
Elizabeth M Mcnally

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2979961/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nature Immunology, 2004, 5, 1052-1060.	7.0	1,016
2	Dilated Cardiomyopathy. Circulation Research, 2017, 121, 731-748.	2.0	527
3	Myosin subfragment-1 is sufficient to move actin filaments in vitro. Nature, 1987, 328, 536-539.	13.7	516
4	Mutations in the Dystrophin-Associated Protein [IMAGE]-Sarcoglycan in Chromosome 13 Muscular Dystrophy. Science, 1995, 270, 819-822.	6.0	510
5	β–sarcoglycan (A3b) mutations cause autosomal recessive muscular dystrophy with loss of the sarcoglycan complex. Nature Genetics, 1995, 11, 266-273.	9.4	438
6	The Dystrophin Glycoprotein Complex. Circulation Research, 2004, 94, 1023-1031.	2.0	424
7	Genetic mutations and mechanisms in dilated cardiomyopathy. Journal of Clinical Investigation, 2013, 123, 19-26.	3.9	382
8	The Dystrophin Complex: Structure, Function, and Implications for Therapy. , 2015, 5, 1223-1239.		282
9	Mechanisms of Muscle Degeneration, Regeneration, and Repair in the Muscular Dystrophies. Annual Review of Physiology, 2009, 71, 37-57.	5.6	271
10	γ-Sarcoglycan Deficiency Leads to Muscle Membrane Defects and Apoptosis Independent of Dystrophin. Journal of Cell Biology, 1998, 142, 1279-1287.	2.3	269
11	Filamin 2 (FLN2): A Muscle-specific Sarcoglycan Interacting Protein. Journal of Cell Biology, 2000, 148, 115-126.	2.3	253
12	Contemporary Cardiac Issues in Duchenne Muscular Dystrophy. Circulation, 2015, 131, 1590-1598.	1.6	240
13	Desmoplakin Cardiomyopathy, a Fibrotic and Inflammatory Form of Cardiomyopathy Distinct From Typical Dilated or Arrhythmogenic Right Ventricular Cardiomyopathy. Circulation, 2020, 141, 1872-1884.	1.6	229
14	Nesprin-1α self-associates and binds directly to emerin and lamin A in vitro. FEBS Letters, 2002, 525, 135-140.	1.3	218
15	<i><scp>LTBP4</scp></i> genotype predicts age of ambulatory loss in duchenne muscular dystrophy. Annals of Neurology, 2013, 73, 481-488.	2.8	202
16	Caveolin-3 in muscular dystrophy. Human Molecular Genetics, 1998, 7, 871-877.	1.4	200
17	Dominant negative myostatin produces hypertrophy without hyperplasia in muscle. FEBS Letters, 2000, 474, 71-75.	1.3	193
18	Normal myoblast fusion requires myoferlin. Development (Cambridge), 2005, 132, 5565-5575.	1.2	183

#	Article	IF	CITATIONS
19	Hormonal modulation of a gene injected into rat heart in vivo Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 4138-4142.	3.3	173
20	Disruption of nesprin-1 produces an Emery Dreifuss muscular dystrophy-like phenotype in mice. Human Molecular Genetics, 2009, 18, 607-620.	1.4	173
21	Episodic coronary artery vasospasm and hypertension develop in the absence of Sur2 KATP channels. Journal of Clinical Investigation, 2002, 110, 203-208.	3.9	173
22	Bacillus anthracis Edema Toxin Causes Extensive Tissue Lesions and Rapid Lethality in Mice. American Journal of Pathology, 2005, 167, 1309-1320.	1.9	172
23	Latent TGF-β–binding protein 4 modifies muscular dystrophy in mice. Journal of Clinical Investigation, 2009, 119, 3703-3712.	3.9	172
24	Linkage of Familial Dilated Cardiomyopathy with Conduction Defect and Muscular Dystrophy to Chromosome 6q23. American Journal of Human Genetics, 1997, 61, 909-917.	2.6	169
25	Calcium-sensitive Phospholipid Binding Properties of Normal and Mutant Ferlin C2 Domains. Journal of Biological Chemistry, 2002, 277, 22883-22888.	1.6	169
