over sulfated Si-doped ZrO2 solid acid catalyst: Study of the structure–activity relationships. Applied Catalysis A: General, 2014, 476, 186-196.	4.3	104
58	Effect of Water on Low-Temperature CO Oxidation Over a Au/Al2O3 Model Catalyst. Catalysis Letters, 2014, 144, 1113-1117.	2.6	2
59	Esterification of levulinic acid with ethanol over sulfated mesoporous zirconosilicates: Influences of the preparation conditions on the structural properties and catalytic performances. Catalysis Today, 2014, 237, 18-28.	4.4	75
60	Catalytic transfer hydrogenation of levulinate esters to Î ³ -valerolactone over supported ruthenium hydroxide catalysts. RSC Advances, 2014, 4, 45848-45855.	3.6	55
61	Liquid phase oxidation of glycerol in batch and flow-type reactors with oxygen over Au–Pd nanoparticles stabilized in anion-exchange resin. RSC Advances, 2014, 4, 33416-33423.	3.6	25
62	Role of Water in CO Oxidation on Gold Catalysts. Catalysis Letters, 2014, 144, 1475-1486.	2.6	66
63	Catalytic Conversion of Levulinic Acid and Its Esters to γ-Valerolactone over Silica-Supported Zirconia Catalysts. Bulletin of the Chemical Society of Japan, 2014, 87, 1252-1254.	3.2	24
64	Production of propylene from ethanol over ZSM-5 co-modified with zirconium and phosphorus. Reaction Kinetics, Mechanisms and Catalysis, 2013, 109, 221-231.	1.7	24
65	Difference between the mechanisms of propylene production from methanol and ethanol over ZSM-5 catalysts. Applied Catalysis A: General, 2013, 467, 380-385.	4.3	47
66	A novel conversion process for waste slag: synthesis of calcium silicate hydrate from blast furnace slag and its application as a versatile adsorbent for water purification. Journal of Materials Chemistry A, 2013, 1, 7199.	10.3	72
67	Al-modified mesoporous silica for efficient conversion of methanol to dimethyl ether. RSC Advances, 2013, 3, 5895.	3.6	8
68	Development of Simulator for Bio-Propylene Synthesis Process. Kagaku Kogaku Ronbunshu, 2013, 39, 126-131.	0.3	1
69	Heterogeneous Catalysis by Gold. Advances in Catalysis, 2012, 55, 1-126.	0.2	139
70	Influence of Au and TiO2 structures on hydrogen dissociation over TiO2/Au(100). Surface Science, 2012, 606, 1581-1585.	1.9	8
71	Effects of added phosphorus on conversion of ethanol to propylene over ZSM-5 catalysts. Applied Catalysis A: General, 2012, 423-424, 162-167.	4.3	67
72	Adsorptive Removal of Hydrogen Sulfide from Bioethanol-Derived Propylene. Journal of Chemical Engineering of Japan, 2012, 45, 955-959.	0.6	0

#	Article	IF	CITATIONS
73	Active Sites for Hydrogen Dissociation over TiO _{<i>x</i>} /Au(111) Surfaces. Journal of Physical Chemistry C, 2011, 115, 16074-16080.	3.1	41
74	Effect of gold oxidation state on the epoxidation and hydrogenation of propylene on Au/TS-1. Journal of Catalysis, 2011, 280, 40-49.	6.2	60
75	Noble Metal Collection through Air: Perovskite Oxide as a Novel Collector. ChemPhysChem, 2011, 12, 109-111.	2.1	15
76	Mechanism and Active Sites of the Oxidation of CO over Au/TiO ₂ . Angewandte Chemie - International Edition, 2011, 50, 10144-10147.	13.8	206
77	Synthesis of high-silica CHA type zeolite by interzeolite conversion of FAU type zeolite in the presence of seed crystals. Microporous and Mesoporous Materials, 2011, 144, 91-96.	4.4	107
78	Effect of acidity of ZSM-5 zeolite on conversion of ethanol to propylene. Applied Catalysis A: General, 2011, 399, 262-267.	4.3	66
79	Conversion of ethanol to propylene over HZSM-5 type zeolites containing alkaline earth metals. Applied Catalysis A: General, 2010, 383, 89-95.	4.3	81
