Karen S Aboody

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2980336/publications.pdf

Version: 2024-02-01

81839 98753 4,702 78 39 67 citations h-index g-index papers 80 80 80 4648 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Glioma-targeted delivery of exosome-encapsulated antisense oligonucleotides using neural stem cells. Molecular Therapy - Nucleic Acids, 2022, 27, 611-620.	2.3	33
2	Stem Cellâ€based therapies for COVIDâ€19â€related acute respiratory distress syndrome. Journal of Cellular and Molecular Medicine, 2022, , .	1.6	1
3	Feasibility of intracerebrally administering multiple doses of genetically modified neural stem cells to locally produce chemotherapy in glioma patients. Cancer Gene Therapy, 2021, 28, 294-306.	2.2	7
4	Thermal analysis of laser irradiation-gold nanorod combinations at 808 nm, 940 nm, 975 nm and 1 wavelengths in breast cancer model. International Journal of Hyperthermia, 2021, 38, 1099-1110.	.064ậ€‰r 1.1	ım ₁₄
5	Neural stem cells secreting bispecific T cell engager to induce selective antiglioma activity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	18
6	Allogeneic human neural stem cells for improved therapeutic delivery to peritoneal ovarian cancer. Stem Cell Research and Therapy, 2021, 12, 205.	2.4	5
7	Neural stem cell delivery of an oncolytic adenovirus in newly diagnosed malignant glioma: a first-in-human, phase 1, dose-escalation trial. Lancet Oncology, The, 2021, 22, 1103-1114.	5.1	91
8	Neural stem cell-mediated brain tumor therapy. , 2021, , 161-179.		0
9	Multiple Treatment Cycles of Neural Stem Cell Delivered Oncolytic Adenovirus for the Treatment of Glioblastoma. Cancers, 2021, 13, 6320.	1.7	5
10	Novel Chimeric Poxvirus CF17 Improves Survival in a Murine Model of Intraperitoneal Ovarian Cancer Metastasis. Molecular Therapy - Oncolytics, 2020, 19, 278-282.	2.0	5
11	Neural Stem Cells Improve the Delivery of Oncolytic Chimeric Orthopoxvirus in a Metastatic Ovarian Cancer Model. Molecular Therapy - Oncolytics, 2020, 18, 326-334.	2.0	17
12	Chlorotoxin-directed CAR T cells for specific and effective targeting of glioblastoma. Science Translational Medicine, 2020, 12, .	5.8	150
13	Developing Implantable Scaffolds to Enhance Neural Stem Cell Therapy for Post-Operative Glioblastoma. Molecular Therapy, 2020, 28, 1056-1067.	3.7	24
14	NSCs are permissive to oncolytic <i>Myxoma virus</i> and provide a delivery method for targeted ovarian cancer therapy. Oncotarget, 2020, 11, 4693-4698.	0.8	5
15	Silica Coated Paclitaxel Nanocrystals Enable Neural Stem Cell Loading For Treatment of Ovarian Cancer. Bioconjugate Chemistry, 2019, 30, 1415-1424.	1.8	10
16	Quantitative Evaluation of Intraventricular Delivery of Therapeutic Neural Stem Cells to Orthotopic Glioma. Frontiers in Oncology, 2019, 9, 68.	1.3	30
17	Enhanced Delivery of Oncolytic Adenovirus by Neural Stem Cells for Treatment of Metastatic Ovarian Cancer. Molecular Therapy - Oncolytics, 2019, 12, 79-92.	2.0	36
18	Early Changes in Tumor Perfusion from T1-Weighted Dynamic Contrast-Enhanced MRI following Neural Stem Cell-Mediated Therapy of Recurrent High-Grade Glioma Correlate with Overall Survival. Stem Cells International, 2018, 2018, 1-9.	1.2	5

