
Nicolas Escriou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2981392/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of a Novel Coronavirus in Patients with Severe Acute Respiratory Syndrome. New England Journal of Medicine, 2003, 348, 1967-1976.	13.9	3,971
2	Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet, The, 2003, 362, 263-270.	6.3	956
3	Involvement of Toll-like Receptor 3 in the Immune Response of Lung Epithelial Cells to Double-stranded RNA and Influenza A Virus. Journal of Biological Chemistry, 2005, 280, 5571-5580.	1.6	591
4	Detrimental Contribution of the Toll-Like Receptor (TLR)3 to Influenza A Virus–Induced Acute Pneumonia. PLoS Pathogens, 2006, 2, e53.	2.1	447
5	Anti-Severe Acute Respiratory Syndrome Coronavirus Spike Antibodies Trigger Infection of Human Immune Cells via a pH- and Cysteine Protease-Independent FcγR Pathway. Journal of Virology, 2011, 85, 10582-10597.	1.5	294
6	Antigen Crosspresentation by Human Plasmacytoid Dendritic Cells. Immunity, 2007, 27, 481-492.	6.6	248
7	A comparison of four serological assays for detecting anti–SARS-CoV-2 antibodies in human serum samples from different populations. Science Translational Medicine, 2020, 12, .	5.8	228
8	Differential maturation and subcellular localization of severe acute respiratory syndrome coronavirus surface proteins S, M and E. Journal of General Virology, 2005, 86, 1423-1434.	1.3	215
9	Codon conservation in the influenza A virus genome defines RNA packaging signals. Nucleic Acids Research, 2007, 35, 1897-1907.	6.5	165
10	Plasmacytoid dendritic cells efficiently cross-prime naive T cells in vivo after TLR activation. Blood, 2008, 112, 3713-3722.	0.6	164
11	Hemagglutinin Residues of Recent Human A(H3N2) Influenza Viruses That Contribute to the Inability to Agglutinate Chicken Erythrocytes. Virology, 2001, 289, 74-85.	1.1	140
12	SARS-CoV-2 Natural Transmission from Human to Cat, Belgium, March 2020. Emerging Infectious Diseases, 2020, 26, 3069-3071.	2.0	140
13	Inhibition of Pyrimidine Biosynthesis Pathway Suppresses Viral Growth through Innate Immunity. PLoS Pathogens, 2013, 9, e1003678.	2.1	137
14	Genetic analysis of the compatibility between polymerase proteins from human and avian strains of influenza A viruses. Microbiology (United Kingdom), 2000, 81, 1283-1291.	0.7	134
15	A Human Coronavirus Responsible for the Common Cold Massively Kills Dendritic Cells but Not Monocytes. Journal of Virology, 2012, 86, 7577-7587.	1.5	117
16	Murine plasmacytoid dendritic cells induce effector/memory CD8+ T-cell responses in vivo after viral stimulation. Blood, 2004, 104, 1808-1815.	0.6	116
17	Intranasal vaccination with a lentiviral vector protects against SARS-CoV-2 in preclinical animal models. Cell Host and Microbe, 2021, 29, 236-249.e6.	5.1	107
18	The generation of recombinant influenza A viruses expressing a PB2 fusion protein requires the conservation of a packaging signal overlapping the coding and noncoding regions at the 5′ end of the PB2 segment. Virology, 2005, 341, 34-46.	1.1	75