80	Multinuclear solid-state NMR study of the coordinative nature of alkylaluminum cocatalyst on Phillips CrOx/SiO2 catalyst. Applied Catalysis A: General, 2010, 389, 186-194.	4.3	10
81	Study of active sites on the MFI zeolite catalysts for the transformation of ethanol into propylene. Journal of Molecular Catalysis A, 2010, 328, 114-118.	4.8	48
82	Phosphorus-modified ZSM-5 for conversion of ethanol to propylene. Applied Catalysis A: General, 2010, 384, 201-205.	4.3	126
83	Adsorption and Reaction Properties of NO and CO over the Ir and Rh Surfaces. Journal of the Vacuum Society of Japan, 2009, 52, 61-66.	0.3	1
84	Propene Epoxidation with Dioxygen Catalyzed by Gold Clusters. Angewandte Chemie - International Edition, 2009, 48, 7862-7866.	13.8	206
85	Hydrogen Dissociation by Gold Clusters. Angewandte Chemie - International Edition, 2009, 48, 9515-9518.	13.8	277
86	Copolymerization of ethylene and cyclopentene with the Phillips CrO _{<i>x</i>} /SiO ₂ catalyst in the presence of an aluminum alkyl cocatalyst. Journal of Applied Polymer Science, 2009, 111, 1869-1877.	2.6	21
87	Production of Propylene from Ethanol Over ZSM-5 Zeolites. Catalysis Letters, 2009, 131, 364-369.	2.6	113
88	Selective Dissociation of O3 and Adsorption of CO on Various Au Single Crystal Surfaces. Catalysis Letters, 2009, 129, 400-403.	2.6	35
89	Adsorption Behavior and Reaction Properties of NO and CO on Ir(111) and Rh(111). Catalysis Surveys From Asia, 2009, 13, 22-29.	2.6	13
90	Catalytic Performance of Aged Rh/CeO2–ZrO2 for NO–C3H6–O2 Reaction Under a Stoichiometric Condition. Topics in Catalysis, 2009, 52, 1868-1872.	2.8	26

#	Article	IF	CITATIONS
91	Synthesis of LEV zeolite by interzeolite conversion method and its catalytic performance in ethanol to olefins reaction. Microporous and Mesoporous Materials, 2009, 122, 149-154.	4.4	101
92	Effect of composition and promoters in Au/TS-1 catalysts for direct propylene epoxidation using H2 and O2. Catalysis Today, 2009, 147, 186-195.	4.4	95
93	CRYSTAF Analysis of Polyethylene Synthesized with Phillips Catalyst. Macromolecular Symposia, 2009, 285, 74-80.	0.7	6
94	Surface-Initiated Gas-Phase Epoxidation of Propylene with Molecular Oxygen by Silica-Supported Molybdenum Oxide: Effects of Addition of C3H8 or NO and Reactor Design. Catalysis Letters, 2008, 121, 33-38.	2.6	13
95	Role of zeolite structure on NO reduction with diesel fuel over Pt supported zeolite catalysts. Microporous and Mesoporous Materials, 2008, 111, 488-492.	4.4	14
96	Kinetics and mechanism of NO reduction with CO on Ir surfaces. Journal of Catalysis, 2008, 253, 139-147.	6.2	29
97	Oxidation of propane to propylene oxide on gold catalysts. Journal of Catalysis, 2008, 255, 114-126.	6.2	67
98	Mechanistic study of propane selective oxidation with H2 and O2 on Au/TS-1. Journal of Catalysis, 2008, 257, 32-42.	6.2	46
99	Epoxidation of propylene with H2 and O2 in the explosive regime in a packed-bed catalytic membrane reactor. Journal of Catalysis, 2008, 257, 1-4.	6.2	253
100	Catalytic performance of rhodium supported on ceria–zirconia mixed oxides for reduction of NO by propene. Journal of Catalysis, 2008, 259, 223-231.	6.2	71
101	Transient Technique for Identification of True Reaction Intermediates:  Hydroperoxide Species in Propylene Epoxidation on Gold/Titanosilicate Catalysts by X-ray Absorption Fine Structure Spectroscopy. Journal of Physical Chemistry C, 2008, 112, 1115-1123.	3.1	177
102	Synthesis of High-silica CHA Zeolite from FAU Zeolite in the Presence of Benzyltrimethylammonium Hydroxide. Chemistry Letters, 2008, 37, 908-909.	1.3	77
103	Catalytic Performance of Monolithic Ir/SiO ₂ Based Catalysts for Selective Reduction of NO with CO. Journal of the Japan Petroleum Institute, 2007, 50, 94-101.	0.6	4
