List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2980384/publications.pdf Version: 2024-02-01

AMY O SHEN

#	Article	IF	CITATIONS
1	Detection of antibodies against SARS-CoV-2 spike protein by gold nanospikes in an opto-microfluidic chip. Biosensors and Bioelectronics, 2020, 169, 112578.	10.1	207
2	Surface Morphology of Drying Latex Films:Â Multiple Ring Formation. Langmuir, 2002, 18, 3441-3445.	3.5	206
3	Parking the power: Strategies and physical limitations for bulk energy storage in supply–demand matching on a grid whose input power is provided by intermittent sources. Renewable and Sustainable Energy Reviews, 2009, 13, 1934-1945.	16.4	193
4	Tumour-on-a-chip: microfluidic models of tumour morphology, growth and microenvironment. Journal of the Royal Society Interface, 2017, 14, 20170137.	3.4	155
5	Granular jets. Physics of Fluids, 2001, 13, 4-6.	4.0	126
6	Fiber coating with surfactant solutions. Physics of Fluids, 2002, 14, 4055-4068.	4.0	119
7	Visco-plastic models of isothermal lava domes. Journal of Fluid Mechanics, 2000, 403, 37-65.	3.4	100
8	Usiigaci: Instance-aware cell tracking in stain-free phase contrast microscopy enabled by machine learning. SoftwareX, 2019, 9, 230-237.	2.6	94
9	Dynamics of viscoelastic fluid filaments in microfluidic devices. Physics of Fluids, 2007, 19, .	4.0	89
10	A Portable Anaerobic Microbioreactor Reveals Optimum Growth Conditions for the Methanogen Methanosaeta concilii. Applied and Environmental Microbiology, 2007, 73, 1653-1658.	3.1	83
11	Irreversible nanogel formation in surfactant solutions by microporous flow. Nature Materials, 2010, 9, 436-441.	27.5	83
12	Elastic instabilities in planar elongational flow of monodisperse polymer solutions. Scientific Reports, 2016, 6, 33029.	3.3	80
13	Relaxation time of dilute polymer solutions: A microfluidic approach. Journal of Rheology, 2017, 61, 327-337.	2.6	72
14	Detection and Characterization of Bacterial Biofilms and Biofilm-Based Sensors. ACS Sensors, 2022, 7, 347-357.	7.8	70
15	Droplet synthesis of silver nanoparticles by a microfluidic device. Chemical Engineering and Processing: Process Intensification, 2016, 102, 186-193.	3.6	69
16	Microfluidic Assisted Nanoprecipitation of PLGA Nanoparticles for Curcumin Delivery to Leukemia Jurkat Cells. Langmuir, 2018, 34, 3961-3970.	3.5	67
17	Microstructure and rheology of a flow-induced structured phase in wormlike micellar solutions. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1653-60.	7.1	64
18	Liquid crystal droplet production in a microfluidic device. Liquid Crystals, 2007, 34, 861-870.	2.2	56

#	Article	IF	CITATIONS
19	Can large-scale advanced-adiabatic compressed air energy storage be justified economically in an age of sustainable energy?. Journal of Renewable and Sustainable Energy, 2009, 1, .	2.0	56
20	When Microrheology, Bulk Rheology, and Microfluidics Meet: Broadband Rheology of Hydroxyethyl Cellulose Water Solutions. Macromolecules, 2017, 50, 2951-2963.	4.8	55
21	X-ray Visible and Uniform Alginate Microspheres Loaded with <i>in Situ</i> Synthesized BaSO ₄ Nanoparticles for <i>in Vivo</i> Transcatheter Arterial Embolization. Biomacromolecules, 2015, 16, 1240-1246.	5.4	54
22	Flow of wormlike micellar solutions around confined microfluidic cylinders. Soft Matter, 2016, 12, 8666-8681.	2.7	54
23	Shear rheology of graphene oxide dispersions. Current Opinion in Chemical Engineering, 2017, 16, 23-30.	7.8	53
24	Flow of wormlike micellar solutions around microfluidic cylinders with high aspect ratio and low blockage ratio. Soft Matter, 2019, 15, 1927-1941.	2.7	51