26	Nuclear envelope alterations in fibroblasts from LGMD1B patients carrying nonsense Y259X heterozygous or homozygous mutation in lamin A/C gene. Experimental Cell Research, 2003, 291, 352-362.	1.2	169
27	The sarcoglycan complex in the six autosomal recessive limb-girdle muscular dystrophies. Human Molecular Genetics, 1996, 5, 1963-1969.	1.4	167
28	Full-length rat alpha and beta cardiac myosin heavy chain sequences. Journal of Molecular Biology, 1989, 210, 665-671.	2.0	165
29	Human cardiac myosin heavy chain genes and their linkage in the genome. Nucleic Acids Research, 1987, 15, 5443-5459.	6.5	164
30	Myoferlin, a candidate gene and potential modifier of muscular dystrophy. Human Molecular Genetics, 2000, 9, 217-226.	1.4	161
31	An actin-dependent annexin complex mediates plasma membrane repair in muscle. Journal of Cell Biology, 2016, 213, 705-718.	2.3	149
32	Mutation of SYNE-1, encoding an essential component of the nuclear lamina, is responsible for autosomal recessive arthrogryposis. Human Molecular Genetics, 2009, 18, 3462-3469.	1.4	141
33	Muscle-Specific Promoters May Be Necessary for Adeno-Associated Virus-Mediated Gene Transfer in the Treatment of Muscular Dystrophies. Human Gene Therapy, 2001, 12, 205-215.	1.4	138
34	Myne-1, a spectrin repeat transmembrane protein of the myocyte inner nuclear membrane, interacts with lamin A/C. Journal of Cell Science, 2002, 115, 61-70.	1.2	138
35	The genetics of dilated cardiomyopathy. Current Opinion in Cardiology, 2010, 25, 198-204.	0.8	137
36	Sarcoglycans in muscular dystrophy. Microscopy Research and Technique, 2000, 48, 167-180.	1.2	129

3

#	Article	IF	CITATIONS
37	Episodic coronary artery vasospasm and hypertension develop in the absence of Sur2 KATP channels. Journal of Clinical Investigation, 2002, 110, 203-208.	3.9	129
38	TBX5 drives Scn5a expression to regulate cardiac conduction system function. Journal of Clinical Investigation, 2012, 122, 2509-2518.	3.9	127
39	Population-Based Variation in Cardiomyopathy Genes. Circulation: Cardiovascular Genetics, 2012, 5, 391-399.	5.1	126
40	Mutations that disrupt the carboxyl-terminus of gamma-sarcoglycan cause muscular dystrophy. Human Molecular Genetics, 1996, 5, 1841-1847.	1.4	125
41	Nesprin-1 mutations in human and murine cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2010, 48, 600-608.	0.9	124
42	<i>Pitx2</i> modulates a <i>Tbx5</i> -dependent gene regulatory network to maintain atrial rhythm. Science Translational Medicine, 2016, 8, 354ra115.	5.8	123
43	Muscle Diseases: The Muscular Dystrophies. Annual Review of Pathology: Mechanisms of Disease, 2007, 2, 87-109.	9.6	120
44	A promoter interaction map for cardiovascular disease genetics. ELife, 2018, 7, .	2.8	120
45	Human ϵ-sarcoglycan is highly related to α-sarcoglycan (adhalin), the limb girdle muscular dystrophy 2D gene 1. FEBS Letters, 1998, 422, 27-32.	1.3	117
46	Deletion of periostin reduces muscular dystrophy and fibrosis in mice by modulating the transforming growth factor-β pathway. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10978-10983.	3.3	117
47	Annexin A6 modifies muscular dystrophy by mediating sarcolemmal repair. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6004-6009.	3.3	117
48	Myne-1, a spectrin repeat transmembrane protein of the myocyte inner nuclear membrane, interacts with lamin A/C. Journal of Cell Science, 2002, 115, 61-70.	1.2	116
49	Muscle degeneration without mechanical injury in sarcoglycan deficiency. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 10723-10728.	3.3	114