104	Kinetic Study of Propylene Epoxidation with H ₂ and O ₂ over a Gold/Mesoporous Titanosilicate Catalyst. Journal of Physical Chemistry C, 2007, 111, 17427-17436.	3.1	35
105	Promotive effect of Nb2O5 on the catalytic activity of Ir/SiO2 for NO reduction with CO under oxygen-rich conditions. Catalysis Communications, 2007, 8, 885-888.	3.3	24
106	Adsorption and reactivity of SO2 on Ir(111) and Rh(111). Surface Science, 2007, 601, 1615-1622.	1.9	19
107	Selective reduction of NO2 with acetaldehyde over Co/Al2O3 in lean conditions. Journal of Molecular Catalysis A, 2007, 261, 6-11.	4.8	10
108	Direct propylene epoxidation over barium-promoted Au/Ti-TUD catalysts with H2 and O2: Effect of Au particle size. Journal of Catalysis, 2007, 250, 350-359.	6.2	132

#	Article	IF	CITATIONS
109	Influence of Al2O3 support on the activity of Ag/Al2O3 catalysts for SCR of NO with decane. Catalysis Letters, 2007, 114, 96-102.	2.6	39
110	Enhancing Effect of H2 on the Selective Reduction of NO with CO over Ba-doped Ir/WO3/SiO2 Catalyst. Catalysis Letters, 2007, 118, 159-164.	2.6	7
111	Enhanced activity of Ba-doped Ir/SiO2 catalyst for NO reduction with CO in the presence of O2 and SO2. Catalysis Communications, 2006, 7, 423-426.	3.3	32
112	Excellent Promoting Effect of Ba Addition on the Catalytic Activity of Ir/WO3–SiO2for the Selective Reduction of NO with CO. Chemistry Letters, 2006, 35, 420-421.	1.3	17
113	Direct decomposition of nitrogen monoxide over a K-deposited Co(0001) surface: Comparison to K-doped cobalt oxide catalysts. Journal of Electron Spectroscopy and Related Phenomena, 2006, 150, 150-154.	1.7	10
114	DFT studies of interaction of Ir cluster with O2, CO and NO. Catalysis Today, 2006, 111, 311-315.	4.4	18
115	Effect of iridium dispersion on the catalytic activity of Ir/SiO2 for the selective reduction of NO with CO in the presence of O2 and SO2. Journal of Molecular Catalysis A, 2006, 256, 143-148.	4.8	41
116	Role of tungsten in promoting selective reduction of NO with CO over Ir/WO3–SiO2 catalysts. Catalysis Letters, 2006, 112, 133-138.	2.6	23
117	Adsorption behavior and reaction properties of NO and CO on Rh(111). Surface Science, 2006, 600, 3235-3242.	1.9	51
118	Selective Catalytic Reduction of Nitrogen Monoxide with H ₂ or CO as Reductant in Presence of SO ₂ . Journal of the Japan Petroleum Institute, 2006, 49, 219-230.	0.6	6
119	Rapid Quantitative Analysis Method for Products of Gas Phase Oxidation of Propylene. Journal of the Japan Petroleum Institute, 2006, 49, 151-155.	0.6	Ο
120	Structure and NO reactivity of Zr-deposited Pd surfaces. Applied Surface Science, 2005, 240, 77-84.	6.1	0
121	Promotional effect of SO2 on the activity of Ir/SiO2 for NO reduction with CO under oxygen-rich conditions. Journal of Catalysis, 2005, 229, 197-205.	6.2	83
122	Effects of added 3d transition-metals on Ag-based catalysts for direct epoxidation of propylene by oxygen. Applied Catalysis A: General, 2005, 294, 34-39.	4.3	39
123	Catalytic Active Site for NO Decomposition Elucidated by Surface Science and Real Catalyst. Catalysis Surveys From Asia, 2005, 9, 207-215.	2.6	22
124	Site-Selective Deposition of Au Nanoparticles on Au Islands on Highly Oriented Pyrolytic Graphite Substrate Using DNA-Based Method. Japanese Journal of Applied Physics, 2005, 44, 5400-5402.	1.5	2
125	A density functional study of NO adsorption and decomposition on Ni(211) and Pd(211) surfaces. Journal of Chemical Physics, 2005, 122, 014703.	3.0	15
126	Adsorption and Reactions of NO on Clean and CO-Precovered Ir(111). Journal of Physical Chemistry B, 2005, 109, 17603-17607.	2.6	48