25	"From the Edge to the Center― Viscoelastic Migration of Particles and Cells in a Strongly Shear-Thinning Liquid Flowing in a Microchannel. Analytical Chemistry, 2017, 89, 13146-13159.	6.5	50
26	<i>In situ</i> pressure measurement within deformable rectangular polydimethylsiloxane microfluidic devices. Biomicrofluidics, 2012, 6, 26501-2650112.	2.4	49
27	Steady viscoelastic flow around high-aspect-ratio, low-blockage-ratio microfluidic cylinders. Journal of Non-Newtonian Fluid Mechanics, 2018, 254, 23-35.	2.4	49
28	Real-time monitoring of DNA immobilization and detection of DNA polymerase activity by a microfluidic nanoplasmonic platform. Biosensors and Bioelectronics, 2019, 142, 111528.	10.1	49
29	Asymmetric flows of complex fluids past confined cylinders: A comprehensive numerical study with experimental validation. Physics of Fluids, 2020, 32, 053103.	4.0	48
30	3D-printed glass microfluidics for fluid dynamics and rheology. Current Opinion in Colloid and Interface Science, 2019, 43, 1-14.	7.4	46
31	Self-similar shear thickening behavior in CTAB/NaSal surfactant solutions. Journal of Rheology, 2008, 52, 527-550.	2.6	45
32	Elastic instabilities in a microfluidic cross-slot flow of wormlike micellar solutions. Soft Matter, 2012, 8, 5847.	2.7	45
33	Intracellular Nanomaterial Delivery <i>via</i> Spiral Hydroporation. ACS Nano, 2020, 14, 3048-3058.	14.6	45
34	Confinement Effects on the Self-Assembly of 1,3:2,4-Di- <i>p</i> -methylbenzylidene Sorbitol Based Organogel. Langmuir, 2008, 24, 10432-10436.	3.5	44
35	Microfluidic flows of wormlike micellar solutions. Advances in Colloid and Interface Science, 2014, 211, 34-46.	14.7	43
36	Thermoresponsive self-assembled NiPAm-zwitterion copolymers. Polymer Chemistry, 2015, 6, 1066-1077.	3.9	43

#	Article	IF	CITATIONS
37	Tricritical spiral vortex instability in cross-slot flow. Physical Review E, 2016, 93, 031101.	2.1	42
38	Asymmetric flow of polymer solutions around microfluidic cylinders: Interaction between shear-thinning and viscoelasticity. Journal of Non-Newtonian Fluid Mechanics, 2020, 278, 104250.	2.4	40
39	Transition between solid and liquid state of yield-stress fluids under purely extensional deformations. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12611-12617.	7.1	39
40	Fluid Viscoelasticity Drives Self-Assembly of Particle Trains in a Straight Microfluidic Channel. Physical Review Applied, 2018, 10, .	3.8	38
41	Plasma-Assisted Large-Scale Nanoassembly of Metal–Insulator Bioplasmonic Mushrooms. ACS Applied Materials & Interfaces, 2018, 10, 219-226.	8.0	36
42	Task specific ionic liquid for direct electrochemistry of metal oxides. Electrochemistry Communications, 2010, 12, 1214-1217.	4.7	35
43	Coating flows of non-Newtonian fluids: weakly and strongly elastic limits. Journal of Engineering Mathematics, 2008, 60, 17-41.	1.2	34
44	Formation of supramolecular hydrogel microspheres via microfluidics. Lab on A Chip, 2009, 9, 2947.	6.0	34
45	Effects of Shearing and Extensional Flows on the Alignment of Colloidal Rods. Macromolecules, 2021, 54, 4176-4185.	4.8	33
46	Granular fingering patterns in horizontal rotating cylinders. Physics of Fluids, 2002, 14, 462-470.	4.0	32
47	Microfluidic one-step synthesis of alginate microspheres immobilized with antibodies. Journal of the Royal Society Interface, 2013, 10, 20130566.	3.4	32
48	Rheological characterizations of wormlike micellar solutions containing cationic surfactant and anionic hydrotropic salt. Journal of Rheology, 2015, 59, 1229-1259.	2.6	32
