Yanping Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2981544/publications.pdf

Version: 2024-02-01

414414 218677 3,542 31 26 32 h-index citations g-index papers 33 33 33 4422 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Strong Correlation between the Dynamic Chemical State and Product Profile of Carbon Dioxide Electroreduction. ACS Applied Materials & Samp; Interfaces, 2022, 14, 22681-22696.	8.0	30
2	In Situ Identifying the Dynamic Structure behind Activity of Atomically Dispersed Platinum Catalyst toward Hydrogen Evolution Reaction. Small, 2021, 17, e2005713.	10.0	38
3	Linking the Dynamic Chemical State of Catalysts with the Product Profile of Electrocatalytic CO ₂ Reduction. Angewandte Chemie, 2021, 133, 17394-17407.	2.0	42
4	Linking the Dynamic Chemical State of Catalysts with the Product Profile of Electrocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2021, 60, 17254-17267.	13.8	185
5	Activating Both Basal Plane and Edge Sites of Layered Cobalt Oxides for Boosted Water Oxidation. Advanced Functional Materials, 2021, 31, 2103569.	14.9	28
6	Emerging dynamic structure of electrocatalysts unveiled by <i>in situ</i> X-ray diffraction/absorption spectroscopy. Energy and Environmental Science, 2021, 14, 1928-1958.	30.8	179
7	<i>In situ</i> X-ray diffraction and X-ray absorption spectroscopy of electrocatalysts for energy conversion reactions. Journal of Materials Chemistry A, 2020, 8, 19079-19112.	10.3	98
8	Dynamic Reoxidation/Reduction-Driven Atomic Interdiffusion for Highly Selective CO ₂ Reduction toward Methane. Journal of the American Chemical Society, 2020, 142, 12119-12132.	13.7	200
9	<i>In Situ</i> / <i>Operando</i> Studies for Designing Next-Generation Electrocatalysts. ACS Energy Letters, 2020, 5, 1281-1291.	17.4	309
10	A Selfâ€Assembled Heteroâ€Structured Inverseâ€Spinel and Antiâ€Perovskite Nanocomposite for Ultrafast Water Oxidation. Small, 2020, 16, e2002089.	10.0	40
11	Electrochemical Reduction of CO ₂ to Ethane through Stabilization of an Ethoxy Intermediate. Angewandte Chemie - International Edition, 2020, 59, 19649-19653.	13.8	122
12	Anionic Effects on Metal Pair of Se-Doped Nickel Diphosphide for Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 14247-14255.	6.7	30
13	In Situ Spatially Coherent Identification of Phosphide-Based Catalysts: Crystallographic Latching for Highly Efficient Overall Water Electrolysis. ACS Energy Letters, 2019, 4, 2813-2820.	17.4	75
14	An Amorphous Nickel–Ironâ€Based Electrocatalyst with Unusual Local Structures for Ultrafast Oxygen Evolution Reaction. Advanced Materials, 2019, 31, e1900883.	21.0	243
15	Operando Unraveling of the Structural and Chemical Stability of P-Substituted CoSe ₂ Electrocatalysts toward Hydrogen and Oxygen Evolution Reactions in Alkaline Electrolyte. ACS Energy Letters, 2019, 4, 987-994.	17.4	363
16	Rationally Designed Hierarchically Structured Tungsten Nitride and Nitrogenâ€Rich Grapheneâ€Like Carbon Nanocomposite as Efficient Hydrogen Evolution Electrocatalyst. Advanced Science, 2018, 5, 1700603.	11.2	128
17	A Universal Strategy to Design Superior Waterâ€Splitting Electrocatalysts Based on Fast In Situ Reconstruction of Amorphous Nanofilm Precursors. Advanced Materials, 2018, 30, e1804333.	21.0	108
18	Ultrahigh-performance tungsten-doped perovskites for the oxygen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 9854-9859.	10.3	82

#	Article	lF	CITATIONS
19	AÂsurface-modified antiperovskite asÂan electrocatalyst for water oxidation. Nature Communications, 2018, 9, 2326.	12.8	87
20	Enhancing Electrocatalytic Activity for Hydrogen Evolution by Strongly Coupled Molybdenum Nitride@Nitrogen-Doped Carbon Porous Nano-Octahedrons. ACS Catalysis, 2017, 7, 3540-3547.	11.2	306
21	Adsorption-based synthesis of Co 3 O 4 /C composite anode for high performance lithium-ion batteries. Energy, 2017, 125, 569-575.	8.8	34
22	Fructoseâ€Derived Hollow Carbon Nanospheres with Ultrathin and Ordered Mesoporous Shells as Cathodes in Lithium–Sulfur Batteries for Fast Energy Storage. Advanced Sustainable Systems, 2017, 1, 1700081.	5. 3	27
23	An extremely active and durable Mo 2 C/graphene-like carbon based electrocatalyst for hydrogen evolution reaction. Materials Today Energy, 2017, 6, 230-237.	4.7	18
24	Two orders of magnitude enhancement in oxygen evolution reactivity on amorphous Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O _{3â^Î} nanofilms with tunable oxidation state. Science Advances, 2017, 3, e1603206.	10.3	170
25	Highly Active Carbon/αâ€MnO ₂ Hybrid Oxygen Reduction Reaction Electrocatalysts. ChemElectroChem, 2016, 3, 1760-1767.	3.4	42
26	Surfactant-free self-assembly of reduced graphite oxide-MoO2 nanobelt composites used as electrode for lithium-ion batteries. Electrochimica Acta, 2016, 211, 972-981.	5.2	53
27	Rational confinement of molybdenum based nanodots in porous carbon for highly reversible lithium storage. Journal of Materials Chemistry A, 2016, 4, 10403-10408.	10.3	16
28	A hierarchical Zn ₂ Mo ₃ O ₈ nanodots–porous carbon composite as a superior anode for lithium-ion batteries. Chemical Communications, 2016, 52, 9402-9405.	4.1	29
29	Three Strongly Coupled Allotropes in a Functionalized Porous Allâ€Carbon Nanocomposite as a Superior Anode for Lithiumâ€ion Batteries. ChemElectroChem, 2016, 3, 698-703.	3.4	23
30	Facile synthesis of a MoO2–Mo2C–C composite and its application as favorable anode material for lithium-ion batteries. Journal of Power Sources, 2016, 307, 552-560.	7.8	98
31	Magnetic core–shell CuFe2O4@C3N4 hybrids for visible light photocatalysis of Orange II. Journal of Hazardous Materials, 2015, 297, 224-233.	12.4	337