#	Article	IF	CITATIONS
127	Studies of NO Adsorption on Pt(110)-(1×2) and (1×1) Surfaces Using Density Functional Theory. Journal of Physical Chemistry B, 2005, 109, 10312-10318.	2.6	15
128	Size and density of Au particles deposited on TiO2(110)-(1×1) and cross-linked (1×2) surfaces. Surface Science, 2004, 562, 1-6.	1.9	46
129	Adsorption and decomposition of NO on stepped and K-deposited Pd surfaces: a comparison of NO stretching vibrational frequencies calculated by density functional theory and measured by infrared spectroscopy. Surface Science, 2004, 571, 102-116.	1.9	13
130	On the Issue of the Active Site and the Role of ZnO in Cu/ZnO Methanol Synthesis Catalysts. Topics in Catalysis, 2003, 22, 277-285.	2.8	242
131	NO Decomposition on an Mn-Deposited Pd(100) Surface. Catalysis Letters, 2003, 87, 91-96.	2.6	4
132	Adsorption and decomposition of NO on K-deposited Pd(111). Surface Science, 2003, 544, 45-50.	1.9	13
133	Effect of surface structure of supported palladium catalysts on the activity for direct decomposition of nitrogen monoxide. Journal of Catalysis, 2003, 218, 405-410.	6.2	33
134	Methanol Synthesis from CO and CO2Hydrogenations over Supported Palladium Catalysts. Bulletin of the Chemical Society of Japan, 2002, 75, 1393-1398.	3.2	56
135	Comprehensive study combining surface science and real catalyst for NO direct decomposition. Chemical Communications, 2002, , 2816-2817.	4.1	22
136	Oxidation of a Zn-deposited Cu(111) surface studied by XPS and STM. Surface Science, 2002, 514, 261-266.	1.9	49
137	Adsorption and decomposition of NO on Pd surfaces. Surface Science, 2002, 514, 409-413.	1.9	47
138	Formation Process of a Cuâ^'Zn Surface Alloy on Cu(111) Investigated by Scanning Tunneling Microscopy. Journal of Physical Chemistry B, 2002, 106, 7627-7633.	2.6	42
139	Structure-Dependent Kinetics for Synthesis and Decomposition of Formate Species over Cu(111) and Cu(110) Model Catalysts. Journal of Physical Chemistry B, 2001, 105, 1355-1365.	2.6	79
140	The role of ZnO in Cu/ZnO methanol synthesis catalysts — morphology effect or active site model?. Applied Catalysis A: General, 2001, 208, 163-167.	4.3	159
141	Title is missing!. Catalysis Letters, 2001, 73, 27-31.	2.6	39
142	Advances in joint research between NIRE and RITE for developing a novel technology for methanol synthesis from CO2 and H2. Applied Organometallic Chemistry, 2000, 14, 763-772.	3.5	55
143	Synthesis and decomposition of formate on a Cu(111) surface — kinetic analysis. Journal of Molecular Catalysis A, 2000, 155, 3-11.	4.8	31
144	The chemical modification seen in the Cu/ZnO methanol synthesis catalysts. Applied Catalysis A: General, 2000, 191, 111-129.	4.3	255

#	Article	IF	CITATIONS
145	Synthesis and Decomposition of Formate on a Cu/SiO2 Catalyst: Comparison to Cu(111). Journal of Catalysis, 2000, 191, 423-429.	6.2	29
146	Scanning Tunneling Microscopy Study of Formate Species Synthesized from CO2 Hydrogenation and Prepared by Adsorption of Formic Acid over Cu(111). Journal of Physical Chemistry B, 2000, 104, 1235-1240.	2.6	53
147	Ab initio study of surface structural changes during methanol synthesis over Zn/Cu(111). Chemical Physics Letters, 1999, 304, 91-97.	2.6	48
148	Title is missing!. Catalysis Letters, 1999, 63, 245-247.	2.6	13
149	The effect of ZnO in methanol synthesis catalysts on Cu dispersion and the specific activity. Catalysis Letters, 1998, 56, 119-124.	2.6	214
150	The synthesis of methanol and the reverse water-gas shift reaction over Zn-deposited Cu(100) and Cu(110) surfaces: comparison with Zn/Cu(111). Surface Science, 1998, 400, 387-400.	1.9	79