50	Altered Chromosomal Positioning, Compaction, and Gene Expression with a Lamin A/C Gene Mutation. PLoS ONE, 2010, 5, e14342.	1.1	111
51	The Genetic Landscape of Cardiomyopathy and Its Role in Heart Failure. Cell Metabolism, 2015, 21, 174-182.	7.2	106
52	Familial Dilated Cardiomyopathy Caused by an Alpha-Tropomyosin Mutation. Journal of the American College of Cardiology, 2010, 55, 320-329.	1.2	104
53	Myoferlin Regulates Vascular Endothelial Growth Factor Receptor-2 Stability and Function. Journal of Biological Chemistry, 2007, 282, 30745-30753.	1.6	100
54	The Endocytic Recycling Protein EHD2 Interacts with Myoferlin to Regulate Myoblast Fusion. Journal of Biological Chemistry, 2008, 283, 20252-20260.	1.6	100

#	Article	IF	CITATIONS
55	Harmonizing Clinical Sequencing and Interpretation for the eMERGE III Network. American Journal of Human Genetics, 2019, 105, 588-605.	2.6	99
56	S100A12 in Vascular Smooth Muscle Accelerates Vascular Calcification in Apolipoprotein E–Null Mice by Activating an Osteogenic Gene Regulatory Program. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 337-344.	1.1	97
5 7	Intermittent glucocorticoid steroid dosing enhances muscle repair without eliciting muscle atrophy. Journal of Clinical Investigation, 2017, 127, 2418-2432.	3.9	96
58	Nesprin-1α contributes to the targeting of mAKAP to the cardiac myocyte nuclear envelope. Experimental Cell Research, 2005, 303, 388-399.	1.2	94
59	Age-Dependent Effect of Myostatin Blockade on Disease Severity in a Murine Model of Limb-Girdle Muscular Dystrophy. American Journal of Pathology, 2006, 168, 1975-1985.	1.9	94
60	Isolation and characterization of human myosin heavy chain genes Proceedings of the National Academy of Sciences of the United States of America, 1983, 80, 3716-3720.	3.3	93
61	New Approaches in the Therapy of Cardiomyopathy in Muscular Dystrophy. Annual Review of Medicine, 2007, 58, 75-88.	5.0	93
62	Rescue of Skeletal Muscles of γ-Sarcoglycan- Deficient Mice with Adeno-Associated Virus-Mediated Gene Transfer. Molecular Therapy, 2000, 1, 119-129.	3.7	91
63	Novel nesprin-1 mutations associated with dilated cardiomyopathy cause nuclear envelope disruption and defects in myogenesis. Human Molecular Genetics, 2017, 26, 2258-2276.	1.4	91
64	Human adhalin is alternatively spliced and the gene is located on chromosome 17q21 Proceedings of the United States of America, 1994, 91, 9690-9694.	3.3	89
65	Splicing mutation in dysferlin produces limb-girdle muscular dystrophy with inflammation. , 2000, 91, 305-312.		89
66	Cardiac Assessment in Duchenne and Becker Muscular Dystrophies. Current Heart Failure Reports, 2010, 7, 212-218.	1.3	86
67	Transplanted hematopoietic stem cells demonstrate impaired sarcoglycan expression after engraftment into cardiac and skeletal muscle. Journal of Clinical Investigation, 2004, 114, 1577-1585.	3.9	86
68	Sarcomere Mutations in Cardiomyopathy With Left Ventricular Hypertrabeculation. Circulation: Cardiovascular Genetics, 2009, 2, 442-449.	5.1	85
69	Phospholamban R14 Deletion Results in Late-Onset, Mild, Hereditary Dilated Cardiomyopathy. Journal of the American College of Cardiology, 2006, 48, 1396-1398.	1.2	83
70	High seroprevalence for SARS-CoV-2 among household members of essential workers detected using a dried blood spot assay. PLoS ONE, 2020, 15, e0237833.	1.1	83
71	zeta-Sarcoglycan, a novel component of the sarcoglycan complex, is reduced in muscular dystrophy. Human Molecular Genetics, 2002, 11, 2147-2154.	1.4	82