49	Tailed Forisomes of Canavalia gladiata: A New Model to Study Ca2+-driven Protein Contractility. Annals of Botany, 2007, 100, 101-109.	2.9	31
50	Microfluidic one-step fabrication of radiopaque alginate microgels with in situ synthesized barium sulfate nanoparticles. Lab on A Chip, 2012, 12, 4781.	6.0	31
51	Microcontact printing with aminosilanes: creating biomolecule micro- and nanoarrays for multiplexed microfluidic bioassays. Analyst, The, 2017, 142, 1772-1781.	3.5	31
52	Proofâ€ofâ€concept modular fluid handling prototype integrated with microfluidic biochemical assay modules for pointâ€ofâ€care testing. View, 2020, 1, e1.	5.3	31
53	Temperature controlled tensiometry using droplet microfluidics. Lab on A Chip, 2017, 17, 717-726.	6.0	29
54	Secondary flows of viscoelastic fluids in serpentine microchannels. Microfluidics and Nanofluidics, 2019. 23. 1.	2.2	29

#	Article	IF	CITATIONS
55	Tristability in Viscoelastic Flow Past Side-by-Side Microcylinders. Physical Review Letters, 2021, 126, 054501.	7.8	29
56	Stagnation points control chaotic fluctuations in viscoelastic porous media flow. Proceedings of the United States of America, 2021, 118, .	7.1	29
57	Synthesis of copper nanoparticles by a T-shaped microfluidic device. RSC Advances, 2014, 4, 25155-25159.	3.6	28
58	Nanoplasmonics for Real-Time and Label-Free Monitoring of Microbial Biofilm Formation. ACS Sensors, 2018, 3, 1499-1509.	7.8	28
59	Metal-Enhanced Fluorescence Immunosensor Based on Plasmonic Arrays of Gold Nanoislands on an Etched Glass Substrate. ACS Applied Nano Materials, 2020, 3, 10470-10478.	5.0	28
60	Dewetting Metal Nanofilms—Effect of Substrate on Refractive Index Sensitivity of Nanoplasmonic Gold. Nanomaterials, 2019, 9, 1530.	4.1	27
61	Purely Elastic Fluid–Structure Interactions in Microfluidics: Implications for Mucociliary Flows. Small, 2020, 16, e1903872.	10.0	27
62	Understanding of the role of dilution on evaporative deposition patterns of blood droplets over hydrophilic and hydrophobic substrates. Journal of Colloid and Interface Science, 2020, 579, 541-550.	9.4	27
63	Evaporation induced self assembly and rheology change during sol-gel coating. Physics of Fluids, 2006, 18, 052105.	4.0	26
64	Sensing and Sensibility: Singleâ€Isletâ€based Quality Control Assay of Cryopreserved Pancreatic Islets with Functionalized Hydrogel Microcapsules. Advanced Healthcare Materials, 2016, 5, 223-231.	7.6	25
65	Inertioelastic Flow Instability at a Stagnation Point. Physical Review X, 2017, 7, .	8.9	25
66	Droplet Size Effects on Film Drainage between Droplet and Substrate. Langmuir, 2006, 22, 5308-5313.	3.5	24
67	Prospective energy densities in the forisome, a new smart material. Materials Science and Engineering C, 2006, 26, 104-112.	7.3	24
68	Microencapsulated 3-Dimensional Sensor for the Measurement of Oxygen in Single Isolated Pancreatic Islets. PLoS ONE, 2012, 7, e33070.	2.5	22
69	Synthesis of copper nanocolloids using a continuous flow based microreactor. Applied Surface Science, 2015, 355, 1-6.	6.1	22
70	Dynamics of a Water Droplet over a Sessile Oil Droplet: Compound Droplets Satisfying a Neumann Condition. Langmuir, 2017, 33, 5713-5723.	3.5	22
71	Air Plasma-Enhanced Covalent Functionalization of Poly(methyl methacrylate): High-Throughput Protein Immobilization for Miniaturized Bioassays. ACS Applied Materials & Interfaces, 2019, 11, 46350-46360.	8.0	22
72	Detecting <i>Escherichia coli</i> Biofilm Development Stages on Gold and Titanium by Quartz Crystal Microbalance. ACS Omega, 2020, 5, 2295-2302.	3.5	22