151	The kinetics and mechanism of methanol synthesis by hydrogenation of CO2 over a Zn-deposited Cu(111) surface. Surface Science, 1997, 383, 285-298.	1.9	185
152	Creation of the active site for methanol synthesis on a Cu/SiO2 catalyst. Catalysis Letters, 1997, 49, 175-179.	2.6	36
153	STM Study of Formate Species Synthesized on Cu(111) at Atmospheric Pressure Hyomen Kagaku, 1997, 18, 478-484.	0.0	6
154	A Surface Science Investigation of Methanol Synthesis over a Zn-Deposited Polycrystalline Cu Surface. Journal of Catalysis, 1996, 160, 65-75.	6.2	121
155	The synergy between Cu and ZnO in methanol synthesis catalysts. Catalysis Letters, 1996, 38, 157-163.	2.6	125
156	The role of ZnO in Cu/ZnO methanol synthesis catalysts. Catalysis Today, 1996, 28, 223-230.	4.4	129
157	Development of copper/zinc oxide-based multicomponent catalysts for methanol synthesis from carbon dioxide and hydrogen. Applied Catalysis A: General, 1996, 138, 311-318.	4.3	295
158	Model studies of methanol synthesis on copper catalysts. Studies in Surface Science and Catalysis, 1996, 101, 1389-1399.	1.5	61
159	Development of an active Ga2O3 supported palladium catalyst for the synthesis of methanol from carbon dioxide and hydrogen. Applied Catalysis A: General, 1995, 125, L199-L202.	4.3	164
160	Development of Cu/ZnO-based high performance catalysts for methanol synthesis by CO2 hydrogenation. Energy Conversion and Management, 1995, 36, 577-580.	9.2	61
161	Role of ZnO in promoting methanol synthesis over a physically-mixed Cu/SiO2 and ZnO/SiO2 catalyst. Energy Conversion and Management, 1995, 36, 649-652.	9.2	12
162	Methanol synthesis by the hydrogenation of CO2 over Zn-deposited Cu(111) and Cu(110) surfaces. Catalysis Letters, 1995, 35, 297-302.	2.6	40

Tadahiro Fujitani

#	ARTICLE	IF	CITATIONS
163	Methanol synthesis over a Zn-deposited copper model catalyst. Catalysis Letters, 1995, 31, 325-331.	2.6	72
164	Evidence for the migration of ZnOx in a Cu/ZnO methanol synthesis catalyst. Catalysis Letters, 1994, 27, 67-78.	2.6	124
165	The role of metal oxides in promoting a copper catalyst for methanol synthesis. Catalysis Letters, 1994, 25, 271-276.	2.6	140
166	Effect of Support on Methanol Synthesis over Cu Catalyst. Chemistry Letters, 1994, 23, 1877-1880.	1.3	12
167	Methanol Synthesis from CO2and H2over Cu/ZnO/Ga2O3Catalyst. Chemistry Letters, 1993, 22, 1079-1080.	1.3	24
168	Preparation of Highly Active Palladium Catalyst Supported on Silica by Ion Exchange Method Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1991, 1991, 1475-1481.	0.1	1
169	The carrier effect on the catalytic activity of supported palladium catalyst Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1991, 1991, 261-268.	0.1	3
170	Preparation of Highly Active Palladium Catalyst Supported on Silica by Ion Exchange Method. Chemistry Letters, 1991, 20, 827-830.	1.3	1
171	Effects of starting sources on the structure and catalytic activity of nickel-supported on silica Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1990, 1990, 12-16.	0.1	1
172	Effects of nickel sources on the structure and catalytic activity of nickel supported on alumina Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1990, 1990, 913-918.	0.1	1
173	The Effect of Starting Source on the Concentration Distribution of Nickel Supported on Alumina. Bulletin of the Chemical Society of Japan, 1989, 62, 2753-2755.	3.2	6
174	Mechanistic Difference of Methanol-to-Olefins (MTO) and Ethanol-to-Olefins (ETO) Reactions over H-ZSM-5 Catalysts. Advanced Materials Research, 0, 538-541, 2417-2420.	0.3	3