72	Spontaneous Coronary Vasospasm in K ATP Mutant Mice Arises From a Smooth Muscle–Extrinsic Process. Circulation Research, 2006, 98, 682-689.	2.0	80

#	Article	IF	CITATIONS
73	Nesprins, but not sun proteins, switch isoforms at the nuclear envelope during muscle development. Developmental Dynamics, 2010, 239, 998-1009.	0.8	79
74	S100A12 Mediates Aortic Wall Remodeling and Aortic Aneurysm. Circulation Research, 2010, 106, 145-154.	2.0	79
75	Cardiac Management of the Patient With Duchenne Muscular Dystrophy. Pediatrics, 2018, 142, S72-S81.	1.0	77
76	Comparison of IgG and neutralizing antibody responses after one or two doses of COVID-19 mRNA vaccine in previously infected and uninfected individuals EClinicalMedicine, 2021, 38, 101018.	3.2	77
77	Genetic Pathways of Vascular Calcification. Trends in Cardiovascular Medicine, 2012, 22, 93-98.	2.3	76
78	Consequences of Disrupting the Dystrophin-Sarcoglycan Complex in Cardiac and Skeletal Myopathy. Trends in Cardiovascular Medicine, 2007, 17, 55-59.	2.3	75
79	Genetic background influences muscular dystrophy. Neuromuscular Disorders, 2005, 15, 601-609.	0.3	72
80	Establishment of Specialized Clinical Cardiovascular Genetics Programs: Recognizing the Need and Meeting Standards: A Scientific Statement From the American Heart Association. Circulation Genomic and Precision Medicine, 2019, 12, e000054.	1.6	71
81	Repairing the tears: dysferlin in muscle membrane repair. Trends in Molecular Medicine, 2003, 9, 327-330.	3.5	69
82	Dysferlin Protein Analysis in Limb-Girdle Muscular Dystrophies. Journal of Molecular Neuroscience, 2001, 17, 71-80.	1.1	67
83	Processing and Assembly of the Dystrophin Glycoprotein Complex. Traffic, 2007, 8, 177-183.	1.3	67
84	Myostatin blockade improves function but not histopathology in a murine model of limbâ€girdle muscular dystrophy 2C. Muscle and Nerve, 2008, 37, 308-316.	1.0	66
85	Primary adhalin deficiency as a cause of muscular dystrophy in patients with normal dystrophin. Annals of Neurology, 1995, 38, 367-372.	2.8	65
86	Genetic compensation for sarcoglycan loss by integrin α7β1 in muscle. Journal of Cell Science, 2004, 117, 3821-3830.	1.2	65
87	Beyond dystrophin. Current Opinion in Pediatrics, 1996, 8, 569-582.	1.0	64
88	Hydrogen sulfide dilates cerebral arterioles by activating smooth muscle cell plasma membrane K _{ATP} channels. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H2088-H2095.	1.5	64
89	Smooth muscle cell–extrinsic vascular spasm arises from cardiomyocyte degeneration in sarcoglycan-deficient cardiomyopathy. Journal of Clinical Investigation, 2004, 113, 668-675.	3.9	64
90	Modifying muscular dystrophy through transforming growth factorâ€Î². FEBS Journal, 2013, 280, 4198-4209.	2.2	63

#	Article	IF	CITATIONS
91	Complete nucleotide sequence of full length cDNA for rat α cardiac myosin hea chain. Nucleic Acids Research, 1989, 17, 7527-7528.	6.5	62
92	Reduced life span with heart and muscle dysfunction in Drosophila sarcoglycan mutants. Human Molecular Genetics, 2007, 16, 2933-2943.	1.4	61
93	Dysferlin and Myoferlin Regulate Transverse Tubule Formation and Glycerol Sensitivity. American Journal of Pathology, 2014, 184, 248-259.	1.9	61
94	Myoferlin is required for insulinâ€like growth factor response and muscle growth. FASEB Journal, 2010, 24, 1284-1295.	0.2	59
95	Plasma Membrane Repair inÂHealth and Disease. Current Topics in Membranes, 2016, 77, 67-96.	0.5	59
96	Powerful Genes — Myostatin Regulation of Human Muscle Mass. New England Journal of Medicine, 2004, 350, 2642-2644.	13.9	58