#	Article	IF	CITATIONS
19	Long-term stability and computational analysis of migration patterns of L-MYC immortalized neural stem cells in the brain. PLoS ONE, 2018, 13, e0199967.	1.1	12
20	Bcl-2Overexpression Improves Survival and Efficacy of Neural Stem Cell-Mediated Enzyme Prodrug Therapy. Stem Cells International, 2018, 2018, 1-13.	1.2	10
21	Concise Review: Neural Stem Cell-Mediated Targeted Cancer Therapies. Stem Cells Translational Medicine, 2018, 7, 740-747.	1.6	49
22	GMP Production and Scale-Up of Adherent Neural Stem Cells with a Quantum Cell Expansion System. Molecular Therapy - Methods and Clinical Development, 2018, 10, 48-56.	1.8	23
23	Optimization of a Neural Stem-Cell-Mediated Carboxylesterase/Irinotecan Gene Therapy for Metastatic Neuroblastoma. Molecular Therapy - Oncolytics, 2017, 4, 67-76.	2.0	18
24	Human Neural Stem Cell Biodistribution and Predicted Tumor Coverage by a Diffusible Therapeutic in a Mouse Glioma Model. Stem Cells Translational Medicine, 2017, 6, 1522-1532.	1.6	24
25	Intraperitoneal Administration of Neural Stem Cell–Nanoparticle Conjugates Targets Chemotherapy to Ovarian Tumors. Bioconjugate Chemistry, 2017, 28, 1767-1776.	1.8	34
26	<i>SLC7A11</i> Overexpression in Glioblastoma Is Associated with Increased Cancer Stem Cell-Like Properties. Stem Cells and Development, 2017, 26, 1236-1246.	1.1	66
27	Neural Stem Cell–Based Anticancer Gene Therapy: A First-in-Human Study in Recurrent High-Grade Glioma Patients. Clinical Cancer Research, 2017, 23, 2951-2960.	3.2	121
28	Cell-mediated enzyme prodrug cancer therapies. Advanced Drug Delivery Reviews, 2017, 118, 35-51.	6.6	41
29	Increased Expression of System xcâ^' in Glioblastoma Confers an Altered Metabolic State and Temozolomide Resistance. Molecular Cancer Research, 2016, 14, 1229-1242.	1.5	85
30	L- MYC Expression Maintains Self-Renewal and Prolongs Multipotency ofÂPrimary Human Neural Stem Cells. Stem Cell Reports, 2016, 7, 483-495.	2.3	17
31	Intranasal Oncolytic Virotherapy with CXCR4-Enhanced Stem Cells Extends Survival in Mouse Model of Glioma. Stem Cell Reports, 2016, 7, 471-482.	2.3	45
32	Dynamic In Vivo SPECT Imaging of Neural Stem Cells Functionalized with Radiolabeled Nanoparticles for Tracking of Glioblastoma. Journal of Nuclear Medicine, 2016, 57, 279-284.	2.8	79
33	Controlled Payload Release by Magnetic Field Triggered Neural Stem Cell Destruction for Malignant Glioma Treatment. PLoS ONE, 2016, 11, e0145129.	1.1	31
34	Neural Stem Cells Secreting Anti-HER2 Antibody Improve Survival in a Preclinical Model of HER2 Overexpressing Breast Cancer Brain Metastases. Stem Cells, 2015, 33, 2985-2994.	1.4	45
35	MMP14 as a novel downstream target of VEGFR2 in migratory glioma-tropic neural stem cells. Stem Cell Research, 2015, 15, 598-607.	0.3	12
36	The Histone Demethylase Jumonji Coordinates Cellular Senescence Including Secretion of Neural Stem Cell–Attracting Cytokines. Molecular Cancer Research, 2015, 13, 636-650.	1.5	40