#	Article	IF	CITATIONS
73	Nanoporous Scaffold with Immobilized Enzymes during Flowâ€Induced Gelation for Sensitive H ₂ O ₂ Biosensing. Advanced Materials, 2010, 22, 2809-2813.	21.0	20
74	A stable flow-induced structured phase in wormlike micellar solutions. Soft Matter, 2011, 7, 876-879.	2.7	20
75	Microscopic investigation of vortex breakdown in a dividing T-junction flow. Physical Review Fluids, 2018, 3, .	2.5	20
76	Wave patterns in a thin layer of sand within a rotating horizontal cylinder. Physics of Fluids, 1998, 10, 10-12.	4.0	19
77	Anisotropic contraction in forisomes: Simple models won't fit. Cytoskeleton, 2008, 65, 368-378.	4.4	19
78	Engineering lipid tubules using nano-sized building blocks: the combinatorial self-assembly of vesicles. Lab on A Chip, 2008, 8, 339-345.	6.0	19
79	Atom-economical in situ synthesis of BaSO4 as imaging contrast agents within poly(N-isopropylacrylamide) microgels using one-step droplet microfluidics. Green Chemistry, 2013, 15, 2222.	9.0	19
80	A low cost, disposable cable-shaped Al–air battery for portable biosensors. Journal of Micromechanics and Microengineering, 2016, 26, 055011.	2.6	19
81	Dual-mode refractive index and charge sensing to investigate complex surface chemistry on nanostructures. Nanoscale, 2017, 9, 547-554.	5.6	19
82	Evaporation and morphological patterns of bi-dispersed colloidal droplets on hydrophilic and hydrophobic surfaces. Soft Matter, 2018, 14, 9901-9909.	2.7	19
83	Isotropic-to-Nematic Phase Transition in a Liquid-Crystal Droplet. Langmuir, 2008, 24, 541-546.	3.5	18
84	Filling the gap between transient and steady shear rheology of aqueous graphene oxide dispersions. Rheologica Acta, 2018, 57, 293-306.	2.4	18
85	Rheological Scaling of Ionic-Liquid-Based Polyelectrolytes in Ionic Liquid Solutions. Macromolecules, 2019, 52, 2759-2771.	4.8	18
86	Controlled symmetry breaking and vortex dynamics in intersecting flows. Physics of Fluids, 2019, 31, .	4.0	18
87	Kinetics of Colloidal Templating Using Emulsion Drop Consolidation. Langmuir, 2007, 23, 12821-12826.	3.5	17
88	Local micelle concentration fluctuations in microfluidic flows and its relation to a flow-induced structured phase (FISP). Soft Matter, 2012, 8, 2304.	2.7	17
89	Optimized Immobilization of Biomolecules on Nonspherical Gold Nanostructures for Efficient Localized Surface Plasmon Resonance Biosensing. Analytical Chemistry, 2019, 91, 15090-15098.	6.5	17
90	Viscous flow through microfabricated axisymmetric contraction/expansion geometries. Experiments in Fluids, 2020, 61, 1.	2.4	17

#	Article	IF	CITATIONS
91	Forisome based biomimetic smart materials. Smart Structures and Systems, 2006, 2, 225-235.	1.9	17
92	Detecting Gold Biomineralization by Delftia acidovorans Biofilms on a Quartz Crystal Microbalance. ACS Sensors, 2019, 4, 3023-3033.	7.8	16
93	Electrical Contact of Metals at the Nanoscale Overcomes the Oxidative Susceptibility of Silver-Based Nanobiosensors. ACS Applied Nano Materials, 2019, 2, 2064-2075.	5.0	16
94	Periodic fluctuations of streamwise vortices in inertia-dominated intersecting flows. Physics of Fluids, 2021, 33, .	4.0	16
95	Material Characterization of Porcine Lenticular Soluble Proteins. Biomacromolecules, 2008, 9, 1519-1526.	5.4	15
96	Size-selective immunofluorescence of Mycobacterium tuberculosis cells by capillary- and viscous forces. Lab on A Chip, 2010, 10, 3178.	6.0	15
97	Integrated microfluidic platform for instantaneous flow and localized temperature control. RSC Advances, 2015, 5, 85620-85629.	3.6	15
98	Uniform electric field generation in circular multi-well culture plates using polymeric inserts. Scientific Reports, 2016, 6, 26222.	3.3	15
