
## Munehito Arai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2980667/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Rational design of a helical peptide inhibitor targeting c-Myb–KIX interaction. Scientific Reports, 2022,<br>12, 816.                                                                                                                                         | 1.6 | 9         |
| 2  | Intron-Encoded Domain of Herstatin, An Autoinhibitor of Human Epidermal Growth Factor Receptors,<br>Is Intrinsically Disordered. Frontiers in Molecular Biosciences, 2022, 9, 862910.                                                                         | 1.6 | 2         |
| 3  | A comparative study of unpasteurized and pasteurized frozen whole hen eggs using size-exclusion chromatography and small-angle X-ray scattering. Scientific Reports, 2022, 12, .                                                                              | 1.6 | 2         |
| 4  | The Wako-Saitô-Muñoz-Eaton Model for Predicting Protein Folding and Dynamics. Molecules, 2022, 27,<br>4460.                                                                                                                                                   | 1.7 | 5         |
| 5  | Repressor Activity of SqrR, a Master Regulator of Persulfide-Responsive Genes, Is Regulated by Heme<br>Coordination. Plant and Cell Physiology, 2021, 62, 100-110.                                                                                            | 1.5 | 3         |
| 6  | Changes in dynamic and static structures of the HIV â€1 p24 capsid protein Nâ€domain caused by aminoâ€acid substitution are associated with its viral viability. Protein Science, 2021, 30, 2233-2245.                                                        | 3.1 | 1         |
| 7  | Biophysical Research in the Fight Against Viral Diseases. Seibutsu Butsuri, 2021, 61, 081-081.                                                                                                                                                                | 0.0 | 0         |
| 8  | Electrostatic interactions at the interface of two enzymes are essential for two-step alkane<br>biosynthesis in cyanobacteria. Bioscience, Biotechnology and Biochemistry, 2020, 84, 228-237.                                                                 | 0.6 | 10        |
| 9  | Determining Binding Kinetics of Intrinsically Disordered Proteins by NMR Spectroscopy. Methods in Molecular Biology, 2020, 2141, 663-681.                                                                                                                     | 0.4 | 3         |
| 10 | Editorial. Biophysics and Physicobiology, 2020, 17, 155-155.                                                                                                                                                                                                  | 0.5 | 0         |
| 11 | Identification of non-conserved residues essential for improving the hydrocarbon-producing activity of cyanobacterial aldehyde-deformylating oxygenase. Biotechnology for Biofuels, 2019, 12, 89.                                                             | 6.2 | 24        |
| 12 | Mutational analysis of a catalytically important loop containing active site and substrate-binding site<br>in <i>Escherichia coli</i> phytase AppA. Bioscience, Biotechnology and Biochemistry, 2019, 83, 860-868.                                            | 0.6 | 2         |
| 13 | The retrograde signaling protein CUN1 regulates tetrapyrrole biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24900-24906.                                                                           | 3.3 | 48        |
| 14 | Improving hydrocarbon production by engineering cyanobacterial acyl-(acyl carrier protein)<br>reductase. Biotechnology for Biofuels, 2019, 12, 291.                                                                                                           | 6.2 | 10        |
| 15 | Production and characterization of recombinant P1 adhesin essential for adhesion, gliding, and<br>antigenic variation in the human pathogenic bacterium, Mycoplasma pneumoniae. Biochemical and<br>Biophysical Research Communications, 2019, 508, 1050-1055. | 1.0 | 16        |
| 16 | Conformational diversity in the intrinsically disordered HIV-1 Tat protein induced by zinc and pH.<br>Biochemical and Biophysical Research Communications, 2019, 509, 564-569.                                                                                | 1.0 | 7         |
| 17 | Unified understanding of folding and binding mechanisms of globular and intrinsically disordered proteins. Biophysical Reviews, 2018, 10, 163-181.                                                                                                            | 1.5 | 46        |
| 18 | Interaction of the GntR-family transcription factor Sll1961 with thioredoxin in the cyanobacterium<br>Synechocystis sp. PCC 6803. Scientific Reports, 2018, 8, 6666.                                                                                          | 1.6 | 6         |