#	Article	IF	Citations
37	Neural stem cells improve intracranial nanoparticle retention and tumor-selective distribution. Future Oncology, 2014, 10, 401-415.	1.1	51
38	Intranasal Delivery of Mesenchymal Stem Cells Significantly Extends Survival of Irradiated Mice with Experimental Brain Tumors. Molecular Therapy, 2014, 22, 140-148.	3.7	105
39	Neural Stem Cell-Mediated Intratumoral Delivery of Gold Nanorods Improves Photothermal Therapy. ACS Nano, 2014, 8, 12450-12460.	7.3	139
40	Conjugation of pH-responsive nanoparticles to neural stem cells improves intratumoral therapy. Journal of Controlled Release, 2014, 191, 82-89.	4.8	51
41	Selective antitumor effect of neural stem cells expressing cytosine deaminase and interferon-beta against ductal breast cancer cells in cellular and xenograft models. Stem Cell Research, 2014, 12, 36-48.	0.3	35
42	Nanoparticleâ€Programmed Selfâ€Destructive Neural Stem Cells for Glioblastoma Targeting and Therapy. Small, 2013, 9, 4123-4129.	5.2	73
43	Cancer Therapy: Gold Nanoparticle‣oaded Neural Stem Cells for Photothermal Ablation of Cancer (Adv. Healthcare Mater. 7/2013). Advanced Healthcare Materials, 2013, 2, 922-922.	3.9	0
44	Neural Stem Cell–Mediated Enzyme/Prodrug Therapy for Glioma: Preclinical Studies. Science Translational Medicine, 2013, 5, 184ra59.	5.8	194
45	Gold Nanoparticleâ€Loaded Neural Stem Cells for Photothermal Ablation of Cancer. Advanced Healthcare Materials, 2013, 2, 976-982.	3.9	59
46	Neural Stem Cell-Mediated Delivery of Irinotecan-Activating Carboxylesterases to Glioma: Implications for Clinical Use. Stem Cells Translational Medicine, 2013, 2, 983-992.	1.6	58
47	A Preclinical Evaluation of Neural Stem Cell–Based Cell Carrier for Targeted Antiglioma Oncolytic Virotherapy. Journal of the National Cancer Institute, 2013, 105, 968-977.	3.0	90
48	The Timing of Neural Stem Cell-Based Virotherapy Is Critical for Optimal Therapeutic Efficacy When Applied With Radiation and Chemotherapy for the Treatment of Glioblastoma. Stem Cells Translational Medicine, 2013, 2, 655-666.	1.6	67
49	Magnetic Resonance Imaging Tracking of Ferumoxytol-Labeled Human Neural Stem Cells: Studies Leading to Clinical Use. Stem Cells Translational Medicine, 2013, 2, 766-775.	1.6	88
50	Cellular Host Responses to Gliomas. PLoS ONE, 2012, 7, e35150.	1.1	30
51	Contact and Encirclement of Glioma Cells In Vitro Is an Intrinsic Behavior of a Clonal Human Neural Stem Cell Line. PLoS ONE, 2012, 7, e51859.	1.1	3
52	Human Neural Stem Cell Tropism to Metastatic Breast Cancer. Stem Cells, 2012, 30, 314-325.	1.4	71
53	Neural Stem Cell-based Cell Carriers Enhance Therapeutic Efficacy of an Oncolytic Adenovirus in an Orthotopic Mouse Model of Human Glioblastoma. Molecular Therapy, 2011, 19, 1714-1726.	3.7	111
54	Genetically engineered human neural stem cells with rabbit carboxyl esterase can target brain metastasis from breast cancer. Cancer Letters, 2011, 311, 152-159.	3.2	43