97	Mechanisms of muscle weakness in muscular dystrophy. Journal of General Physiology, 2010, 136, 29-34.	0.9	58
98	Ferlin Proteins in Myoblast Fusion and Muscle Growth. Current Topics in Developmental Biology, 2011, 96, 203-230.	1.0	58
99	Impaired muscle growth and response to insulin-like growth factor 1 in dysferlin-mediated muscular dystrophy. Human Molecular Genetics, 2011, 20, 779-789.	1.4	58
100	Molecular Identification and Functional Characterization of a Mitochondrial Sulfonylurea Receptor 2 Splice Variant Generated by Intraexonic Splicing. Circulation Research, 2009, 105, 1083-1093.	2.0	56
101	Overexpression of Latent TGFβ Binding Protein 4 in Muscle Ameliorates Muscular Dystrophy through Myostatin and TGFβ. PLoS Genetics, 2016, 12, e1006019.	1.5	56
102	Recombinant annexin A6 promotes membrane repair and protects against muscle injury. Journal of Clinical Investigation, 2019, 129, 4657-4670.	3.9	55
103	Genetic Manipulation of Dysferlin Expression in Skeletal Muscle. American Journal of Pathology, 2009, 175, 1817-1823.	1.9	54
104	Mechanisms and management of the heart in myotonic dystrophy. Heart, 2011, 97, 1094-1100.	1.2	53
105	Endocytic Recycling Proteins EHD1 and EHD2 Interact with Fer-1-like-5 (Fer1L5) and Mediate Myoblast Fusion. Journal of Biological Chemistry, 2011, 286, 7379-7388.	1.6	53
106	Targeted Analysis of Whole Genome Sequence Data to Diagnose Genetic Cardiomyopathy. Circulation: Cardiovascular Genetics, 2014, 7, 751-759.	5.1	53
107	Modifier genes and their effect on Duchenne muscular dystrophy. Current Opinion in Neurology, 2015, 28, 528-534.	1.8	53
108	Supercomputing for the parallelization of whole genome analysis. Bioinformatics, 2014, 30, 1508-1513.	1.8	52

7

#	Article	IF	CITATIONS
109	Overexpression of Î ³ -Sarcoglycan Induces Severe Muscular Dystrophy. Journal of Biological Chemistry, 2001, 276, 21785-21790.	1.6	51
110	Muscle cell communication in development and repair. Current Opinion in Pharmacology, 2017, 34, 7-14.	1.7	51
111	Myoferlin regulation by NFAT in muscle injury, regeneration and repair. Journal of Cell Science, 2010, 123, 2413-2422.	1.2	49
112	Distinct pathophysiological mechanisms of cardiomyopathy in hearts lacking dystrophin or the sarcoglycan complex. FASEB Journal, 2011, 25, 3106-3114.	0.2	49
113	P38α MAPK underlies muscular dystrophy and myofiber death through a Bax-dependent mechanism. Human Molecular Genetics, 2014, 23, 5452-5463.	1.4	49
114	Emery–Dreifuss muscular dystrophy. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2011, 101, 155-166.	1.0	48
115	Spp1 (osteopontin) promotes TGFβ processing in fibroblasts of dystrophin-deficient muscles through matrix metalloproteinases. Human Molecular Genetics, 2019, 28, 3431-3442.	1.4	47
116	Lamin A/C truncation in dilated cardiomyopathy with conduction disease. BMC Medical Genetics, 2003, 4, 4.	2.1	45
117	Gene expression, chromosome position and lamin A/C mutations. Nucleus, 2011, 2, 162-167.	0.6	45
118	Novel actin crosslinker superfamily member identified by a two step degenerate PCR procedure. FEBS Letters, 1995, 368, 500-504.	1.3	44
119	S100A12 Expression in Thoracic Aortic Aneurysm Is Associated With Increased Risk of Dissection and Perioperative Complications. Journal of the American College of Cardiology, 2012, 60, 775-785.	1.2	44
120	Myofiber-specific inhibition of TGFβ signaling protects skeletal muscle from injury and dystrophic disease in mice. Human Molecular Genetics, 2014, 23, 6903-6915.	1.4	44
