Han Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/298050/publications.pdf

Version: 2024-02-01

		201674	155660
58	4,308	27	55
papers	citations	h-index	g-index
58	58	58	2733
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Efficient sampling of high-dimensional free energy landscapes using adaptive reinforced dynamics. Nature Computational Science, 2022, 2, 20-29.	8.0	18
2	A deep potential model with long-range electrostatic interactions. Journal of Chemical Physics, 2022, 156, 124107.	3.0	57
3	Extending the limit of molecular dynamics with <i>ab initio</i> accuracy to 10 billion atoms., 2022,,.		8
4	Deep potentials for materials science. Materials Futures, 2022, 1, 022601.	8.4	61
5	86 PFLOPS Deep Potential Molecular Dynamics simulation of 100 million atoms with ab initio accuracy. Computer Physics Communications, 2021, 259, 107624.	7.5	100
6	DeePKS: A Comprehensive Data-Driven Approach toward Chemically Accurate Density Functional Theory. Journal of Chemical Theory and Computation, 2021, 17, 170-181.	5. 3	40
7	Exploring the Chemical Space of Linear Alkane Pyrolysis via Deep Potential GENerator. Energy & Camp; Fuels, 2021, 35, 762-769.	5.1	22
8	Deep potential generation scheme and simulation protocol for the Li10GeP2S12-type superionic conductors. Journal of Chemical Physics, 2021, 154, 094703.	3.0	49
9	Toward accurate electronic, optical, and vibrational properties of hexagonal Si, Ge, and Silâ^' <i>x</i> Ge <i>x</i> alloys from first-principle simulations. Journal of Applied Physics, 2021, 129, .	2.5	10
10	Phase Diagram of a Deep Potential Water Model. Physical Review Letters, 2021, 126, 236001.	7.8	140
11	<i>Ab initio</i> validation on the connection between atomistic and hydrodynamic description to unravel the ion dynamics of warm dense matter. Physical Review Research, 2021, 3, .	3.6	14
12	Deep-learning potential method to simulate shear viscosity of liquid aluminum at high temperature and high pressure by molecular dynamics. AIP Advances, 2021, 11 , .	1.3	6
13	Biot's equations-based reservoir parameter inversion using deep neural networks. Journal of Geophysics and Engineering, 2021, 18, 862-874.	1.4	5
14	Heat transport in liquid water from first-principles and deep neural network simulations. Physical Review B, 2021, 104, .	3.2	29
15	Specialising neural network potentials for accurate properties and application to the mechanical response of titanium. Npj Computational Materials, 2021, 7, .	8.7	26
16	Crystal Structure Prediction of Binary Alloys via Deep Potential. Frontiers in Chemistry, 2020, 8, 589795.	3.6	11
17	Deep neural network for the dielectric response of insulators. Physical Review B, 2020, 102, .	3.2	60
18	Ground State Energy Functional with Hartree–Fock Efficiency and Chemical Accuracy. Journal of Physical Chemistry A, 2020, 124, 7155-7165.	2.5	42

#	Article	IF	Citations
19	Raman spectrum and polarizability of liquid water from deep neural networks. Physical Chemistry Chemical Physics, 2020, 22, 10592-10602.	2.8	80
20	DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models. Computer Physics Communications, 2020, 253, 107206.	7.5	271
21	Warm dense matter simulation via electron temperature dependent deep potential molecular dynamics. Physics of Plasmas, 2020, 27, .	1.9	19
22	Pushing the Limit of Molecular Dynamics with Ab Initio Accuracy to 100 Million Atoms with Machine Learning. , 2020, , .		69
23	Deep learning inter-atomic potential model for accurate irradiation damage simulations. Applied Physics Letters, 2019, 114, .	3.3	31
24	Isotope effects in liquid water via deep potential molecular dynamics. Molecular Physics, 2019, 117, 3269-3281.	1.7	52
25	Active learning of uniformly accurate interatomic potentials for materials simulation. Physical Review Materials, 2019, 3, .	2.4	299
26	Deep Potential Molecular Dynamics: A Scalable Model with the Accuracy of Quantum Mechanics. Physical Review Letters, 2018, 120, 143001.	7.8	1,006
27	Reinforced dynamics for enhanced sampling in large atomic and molecular systems. Journal of Chemical Physics, 2018, 148, 124113.	3.0	48
28	DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics. Computer Physics Communications, 2018, 228, 178-184.	7.5	727
29	Applicability of Kerker preconditioning scheme to the self-consistent density functional theory calculations of inhomogeneous systems. Physical Review E, 2018, 97, 033305.	2.1	14
30	Adaptive coupling of a deep neural network potential to a classical force field. Journal of Chemical Physics, 2018, 149, 154107.	3.0	11
31	DeePCG: Constructing coarse-grained models via deep neural networks. Journal of Chemical Physics, 2018, 149, 034101.	3.0	141
32	The optimal particle-mesh interpolation basis. Journal of Chemical Physics, 2017, 147, 124107.	3.0	5
33	Kaiser-Bessel basis for particle-mesh interpolation. Physical Review E, 2017, 95, 063303.	2.1	3
34	Parallel 3-dim fast Fourier transforms with load balancing of the plane waves. Computer Physics Communications, 2017, 211, 54-60.	7.5	7
35	On the existence of the optimal order for wavefunction extrapolation in Born-Oppenheimer molecular dynamics. Journal of Chemical Physics, 2016, 144, 244103.	3.0	12
36	A critical appraisal of the zero-multipole method: Structural, thermodynamic, dielectric, and dynamical properties of a water system. Journal of Chemical Physics, 2016, 144, 114503.	3.0	23