99	Voltage-gated ion channels mediate the electrotaxis of glioblastoma cells in a hybrid PMMA/PDMS microdevice. APL Bioengineering, 2020, 4, 036102.	6.2	15
100	Structure-property relationship of a soft colloidal glass in simple and mixed flows. Journal of Colloid and Interface Science, 2021, 601, 454-466.	9.4	15
101	Coupling of vortex breakdown and stability in a swirling flow. Physical Review Fluids, 2019, 4, .	2.5	15
102	Fabrication of conducting polyaniline microspheres using droplet microfluidics. RSC Advances, 2013, 3, 24423.	3.6	14
103	Getting in shape: Molten wax drop deformation and solidification at an immiscible liquid interface. Journal of Colloid and Interface Science, 2015, 445, 231-242.	9.4	14
104	Substrate stiffness affects particle distribution pattern in a drying suspension droplet. Applied Physics Letters, 2019, 114, .	3.3	14
105	Rheology of the Electric Double Layer in Electrolyte Solutions. Analytical Chemistry, 2020, 92, 8244-8253.	6.5	14
106	Bifurcations in flows of complex fluids around microfluidic cylinders. Lab on A Chip, 2021, 21, 4041-4059.	6.0	14
107	Turning up the heat on wormlike micelles with a hydrotopic salt in microfluidics. Soft Matter, 2014, 10, 9300-9312.	2.7	13
108	Largeâ€Scale Nanophotonic Structures for Longâ€Term Monitoring of Cell Proliferation. Advanced Biology, 2018, 2, 1700258.	3.0	13

#	Article	IF	CITATIONS
109	Elastic modifications of an inertial instability in a 3D cross-slot. Journal of Non-Newtonian Fluid Mechanics, 2018, 262, 12-24.	2.4	13
110	Flow-induced immobilization of glucose oxidase in nonionic micellar nanogels for glucose sensing. Lab on A Chip, 2014, 14, 3912-3916.	6.0	12
111	"Phase diagram―for viscoelastic Poiseuille flow over a wavy surface. Physics of Fluids, 2018, 30, .	4.0	12
112	Rheological Scaling of Ionic Liquid-Based Polyelectrolytes in the Semidilute Unentangled Regime from Low to High Salt Concentrations. Macromolecules, 2021, 54, 5648-5661.	4.8	12
113	Particle trapping in merging flow junctions by fluid-solute-colloid-boundary interactions. Physical Review Fluids, 2020, 5, .	2.5	12
114	Theory for solvent, momentum, and energy transfer between a surfactant solution and a vapor atmosphere. Physical Review E, 2006, 73, 061601.	2.1	11
115	Microtomographic particle image velocimetry measurements of viscoelastic instabilities in a three-dimensional microcontraction. Journal of Fluid Mechanics, 2021, 923, .	3.4	11
116	Reduced and increased flow resistance in shear-dominated flows of Oldroyd-B fluids. Journal of Non-Newtonian Fluid Mechanics, 2022, 300, 104698.	2.4	11
117	Electro-conductive porous scaffold with single-walled carbon nanotubes in wormlike micellar networks. Carbon, 2014, 80, 203-212.	10.3	10
118	Shape-tunable wax microparticle synthesis via microfluidics and droplet impact. Biomicrofluidics, 2015, 9, 064114.	2.4	10
119	Torsional fracture of viscoelastic liquid bridges. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	10
120	Population genetics in microchannels. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2120821119.	7.1	10
121	Nanoplasmonic multiplex biosensing for COVID-19 vaccines. Biosensors and Bioelectronics, 2022, 208, 114193.	10.1	10
122	Alignment of Colloidal Rods in Crowded Environments. Macromolecules, 2022, 55, 5610-5620.	4.8	10
123	Generalization of the Stefan model to allow for both velocity and temperature jumps. Continuum Mechanics and Thermodynamics, 1999, 11, 277-296.	2.2	9
124	Design of a biomimetic-based monitoring and diagnostic system for civil structures. International Journal of Nanotechnology, 2007, 4, 309.	0.2	9