MUNEHITO ARAI

| #  | Article                                                                                                                                                                                                                                      | IF                 | CITATIONS              |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------|
| 19 | Cyanobacterial Enzymes for Bioalkane Production. Advances in Experimental Medicine and Biology, 2018, 1080, 119-154.                                                                                                                         | 0.8                | 7                      |
| 20 | Highly Heterogeneous Nature of the Native and Unfolded States of the B Domain of Protein A Revealed<br>by Two-Dimensional Fluorescence Lifetime Correlation Spectroscopy. Journal of Physical Chemistry B,<br>2017, 121, 5463-5473.          | 1.2                | 20                     |
| 21 | Sustainable Bioenergy Production Using Cyanobacteria With Multifarious Strategies. Kagaku To<br>Seibutsu, 2017, 55, 88-97.                                                                                                                   | 0.0                | Ο                      |
| 22 | Formation of the chaperonin complex studied by 2D NMR spectroscopy. PLoS ONE, 2017, 12, e0187022.                                                                                                                                            | 1.1                | 0                      |
| 23 | Mapping the interactions of adenoviral E1A proteins with the p160 nuclear receptor coactivator binding domain of CBP. Protein Science, 2016, 25, 2256-2267.                                                                                  | 3.1                | 18                     |
| 24 | Comparison of aldehyde-producing activities of cyanobacterial acyl-(acyl carrier protein) reductases.<br>Biotechnology for Biofuels, 2016, 9, 234.                                                                                           | 6.2                | 19                     |
| 25 | Development of the Line Confocal System for the Single Molecule Tracking of Fast Folding Dynamics of Proteins. Biophysical Journal, 2015, 108, 50a-51a.                                                                                      | 0.2                | 0                      |
| 26 | Two-Dimensional Fluorescence Lifetime Correlation Spectroscopy on the Folding Mechanism of B<br>Domain of Protein A. Biophysical Journal, 2015, 108, 501a.                                                                                   | 0.2                | 0                      |
| 27 | Conformational propensities of intrinsically disordered proteins influence the mechanism of binding and folding. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9614-9619.                      | 3.3                | 222                    |
| 28 | Complexity of the Folding Transition of the B Domain of Protein A Revealed by the High-Speed Tracking of Single-Molecule Fluorescence Time Series. Journal of Physical Chemistry B, 2015, 119, 6081-6091.                                    | 1.2                | 18                     |
| 29 | Role of Cysteine Residues in the Structure, Stability, and Alkane Producing Activity of Cyanobacterial<br>Aldehyde Deformylating Oxygenase. PLoS ONE, 2015, 10, e0122217.                                                                    | 1.1                | 27                     |
| 30 | Flexible and rigid structures in HIV-1 p17 matrix protein monitored by relaxation and amide proton exchange with NMR. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 520-526.                                          | 1.1                | 6                      |
| 31 | 2P056 Interaction of the intrinsically disordered HIV-1 Tat protein with the KIX domain of the transcriptional coactivator CBP(01C. Protein: Property,Poster,The 52nd Annual Meeting of the) Tj ETQq1 1 0.784                                | 43 b4org BT        | - <b>/Overlock</b> 10  |
| 32 | 3P067 Toward the construction of the cyanobacterial mutants that produce high amounts of alkanes(01D. Protein: Function,Poster,The 52nd Annual Meeting of the Biophysical Society of) Tj ETQq0 0 0 rgB                                       | ⊺/ <b>@vø</b> rloc | k 1 <b>0</b> Tf 50 211 |
| 33 | Microsecond dynamics of an unfolded protein by a line confocal tracking of single molecule fluorescence. Scientific Reports, 2013, 3, 2151.                                                                                                  | 1.6                | 29                     |
| 34 | Quantitative Analysis of Protein-Ligand Interactions by NMR. Seibutsu Butsuri, 2013, 53, 305-308.                                                                                                                                            | 0.0                | 1                      |
| 35 | Quantitative Analysis of Multisite Protein–Ligand Interactions by NMR: Binding of Intrinsically<br>Disordered p53 Transactivation Subdomains with the TAZ2 Domain of CBP. Journal of the American<br>Chemical Society, 2012, 134, 3792-3803. | 6.6                | 123                    |
| 36 | Microsecond Subdomain Folding in Dihydrofolate Reductase. Journal of Molecular Biology, 2011, 410,<br>329-342.                                                                                                                               | 2.0                | 33                     |

| #  | Article                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Leu628 of the KIX domain of CBP is a key residue for the interaction with the MLL transactivation domain. FEBS Letters, 2010, 584, 4500-4504. | 1.3 | 32        |