#	Article	IF	CITATIONS
37	Multiple Staggered Mesh Ewald: Boosting the Accuracy of the Smooth Particle Mesh Ewald Method. Journal of Chemical Theory and Computation, 2016, 12, 5596-5608.	5.3	32
38	Sampling the isothermal-isobaric ensemble by Langevin dynamics. Journal of Chemical Physics, 2016, 144, 124113.	3.0	14
39	Determining hydrodynamic boundary conditions from equilibrium fluctuations. Physical Review E, 2015, 92, 043007.	2.1	29
40	Adaptive resolution simulation in equilibrium and beyond. European Physical Journal: Special Topics, 2015, 224, 2269-2287.	2.6	18
41	Reply to comment by R. Klein on "Adaptive resolution simulation in equilibrium and beyond― European Physical Journal: Special Topics, 2015, 224, 2501-2502.	2.6	0
42	Molecular dynamics in a grand ensemble: Bergmann–Lebowitz model and adaptive resolution simulation. New Journal of Physics, 2015, 17, 083042.	2.9	49
43	Building Markov State Models for Periodically Driven Non-Equilibrium Systems. Journal of Chemical Theory and Computation, 2015, 11, 1819-1831.	5.3	20
44	Is there a third order phase transition for supercritical fluids?. Journal of Chemical Physics, 2014, 140, 014502.	3.0	1
45	Applications of the Cross-Entropy Method to Importance Sampling and Optimal Control of Diffusions. SIAM Journal of Scientific Computing, 2014, 36, A2654-A2672.	2.8	39
46	Chemical potential of liquids and mixtures via adaptive resolution simulation. Journal of Chemical Physics, 2014, 141, 034102.	3.0	47
47	Exploring the Conformational Dynamics of Alanine Dipeptide in Solution Subjected to an External Electric Field: A Nonequilibrium Molecular Dynamics Simulation. Journal of Chemical Theory and Computation, 2014, 10, 1376-1386.	5.3	17
48	Grand-Canonical-like Molecular-Dynamics Simulations by Using an Adaptive-Resolution Technique. Physical Review X, 2013, 3, .	8.9	51
49	Linear response theory and optimal control for a molecular system under non-equilibriumÂconditions. Molecular Physics, 2013, 111, 3555-3564.	1.7	4
50	Measuring the Spontaneous Curvature of Bilayer Membranes by Molecular Dynamics Simulations. Communications in Computational Physics, 2013, 13, 1093-1106.	1.7	10
51	Error estimate of short-range force calculation in inhomogeneous molecular systems. Physical Review E, 2012, 86, 026704.	2.1	9
52	On the Numerical Accuracy of Ewald, Smooth Particle Mesh Ewald, and Staggered Mesh Ewald Methods for Correlated Molecular Systems. Journal of Chemical Theory and Computation, 2012, 8, 3243-3256.	5. 3	11
53	Adaptive Resolution Simulation (AdResS): A Smooth Thermodynamic and Structural Transition from Atomistic to Coarse Grained Resolution and Vice Versa in a Grand Canonical Fashion. Journal of Chemical Theory and Computation, 2012, 8, 2878-2887.	5. 3	56
54	On the existence of a third-order phase transition beyond the Andrews critical point: A molecular dynamics study. Journal of Chemical Physics, 2011, 135, 224506.	3.0	6

#	Article	IF	CITATIONS
55	Optimizing working parameters of the smooth particle mesh Ewald algorithm in terms of accuracy and efficiency. Journal of Chemical Physics, 2010, 133, 034117.	3.0	108
56	Comparative atomistic and coarse-grained study of water: What do we lose by coarse-graining?. European Physical Journal E, 2009, 28, 221-229.	1.6	231
57	Crucial properties of the moment closure model FENE-QE. Journal of Non-Newtonian Fluid Mechanics, 2008, 150, 80-92.	2.4	19
58	An efficient adaptive mesh redistribution method for a non-linear Dirac equation. Journal of Computational Physics, 2007, 222, 176-193.	3.8	21