125	Inertioelastic Poiseuille flow over a wavy surface. Physical Review Fluids, 2018, 3, .	2.5	9
126	Toward the Development of Rapid, Specific, and Sensitive Microfluidic Sensors: A Comprehensive Device Blueprint. Jacs Au, 2021, 1, 1815-1833.	7.9	9

#	Article	IF	CITATIONS
127	The freedom of confinement in complex fluid. Physics Today, 2010, 63, 30-35.	0.3	8
128	Lipid tubule growth by osmotic pressure. Journal of the Royal Society Interface, 2013, 10, 20130637.	3.4	8
129	Total Capture, Convection-Limited Nanofluidic Immunoassays Exhibiting Nanoconfinement Effects. Analytical Chemistry, 2018, 90, 3211-3219.	6.5	8
130	Shear thickening behavior in dense repulsive and attractive suspensions of hard spheres. Soft Matter, 2021, 17, 8047-8058.	2.7	8
131	Spreading of miscible liquids. Physical Review Fluids, 2016, 1, .	2.5	8
132	Flow-Induced Structured Phase in Nonionic Micellar Solutions. Langmuir, 2013, 29, 15485-15495.	3.5	7
133	Formation of crystal-like structures and branched networks from nonionic spherical micelles. Scientific Reports, 2016, 5, 17941.	3.3	7
134	Microfluidic device flow field characterization around tumor spheroids with tunable necrosis produced in an optimized off-chip process. Biomedical Microdevices, 2017, 19, 59.	2.8	7
135	Probing specific gravity in real-time with graphene oxide plasmonics. Analytical Methods, 2018, 10, 290-297.	2.7	7
136	Cell biology at the interface of nanobiosensors and microfluidics. Methods in Cell Biology, 2018, 148, 203-227.	1.1	7
137	Microfluidic analog of an opposed-jets device. Applied Physics Letters, 2019, 114, 223701.	3.3	7
138	Heterogeneous flow inside threads of low viscosity fluids leads to anomalous long filament lifetimes. Scientific Reports, 2019, 9, 7110.	3.3	7
139	Inelastic Behavior in Repeated Shearing of Bovine White Matter. Journal of Biomechanical Engineering, 2008, 130, 044504.	1.3	6
140	Worming Their Way into Shape: Toroidal Formations in Micellar Solutions. ACS Nano, 2013, 7, 9704-9713.	14.6	6
141	Formation and flow behavior of micellar membranes in a T-shaped microchannel. Soft Matter, 2016, 12, 8226-8234.	2.7	6
142	In-situ shear-banding quantification of surfactant solutions in straight microfluidic channels. Journal of Rheology, 2017, 61, 769-783.	2.6	6
143	Poiseuille flow over a wavy surface. Physical Review Fluids, 2017, 2, .	2.5	6
144	A fast and efficient tool to study the rheology of dense suspensions. Physics of Fluids, 2021, 33, .	4.0	6

#	Article	IF	CITATIONS
145	Microrheological Approach for Probing the Entanglement Properties of Polyelectrolyte Solutions. ACS Macro Letters, 2022, 11, 84-90.	4.8	6
146	Upstream wall vortices in viscoelastic flow past a cylinder. Soft Matter, 2022, 18, 4868-4880.	2.7	6
147	Point Defects in Nematic Gels: The Case for Hedgehogs. Archive for Rational Mechanics and Analysis, 2005, 177, 21-51.	2.4	5
148	Crossover transition in flowing granular chains. Physical Review E, 2009, 80, 030301.	2.1	5
149	Evaporation driven smart patterning of microparticles on a rigid-soft composite substrate. Journal of Colloid and Interface Science, 2022, 623, 927-937.	9.4	5
150	Evaluation of constitutive models for shear-banding wormlike micellar solutions in simple and complex flows. Journal of Non-Newtonian Fluid Mechanics, 2022, 307, 104855.	2.4	5
151	Elastic properties of the forisome. Functional Plant Biology, 2007, 34, 935.	2.1	4
152	Microfluidics enhanced control of the microstructure and flow of complex fluids. Mechanics Research Communications, 2009, 36, 121-124.	1.8	4