NICOLAS ESCRIOU

#	Article	IF	CITATIONS
19	Identification and Site-Directed Mutagenesis of the Primary (2A/2B) Cleavage Site of the Hepatitis A Virus Polyprotein: Functional Impact on the Infectivity of HAV RNA Transcripts. Virology, 1995, 213, 213-222.	1.1	66
20	Prevalence of SARS-CoV-2 antibodies in France: results from nationwide serological surveillance. Nature Communications, 2021, 12, 3025.	5.8	66
21	Protection from SARS coronavirus conferred by live measles vaccine expressing the spike glycoprotein. Virology, 2014, 452-453, 32-41.	1.1	57
22	SUMOylation Promotes PML Degradation during Encephalomyocarditis Virus Infection. Journal of Virology, 2010, 84, 11634-11645.	1.5	55
23	HLA-B*0702 transgenic, H-2KbDb double-knockout mice: phenotypical and functional characterization in response to influenza virus. International Immunology, 2003, 15, 765-772.	1.8	54
24	High seroprevalence but shortâ€lived immune response to SARSâ€CoVâ€2 infection in Paris. European Journal of Immunology, 2021, 51, 180-190.	1.6	54
25	Introduction of SARS in France, March–April, 2003. Emerging Infectious Diseases, 2004, 10, 195-200.	2.0	44
26	Kinetic Characterization of PB1-F2-Mediated Immunopathology during Highly Pathogenic Avian H5N1 Influenza Virus Infection. PLoS ONE, 2013, 8, e57894.	1.1	41
27	Prime and boost immunization with influenza and adenovirus encoding the Toxoplasma gondii surface antigen 2 (SAC2) induces strong protective immunity. Vaccine, 2010, 28, 3247-3256.	1.7	39
28	Naked RNA immunization with replicons derived from poliovirus and Semliki Forest virus genomes for the generation of a cytotoxic T cell response against the influenza A virus nucleoprotein. Journal of General Virology, 2001, 82, 1737-1747.	1.3	37
29	Addition of N-glycosylation sites on the globular head of the H5 hemagglutinin induces the escape of highly pathogenic avian influenza A H5N1 viruses from vaccine-induced immunity. Virology, 2015, 486, 134-145.	1.1	30
30	Chronic intravenous injections of antigen induce and maintain tolerance in T cell receptor-transgenic mice. European Journal of Immunology, 1999, 29, 345-354.	1.6	28
31	Expression of a foreign gene by stable recombinant influenza viruses harboring a dicistronic genomic segment with an internal promoter. Virology, 2003, 313, 235-249.	1.1	25
32	Recombinant influenza A viruses harboring optimized dicistronic NA segment with an extended native 5′ terminal sequence: Induction of heterospecific B and T cell responses in mice. Virology, 2006, 345, 73-87.	1.1	22
33	Heterologous viral RNA export elements improve expression of severe acute respiratory syndrome (SARS) coronavirus spike protein and protective efficacy of DNA vaccines against SARS. Virology, 2007, 363, 288-302.	1.1	17
34	Safety and immunogenicity of a measles-vectored SARS-CoV-2 vaccine candidate, V591 / TMV-083, in healthy adults: results of a randomized, placebo-controlled Phase I study. EBioMedicine, 2022, 75, 103810.	2.7	17
35	Development of a highly specific and sensitive VHH-based sandwich immunoassay for the detection of the SARS-CoV-2 nucleoprotein. Journal of Biological Chemistry, 2022, 298, 101290.	1.6	16
36	Low seroprevalence of COVID-19 in Lao PDR, late 2020. The Lancet Regional Health - Western Pacific, 2021, 13, 100197.	1.3	13

NICOLAS ESCRIOU

#	Article	IF	CITATIONS
37	Nasopharyngeal and serological anti SARS-CoV-2 IgG/IgA responses in COVID-19 patients. Journal of Clinical Virology Plus, 2021, 1, 100041.	0.4	9
38	Delivery of mengovirus-derived RNA replicons into tumoural liver enhances the anti-tumour efficacy of a peripheral peptide-based vaccine. Cancer Immunology, Immunotherapy, 2008, 57, 1161-1171.	2.0	5
39	Determinants Involved in Hepatitis C Virus and GB Virus B Primate Host Restriction. Journal of Virology, 2015, 89, 12131-12144.	1.5	4
40	Hemagglutinin residues of recent human A(H3N2) viruses that affect agglutination of chicken erythrocytes. International Congress Series, 2001, 1219, 369-374.	0.2	3
41	Expression of a Membrane-Anchored Glycoprotein, the Influenza Virus Hemagglutinin, by Dicistronic Replicons Derived from the Poliovirus Genome. Journal of Virology, 2002, 76, 5285-5290.	1.5	3
42	Interleukin-1 and interleukin-6 synergize in preparing resting murine B cells to respond to anti-μ: Correlation with c-myc expression. Cellular Immunology, 1992, 141, 243-252.	1.4	0
43	Replicons from positive strand RNA viruses for naked RNA immunization against influenza. International Congress Series, 2001, 1219, 923-929.	0.2	Ο