121	Membrane fusion in muscle development and repair. Seminars in Cell and Developmental Biology, 2015, 45, 48-56.	2.3	44
122	Mutations in the caveolin-3 gene: When are they pathogenic?. American Journal of Medical Genetics Part A, 2001, 99, 303-307.	2.4	43
123	Targeting latent TGFÎ ² release in muscular dystrophy. Science Translational Medicine, 2014, 6, 259ra144.	5.8	41
124	EHD1 mediates vesicle trafficking required for normal muscle growth and transverse tubule development. Developmental Biology, 2014, 387, 179-190.	0.9	41
125	Thrombospondin expression in myofibers stabilizes muscle membranes. ELife, 2016, 5, .	2.8	41
126	Mice lacking sulfonylurea receptor 2 (SUR2) ATP-sensitive potassium channels are resistant to acute cardiovascular stress. Journal of Molecular and Cellular Cardiology, 2007, 43, 445-454.	0.9	39

#	Article	IF	CITATIONS
127	Cardiac sulfonylurea receptor short form-based channels confer a glibenclamide-insensitive KATP activity. Journal of Molecular and Cellular Cardiology, 2008, 44, 188-200.	0.9	38
128	Sulfonylurea Receptor-Dependent and -Independent Pathways Mediate Vasodilation Induced by ATP-Sensitive K+ Channel Openers. Molecular Pharmacology, 2008, 74, 736-743.	1.0	38
129	Direct reprogramming of urine-derived cells with inducible MyoD for modeling human muscle disease. Skeletal Muscle, 2016, 6, 32.	1.9	38
130	Transplanted hematopoietic stem cells demonstrate impaired sarcoglycan expression after engraftment into cardiac and skeletal muscle. Journal of Clinical Investigation, 2004, 114, 1577-1585.	3.9	37
131	Smooth muscle cell–extrinsic vascular spasm arises from cardiomyocyte degeneration in sarcoglycan-deficient cardiomyopathy. Journal of Clinical Investigation, 2004, 113, 668-675.	3.9	37
132	Genetic Variation in Enhancers Modifies Cardiomyopathy Gene Expression and Progression. Circulation, 2021, 143, 1302-1316.	1.6	36
133	SMAD signaling drives heart and muscle dysfunction in a Drosophila model of muscular dystrophy. Human Molecular Genetics, 2011, 20, 894-904.	1.4	35
134	Mechanisms and Clinical Applications of Glucocorticoid Steroids in Muscular Dystrophy. Journal of Neuromuscular Diseases, 2021, 8, 39-52.	1.1	35
135	A polymorphic human myosin heavy chain locus is linked to an anonymous single copy locus (D17S1) at 17pl3. Cytogenetic and Genome Research, 1986, 43, 117-120.	0.6	34
136	Sarcoglycans in Vascular Smooth and Striated Muscle. Trends in Cardiovascular Medicine, 2003, 13, 238-243.	2.3	34
137	Secondary Coronary Artery Vasospasm Promotes Cardiomyopathy Progression. American Journal of Pathology, 2004, 164, 1063-1071.	1.9	34
138	Muscle hypertrophy induced by myostatin inhibition accelerates degeneration in dysferlinopathy. Human Molecular Genetics, 2015, 24, 5711-5719.	1.4	34
139	Genetics of Cardiac Developmental Disorders: Cardiomyocyte Proliferation and Growth and Relevance to Heart Failure. Annual Review of Pathology: Mechanisms of Disease, 2016, 11, 395-419.	9.6	34
140	Intermittent Glucocorticoid Dosing Improves Muscle Repair and Function in Mice with Limb-Girdle Muscular Dystrophy. American Journal of Pathology, 2017, 187, 2520-2535.	1.9	34
141	Experimental Modeling Supports a Role for MyBP-HL as a Novel Myofilament Component in Arrhythmia and Dilated Cardiomyopathy. Circulation, 2017, 136, 1477-1491.	1.6	34
142	Genetic Disruption of Calcineurin Improves Skeletal Muscle Pathology and Cardiac Disease in a Mouse Model of Limb-Girdle Muscular Dystrophy. Journal of Biological Chemistry, 2007, 282, 10068-10078.	1.6	33