153	Contact angle changes induced by immunocomplex formation. Analyst, The, 2014, 139, 1340-1344.	3.5	4
154	Interfacial Tension Measurements in Microfluidic Quasi-Static Extensional Flows. Micromachines, 2021, 12, 272.	2.9	4
155	Torsional instability of constant viscosity elastic liquid bridges. Soft Matter, 2022, 18, 1965-1977.	2.7	4
156	Rheological scaling of ionic-liquid-based polyelectrolytes in ionic liquid solutions: the effect of the ion diameter of ionic liquids. Soft Matter, 2022, 18, 4197-4204.	2.7	4
157	IS SEGREGATION-BY-PARTICLE-TYPE A GENERIC MECHANISM UNDERLYING FINGER FORMATION AT FRONTS OF FLOWING GRANULAR MEDIA?. Particulate Science and Technology, 1999, 17, 141-147.	2.1	3
158	Self-powered sensory nerve system for civil structures using hybrid forisome actuators. , 2006, 6174, 1024.		3
159	Fluid–structure interactions: From engineering to biomimetic systems. Physics of Fluids, 2020, 32, 120401.	4.0	3
160	Forisome as biomimetic smart materials. , 2005, 5765, 97.		2
161	Reversible and Irreversible Flow-Induced Phase Transitions in Micellar Solutions. AIP Conference Proceedings, 2008, , .	0.4	2
162	Evolution equation for a disclination line located between the uniaxial and isotropic phases of a nematic liquid crystal. Journal of Colloid and Interface Science, 2009, 329, 140-152.	9.4	2

#	Article	IF	CITATIONS
163	Glioblastoma adhesion in a quick-fit hybrid microdevice. Biomedical Microdevices, 2019, 21, 30.	2.8	2
164	Granular finger formation in a rotating cylinder. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2003, 459, 891-909.	2.1	1
165	High-throughput fabrication of high aspect ratio Ag/Al nanopillars for optical detection of biomarkers. Journal of Materials Chemistry B, 2021, 9, 8851-8861.	5.8	1
166	Optimization and Fabrication of Multi-Level Microchannels for Long-Term Imaging of Bacterial Growth and Expansion. Micromachines, 2022, 13, 576.	2.9	1
167	Jestimation for shallow notch SE(B) specimens: 3 and 4 point bending vs. ?pure? bending. International Journal of Fracture, 1996, 77, R11-R17.	2.2	0
168	Stability of a sharp uniaxial–isotropic phase interface. Journal of Colloid and Interface Science, 2009, 339, 502-510.	9.4	0
169	Size Specific Immunofluorescence of Mycobacterium Tuberculosis Cells by Using a Microtip-Sensor. , 2010, , .		Ο
170	Getting the most from microfluidic platforms for biomedical applications (Conference Presentation). , 2016, , .		0
171	Novel refractive index biosensing of microcontact printed molecules on lithium niobate. , 2016, 2016, 2095, 2095.		0
172	10.1063/5.0031712.5., 2021,,.		0
173	10.1063/5.0031712.6., 2021,,.		0
174	Deterministic particle assembly on nanophotonic chips. Journal of Colloid and Interface Science, 2021, 603, 259-269.	9.4	0
175	Biomimetic Proteinaceous Valves in Microfluidics Systems. , 0, 2005, .		Ο
176	Corrigendum to: Elastic properties of the forisome. Functional Plant Biology, 2007, 34, 1053.	2.1	0
177	Effects of Air on Enclosure Design of Lead-Zirconate-Titanate (PZT) Thin-Film Diaphragm Microactuators. , 2012, , .		0
178	Integrated nanoplasmonic biosensors: from innovative materials to multimode sensing. , 0, , .		0
179	Publisher's Note: Poiseuille flow over a wavy surface [Phys. Rev. Fluids 2 , 124102 (2017)]. Physical Review Fluids, 2018, 3, .	2.5	0
180	10.1063/1.5057392.1., 2018, , .		0

#	Article	IF	CITATIONS
181	Chapter 9. Microfluidic Flows and Confinement of Wormlike Micelles. , 0, , 236-278.		0
182	Non-Newtonian flows and instabilities in 3D glass microfluidic devices. , 2022, 2, 100023.		0