#	Article	IF	Citations
55	Translating Stem Cell Studies to the Clinic for CNS Repair: Current State of the Art and the Need for a Rosetta Stone. Neuron, 2011, 70, 597-613.	3.8	176
56	Strategies for enhancing antibody delivery to the brain. Biochimica Et Biophysica Acta: Reviews on Cancer, 2011, 1816, 191-198.	3.3	23
57	Therapeutic Targeting of Melanoma Cells Using Neural Stem Cells Expressing Carboxylesterase, a CPT-11 Activating Enzyme. Current Stem Cell Research and Therapy, 2010, 5, 273-276.	0.6	26
58	Concise Review: Stem Cells As an Emerging Platform for Antibody Therapy of Cancer. Stem Cells, 2010, 28, 2084-2087.	1.4	34
59	Iron Labeling and Pre-Clinical MRI Visualization of Therapeutic Human Neural Stem Cells in a Murine Glioma Model. PLoS ONE, 2009, 4, e7218.	1.1	82
60	Vascular endothelial growth factor-stimulated cerebral microvascular endothelial cells mediate the recruitment of neural stem cells to the neurovascular niche. Brain Research, 2009, 1268, 24-37.	1.1	75
61	Neural progenitor cell–mediated delivery of osteoprotegerin limits disease progression in a preclinical model of neuroblastoma bone metastasis. Journal of Pediatric Surgery, 2009, 44, 204-211.	0.8	16
62	Neural Stem Cells as a Novel Platform for Tumor-Specific Delivery of Therapeutic Antibodies. PLoS ONE, 2009, 4, e8314.	1.1	63
63	Neural Progenitor Cell-mediated Delivery of Interferon Beta Improves Neuroblastoma Response to Cyclophosphamide. Annals of Surgical Oncology, 2008, 15, 3259-67.	0.7	9
64	Neural Stem Cell Targeting of Glioma Is Dependent on Phosphoinositide 3-Kinase Signaling. Stem Cells, 2008, 26, 1575-1586.	1.4	101
65	Urokinase Plasminogen Activator and Urokinase Plasminogen Activator Receptor Mediate Human Stem Cell Tropism to Malignant Solid Tumors. Stem Cells, 2008, 26, 1406-1413.	1.4	106
66	Neural Stem Cell Tropism to Glioma: Critical Role of Tumor Hypoxia. Molecular Cancer Research, 2008, 6, 1819-1829.	1.5	156
67	Tumor-Targeted Enzyme/Prodrug Therapy Mediates Long-term Disease-Free Survival of Mice Bearing Disseminated Neuroblastoma. Cancer Research, 2007, 67, 22-25.	0.4	127
68	Novel method for visualizing and modeling the spatial distribution of neural stem cells within intracranial glioma. Neurolmage, 2007, 37, S18-S26.	2.1	28
69	Identification of uPAR-positive Chemoresistant Cells in Small Cell Lung Cancer. PLoS ONE, 2007, 2, e243.	1.1	123
70	Neural Stem Cell-mediated Therapy of Primary and Metastatic Solid Tumors., 2007,, 335-372.		9
71	Targeting of melanoma brain metastases using engineered neural stem/progenitor cells1. Neuro-Oncology, 2006, 8, 119-126.	0.6	129
72	Human Neural Stem Cells Target Experimental Intracranial Medulloblastoma and Deliver a Therapeutic Gene Leading to Tumor Regression. Clinical Cancer Research, 2006, 12, 5550-5556.	3.2	197

#	Article	IF	CITATION
73	Glioma-produced extracellular matrix influences brain tumor tropism of human neural stem cells. Journal of Neuro-Oncology, 2006, 79, 125-133.	1.4	79
74	Development of a Tumor-Selective Approach to Treat Metastatic Cancer. PLoS ONE, 2006, 1, e23.	1.1	111
75	Brain Tumor Tropism of Transplanted Human Neural Stem Cells Is Induced by Vascular Endothelial Growth Factor. Neoplasia, 2005, 7, 623-630.	2.3	185
76	Intravascular Delivery of Neural Stem Cell Lines to Target Intracranial and Extracranial Tumors of Neural and Non-Neural Origin. Human Gene Therapy, 2003, 14, 1777-1785.	1.4	162
77	Neural Stem Cell Biology May Be Well Suited for Improving Brain Tumor Therapies. Cancer Journal (Sudbury, Mass), 2003, 9, 189-204.	1.0	58
78	Neural Precursor Cells for Delivery of Replication-Conditional HSV-1 Vectors to Intracerebral Gliomas. Molecular Therapy, 2000, 1, 347-357.	3.7	151