- 3PO40 Mapping the Interactions of the Intrinsically Disordered p53 Transactivation Subdomains with the TAZ2 Domain of CBP by NMR(Protein: Structure & Function,The 48th Annual Meeting of the) Tj ETQq0 0 0 rgBT0/Overlock010 Tf 50 6 38

| 39 | Graded enhancement of p53 binding to CREB-binding protein (CBP) by multisite phosphorylation.<br>Proceedings of the National Academy of Sciences of the United States of America, 2010, 107,<br>19290-19295.                                        | 3.3 | 188 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 40 | Probing the roles of conserved arginine-44 of Escherichia coli dihydrofolate reductase in its<br>function and stability by systematic sequence perturbation analysis. Biochemical and Biophysical<br>Research Communications, 2010, 391, 1703-1707. | 1.0 | 10  |
| 41 | Cooperative regulation of p53 by modulation of ternary complex formation with CBP/p300 and HDM2.<br>Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6591-6596.                                          | 3.3 | 197 |
| 42 | Mapping the Interactions of the p53 Transactivation Domain with the KIX Domain of CBP. Biochemistry, 2009, 48, 2115-2124.                                                                                                                           | 1.2 | 109 |
| 43 | Asymmetry of the GroEL-GroES Complex under Physiological Conditions as Revealed by Small-Angle<br>X-Ray Scattering. Biophysical Journal, 2008, 94, 1392-1402.                                                                                       | 0.2 | 18  |
| 44 | Stabilization of Hyperactive Dihydrofolate Reductase by Cyanocysteine-mediated Backbone Cyclization.<br>Journal of Biological Chemistry, 2007, 282, 9420-9429.                                                                                      | 1.6 | 16  |
| 45 | Microsecond Hydrophobic Collapse in the Folding of Escherichia coli Dihydrofolate Reductase, an<br>α/β-Type Protein. Journal of Molecular Biology, 2007, 368, 219-229.                                                                              | 2.0 | 75  |
| 46 | The allosteric transition of the chaperonin groel fromescherichia coli as studied by solution X-ray scattering. Macromolecular Research, 2006, 14, 166-172.                                                                                         | 1.0 | 1   |
| 47 | Peptide fragment studies on the folding elements of dihydrofolate reductase from Escherichia coli.<br>Proteins: Structure, Function and Bioinformatics, 2005, 62, 399-410.                                                                          | 1.5 | 3   |
| 48 | Characterization of Kinetic Folding Intermediates of Recombinant Canine Milk Lysozyme by<br>Stopped-Flow Circular Dichroismâ€. Biochemistry, 2005, 44, 6685-6692.                                                                                   | 1.2 | 17  |
| 49 | Probing the Interactions between the Folding Elements Early in the Folding of Escherichia coli<br>Dihydrofolate Reductase by Systematic Sequence Perturbation Analysis. Journal of Molecular Biology,<br>2005, 347, 337-353.                        | 2.0 | 29  |
| 50 | Helical and Expanded Conformation of Equine β-Lactoglobulin in the Cold-denatured State. Journal of<br>Molecular Biology, 2005, 350, 338-348.                                                                                                       | 2.0 | 24  |
| 51 | Oligomeric Hsp33 with Enhanced Chaperone Activity. Journal of Biological Chemistry, 2004, 279, 55760-55769.                                                                                                                                         | 1.6 | 27  |
| 52 | Unification of the Folding Mechanisms of Non-two-state and Two-state Proteins. Journal of<br>Molecular Biology, 2004, 339, 951-965.                                                                                                                 | 2.0 | 81  |
| 53 | Localized Nature of the Transition-state Structure in Goat α-Lactalbumin Folding. Journal of<br>Molecular Biology, 2004, 341, 589-604.                                                                                                              | 2.0 | 27  |
| 54 | Denaturation and reassembly of chaperonin GroEL studied by solution X-ray scattering. Protein Science, 2003, 12, 672-680.                                                                                                                           | 3.1 | 20  |

