Tamara Petkova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2981066/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A structurally modified 85SiO2–9P2O5–6TiO2 system and its dynamic dielectric behavior–a starting point for hydrogen detection. Journal of Materials Research and Technology, 2021, 10, 624-631.	5.8	3
2	Structural and free volume characterization of sol–gel organic–inorganic hybrids, obtained by co•ondensation of two ureasilicate stoichiometric precursors. Journal of Applied Polymer Science, 2021, 138, 50615.	2.6	5
3	Relaxation processes in TiO2–V2O5–P2O5 glass-ceramics. Ceramics International, 2021, 47, 29047-29054.	4.8	3
4	High pressure effects on the crystal and magnetic structures of Co3O4. Journal of Magnetism and Magnetic Materials, 2020, 508, 166874.	2.3	8
5	Controlling the Network Properties of Polymer Matrices for Improvement of Amperometric Enzyme Biosensors: Contribution of Positron Annihilation. Acta Physica Polonica A, 2020, 137, 246-249.	0.5	2
6	Study of In2O3 Thin Films Doped with As as Active Layer in Position Sensitive Structures. NATO Science for Peace and Security Series B: Physics and Biophysics, 2020, , 123-130.	0.3	0
7	Improvement of amperometric laccase biosensor using enzyme-immobilized gold nanoparticles coupling with ureasil polymer as a host matrix. Gold Bulletin, 2019, 52, 79-85.	2.4	14
8	lon-induced processes in polymer composite materials: Positron annihilation spectroscopy in combination with UV-Vis absorption and Raman spectroscopy. AIP Conference Proceedings, 2019, , .	0.4	1
9	As-doped SnO2 thin films for use as large area position sensitive photodetector. Thin Solid Films, 2018, 653, 19-23.	1.8	10
10	LiNaSO4 dispersed NaNO3 composite – A new solid electrolyte?. Materials Letters, 2018, 223, 29-32.	2.6	0
11	Ureasil-Based Polymer Matrices As Sensitive Layers for the Construction of Amperometric Biosensors. NATO Science for Peace and Security Series B: Physics and Biophysics, 2018, , 309-316.	0.3	0
12	Laccaseâ€containing ureasil–polymer composite as the sensing layer of an amperometric biosensor. Journal of Applied Polymer Science, 2017, 134, 45278.	2.6	14
13	Network Properties of Ureasil-Based Polymer Matrixes for Construction of Amperometric Biosensors as Probed by PALS and Swelling Experiments. Acta Physica Polonica A, 2017, 132, 1515-1519.	0.5	4
14	Doppler Broadening of the Annihilation Line Study of Organic-Inorganic Hybrid Ureasil-Based Composites. NATO Science for Peace and Security Series A: Chemistry and Biology, 2015, , 85-90.	0.5	0
15	Glass forming ability of vitreous Geâ€Teâ€In system. Surface and Interface Analysis, 2014, 46, 1077-1080.	1.8	1
16	Effect of the preparation method on the optical properties of GeS <inf>1.2</inf> — AgI films. , 2014, , .		0
17	Reply on the "critical comments on speculations with … free-volume defects … in ion-conducting Ag/Agl–As2S3 glasses…― Solid State Ionics, 2013, 233, 107-109.	2.7	3
18	Optical Properties of Thermally Evaporated (As2Se3)100-xAgx Thin Films. Physics Procedia, 2013, 44, 67-74.	1.2	12

Tamara Ρετκονά

#	Article	IF	CITATIONS
19	Optical Behavior of (GeS1.5)1-x(AgI)x Glasses. Physics Procedia, 2013, 44, 108-113.	1.2	1
20	Ge-Chalcogenide Glasses – Properties and Application as Optical Material. Key Engineering Materials, 2013, 538, 316-319.	0.4	3
21	New organicâ€inorganic hybrid ureasilâ€based polymer and glassâ€polymer composites with ionâ€implanted silver nanoparticles. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 2444-2447.	0.8	9
22	Mechanical Behaviors of (As2S3)100-x(AgI)x Bulk Glasses and Thin Films. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2012, 638, 1625-1625.	1.2	0
23	Compositional dependence of the optical properties of silver containing As2Se3thin films. Journal of Physics: Conference Series, 2012, 356, 012028.	0.4	2
24	Thin As-Se-Sb Films as Potential Medium for Optics and Sensor Application. NATO Science for Peace and Security Series B: Physics and Biophysics, 2011, , 211-216.	0.3	0
25	Structure of Agl-AsSe Glasses by Raman Scattering and Ab Initio Calculations. NATO Science for Peace and Security Series B: Physics and Biophysics, 2011, , 217-223.	0.3	0
26	Surface Development of (As2S3)1–x (AgI)x Thin Films for Gas Sensor Applications. NATO Science for Peace and Security Series B: Physics and Biophysics, 2011, , 203-209.	0.3	0
27	Optical studies of (AsSe)100â^'x Sb x thin films. Applied Physics A: Materials Science and Processing, 2011, 104, 959-962.	2.3	2
28	Structure and vibrational modes of AgI-doped AsSe glasses: Raman scattering and ab initio calculations. Journal of Solid State Chemistry, 2011, 184, 447-454.	2.9	6
29	Free-volume defects and microstructure in ion-conducting Ag/Agl-As2S3 glasses as revealed from positron annihilation and microhardness measurements. Solid State Ionics, 2011, 183, 16-19.	2.7	6
30	Gas Sensor Based on Chalcohalide Agl-Containing Glasses. NATO Science for Peace and Security Series B: Physics and Biophysics, 2011, , 423-426.	0.3	0
31	Structure of GeSe ₄ –In and GeSe ₅ –In glasses. Journal of Physics Condensed Matter, 2010, 22, 404205.	1.8	15
32	Thermal Studies of Ge-Te-Ga Glasses. AlP Conference Proceedings, 2010, , .	0.4	2
33	Complex (As2S3)(100â^')(AgI) chalcogenide glasses for gas sensors. Sensors and Actuators B: Chemical, 2009, 143, 395-399.	7.8	22
34	Spectroscopic studies of (AsSe)100â^'xAgx thin films. Applied Surface Science, 2009, 255, 9691-9694.	6.1	7
35	Characterization of pulsed laser deposited chalcogenide thin layers. Applied Surface Science, 2009, 255, 5318-5321.	6.1	16
36	Vibrational modes and structure of (AgI) (GeS1.5)100â^' chalcohalide glasses. Journal of Non-Crystalline Solids, 2009, 355, 2063-2067.	3.1	12