MUNEHITO ARAI

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Equilibrium and Kinetics of the Allosteric Transition of GroEL Studied by Solution X-ray Scattering and Fluorescence Spectroscopy. Journal of Molecular Biology, 2003, 327, 183-191.                                | 2.0 | 28        |
| 56 | Testing the Relationship Between Foldability and the Early Folding Events of Dihydrofolate Reductase from Escherichia coli. Journal of Molecular Biology, 2003, 328, 273-288.                                       | 2.0 | 30        |
| 57 | The Allosteric Transition of GroEL Induced by Metal Fluoride–ADP Complexes. Journal of Molecular<br>Biology, 2003, 329, 121-134.                                                                                    | 2.0 | 19        |
| 58 | Effects of the Difference in the Unfolded-state Ensemble on the Folding of Escherichia coli<br>Dihydrofolate Reductase. Journal of Molecular Biology, 2003, 329, 779-791.                                           | 2.0 | 26        |
| 59 | Reversible and Fast Association Equilibria of a Molecular Chaperone, gp57A, of Bacteriophage T4.<br>Biophysical Journal, 2003, 85, 2606-2618.                                                                       | 0.2 | 32        |
| 60 | Folding mechanism of canine milk lysozyme studied by circular dichroism and fluorescence spectroscopy. Spectroscopy, 2003, 17, 183-193.                                                                             | 0.8 | 7         |
| 61 | Fast Compaction of α-Lactalbumin During Folding Studied by Stopped-flow X-ray Scattering. Journal of Molecular Biology, 2002, 321, 121-132.                                                                         | 2.0 | 100       |
| 62 | The Use of the Time-Resolved X-Ray Solution Scattering for Studies of Globular Proteins.<br>Spectroscopy, 2002, 16, 127-138.                                                                                        | 0.8 | 3         |
| 63 | Refolding of β-lactoglobulin studied by stopped-flow circular dichroism at subzero temperatures.<br>FEBS Letters, 2001, 507, 299-302.                                                                               | 1.3 | 15        |
| 64 | Folding-unfolding of goat ?-lactalbumin studied by stopped-flow circular dichroism and molecular dynamics simulations. Proteins: Structure, Function and Bioinformatics, 2001, 42, 49-65.                           | 1.5 | 18        |
| 65 | Is folding of β-lactoglobulin non-hierarchic? intermediate with native-like β-sheet and non-native α-helix 1<br>1Edited by C. R. Matthews. Journal of Molecular Biology, 2000, 296, 1039-1051.                      | 2.0 | 95        |
| 66 | Folding of Green Fluorescent Protein and the Cycle3 Mutantâ€. Biochemistry, 2000, 39, 12025-12032.                                                                                                                  | 1.2 | 183       |
| 67 | Role of the molten globule state in protein folding. Advances in Protein Chemistry, 2000, 53, 209-282.                                                                                                              | 4.4 | 404       |
| 68 | Equilibrium and Kinetic Studies on Folding of the Authentic and Recombinant Forms of Human<br>α-Lactalbumin by Circular Dichroism Spectroscopyâ€. Biochemistry, 2000, 39, 15643-15651.                              | 1.2 | 41        |
| 69 | Effect of an Alternative Disulfide Bond on the Structure, Stability, and Folding of Human Lysozymeâ€.<br>Biochemistry, 2000, 39, 3472-3479.                                                                         | 1.2 | 14        |
| 70 | Foldingâ^'Unfolding Equilibrium and Kinetics of Equine β-Lactoglobulin: Equivalence between the<br>Equilibrium Molten Globule State and a Burst-Phase Folding Intermediateâ€. Biochemistry, 1999, 38,<br>4455-4463. | 1.2 | 64        |
| 71 | Effect of the Extra N-terminal Methionine Residue on the Stability and Folding of Recombinant<br>α-Lactalbumin Expressed in Escherichia coli. Journal of Molecular Biology, 1999, 285, 1179-1194.                   | 2.0 | 90        |
| 72 | Chaperonin-affected refolding of α-lactalbumin: effects of nucleotides and the co-chaperonin GroES.<br>Journal of Molecular Biology, 1999, 293, 125-137.                                                            | 2.0 | 28        |

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Kinetic refolding of β-lactoglobulin. Studies by synchrotron X-ray scattering, and circular dichroism,<br>absorption and fluorescence spectroscopy 1 1Edited by P. E. Wright. Journal of Molecular Biology,<br>1998, 275, 149-162. | 2.0 | 114       |
| 74 | Equilibrium and kinetics of the folding of equine lysozyme studied by circular dichroism spectroscopy. Journal of Molecular Biology, 1998, 283, 265-277.                                                                           | 2.0 | 64        |
| 75 | Rapid formation of a molten globule intermediate in refolding of α-lactalbumin. Folding & Design, 1996,<br>1, 275-287.                                                                                                             | 4.5 | 146       |