Tamara Ρετκονά

#	Article	IF	CITATIONS
37	Study of (As2Se3)100-X(AgI)X Thin Films Prepared by Pld and Vte Methods. NATO Science for Peace and Security Series B: Physics and Biophysics, 2009, , 329-334.	0.3	3
38	Physico-Chemical Characterization of Nanostructured As–Se–Ag Glassy Materials. NATO Science for Peace and Security Series B: Physics and Biophysics, 2009, , 335-340.	0.3	0
39	Atomic Structure of As34Se51Ag15 and As34Te51Ag15 Glasses Studied with Xrd, Nd and Exafs and Modeled with Rmc. NATO Science for Peace and Security Series B: Physics and Biophysics, 2009, , 341-351.	0.3	3
40	Thermal Behavior of Novel (GeS2)1-X(AgI)X Glasses. NATO Science for Peace and Security Series B: Physics and Biophysics, 2009, , 353-356.	0.3	0
41	Optical Behaviors of Novel Amorphous Ge – S – Agl Layers. Materials Science Forum, 2008, 567-568, 201-204.	0.3	1
42	Influence of the preparation method on the As-Se-AgI thin films behaviour. Journal of Physics: Conference Series, 2008, 113, 012023.	0.4	2
43	Photoinduced changes in As-Se-Ag amorphous films. Journal of Physics: Conference Series, 2008, 113, 012018.	0.4	3
44	Structural studies on AsSe–AgI glasses. Journal of Non-Crystalline Solids, 2007, 353, 2045-2051.	3.1	11
45	Some features of chalcohalide glassy Ge–S–AgI thin films. Journal of Physics and Chemistry of Solids, 2007, 68, 936-939.	4.0	3
46	Novel chalcohalide glasses from the Ge–S–AgI system and some physicochemical features. Journal of Materials Science, 2007, 42, 9836-9840.	3.7	6
47	Electrocatalytic activity of Pt and PtCo deposited on Ebonex by BH reduction. Electrochimica Acta, 2005, 50, 5444-5448.	5.2	47
48	Structural investigations of ternary chalcogenide glasses. Surface and Interface Analysis, 2004, 36, 880-883.	1.8	11
49	Structural investigations of the Se–Ag–I system. Journal of Non-Crystalline Solids, 2003, 326-327, 125-129.	3.1	9
50	Electrical and optical properties of Ag2â^'2xZnxTe thin films. Materials Letters, 2002, 56, 9-13.	2.6	0
51	Structural model of thin (GeSe5)1-xTlxfilms. Semiconductor Science and Technology, 2000, 15, 331-334.	2.0	5
52	Laser-induced polarization-dependent photocrystallization of amorphous chalcogenide films. Journal of Non-Crystalline Solids, 1998, 227-230, 739-742.	3.1	17
53	Influence of an electrical field on optical recording in chalco-halide glasses. Journal of Non-Crystalline Solids, 1998, 227-230, 748-751.	3.1	0
54	Polarization-dependent, laser-induced anisotropic photocrystallization of some amorphous chalcogenide films. Applied Physics Letters, 1997, 71, 2118-2120.	3.3	43

TAMARA ΡΕΤΚΟVΑ

#	Article	IF	CITATIONS
55	Optical band-gap and activation energy of thin films from the Se-Ag-I and Te-Ag-I systems. Radiation Effects and Defects in Solids, 1995, 137, 183-186.	1.2	3
56	Temperature dependence of polarization holographic recording in thin films of Se70Ag15I15. Thin Solid Films, 1993, 226, 119-122.	1.8	1
57	Glass-forming region and some properties of the glasses from the Te-Ag-I system. Materials Chemistry and Physics, 1993, 33, 233-238.	4.0	5
58	Photoinduced changes by polarisation holographic recording in Se70Ag15I15 thin films. Journal of Non-Crystalline Solids, 1993, 164-166, 1203-1206.	3.1	12
59	Photoinduced changes in the selenium-silver-iodine system. The Journal of Physical Chemistry, 1992, 96, 8998-9001.	2.9	5
60	Kinetics of vacuum sublimation and condensation of films from the Se-Ag-I system. Thin Solid Films, 1991, 205, 25-28.	1.8	8
61	Glass formation in the Seî—, Agî—, I system. Materials Chemistry and Physics, 1991, 30, 55-59.	4.0	10
62	Corrected physicochemical indices of mono- and dialkyl-aromatic hydrocarbons on squalane. Journal of Chromatography A, 1974, 91, 691-693.	3.7	12
63	Temperature coefficient of the physico-chemical index. Journal of Chromatography A, 1972, 74, 165-169.	3.7	9
64	New Organic-Inorganic Hybrid Ureasil-Based Polymer Materials Studied by PALS and SEM Techniques. Materials Science Forum, 0, 733, 171-174.	0.3	6