143	Clinical Care Recommendations for Cardiologists Treating Adults With Myotonic Dystrophy. Journal of the American Heart Association, 2020, 9, e014006.	1.6	33
144	A surrogate virus neutralization test to quantify antibody-mediated inhibition of SARS-CoV-2 in finger stick dried blood spot samples. Scientific Reports, 2021, 11, 15321.	1.6	33

#	Article	IF	CITATIONS
145	NO more muscle fatigue. Journal of Clinical Investigation, 2009, 119, 448-450.	3.9	33
146	Sarcomere Mutations in Cardiogenesis and Ventricular Noncompaction. Trends in Cardiovascular Medicine, 2009, 19, 17-21.	2.3	32
147	Excess SMAD signaling contributes to heart and muscle dysfunction in muscular dystrophy. Human Molecular Genetics, 2014, 23, 6722-6731.	1.4	32
148	Exon-Skipping Therapy: A Roadblock, Detour, or Bump in the Road?. Science Translational Medicine, 2014, 6, 230fs14.	5.8	32
149	Clinical utility of multigene analysis in over 25,000 patients with neuromuscular disorders. Neurology: Genetics, 2020, 6, e412.	0.9	32
150	Pulsed glucocorticoids enhance dystrophic muscle performance through epigenetic-metabolic reprogramming. JCI Insight, 2019, 4, .	2.3	32
151	Extraocular muscle is spared despite the absence of an intact sarcoglycan complex in γ- or Î-sarcoglycan-deficient mice. Neuromuscular Disorders, 2001, 11, 197-207.	0.3	31
152	Functional nitric oxide synthase mislocalization in cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2004, 36, 213-223.	0.9	31
153	Association of Cardiomyopathy With <i>MYBPC3</i> D389V and <i>MYBPC3^{Δ25bp}</i> Intronic Deletion in South Asian Descendants. JAMA Cardiology, 2018, 3, 481.	3.0	31
154	Coexpression and assembly of myosin heavy chain and myosin light chain in Escherichia coli Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 7270-7273.	3.3	30
155	204th ENMC International Workshop on Biomarkers in Duchenne Muscular Dystrophy 24–26 January 2014, Naarden, The Netherlands. Neuromuscular Disorders, 2015, 25, 184-198.	0.3	30
156	COVID-19 mRNA Vaccination Generates Greater Immunoglobulin G Levels in Women Compared to Men. Journal of Infectious Diseases, 2021, 224, 793-797.	1.9	30
157	The superhealing MRL background improves muscular dystrophy. Skeletal Muscle, 2012, 2, 26.	1.9	29
158	Non-Glycanated Biglycan and LTBP4: Leveraging the extracellular matrix for Duchenne Muscular Dystrophy therapeutics. Matrix Biology, 2018, 68-69, 616-627.	1.5	29
159	Reengineering a transmembrane protein to treat muscular dystrophy using exon skipping. Journal of Clinical Investigation, 2015, 125, 4186-4195.	3.9	29
160	Distinct genetic regions modify specific muscle groups in muscular dystrophy. Physiological Genomics, 2011, 43, 24-31.	1.0	27
161	Disruption of the lamin A and matrin-3 interaction by myopathic <i>LMNA</i> mutations. Human Molecular Genetics, 2015, 24, 4284-4295.	1.4	27
162	Pathogenic and Uncertain Genetic Variants Have Clinical Cardiac Correlates in Diverse Biobank Participants. Journal of the American Heart Association, 2020, 9, e013808.	1.6	27

#	Article	IF	CITATIONS
163	Durability of antibody response to vaccination and surrogate neutralization of emerging variants based on SARS-CoV-2 exposure history. Scientific Reports, 2021, 11, 17325.	1.6	27
164	Genetic modifiers of muscular dystrophy act on sarcolemmal resealing and recovery from injury. PLoS Genetics, 2017, 13, e1007070.	1.5	27
165	Cytoskeletal defects in cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2003, 35, 231-241.	0.9	26
166	GRAF1 promotes ferlin-dependent myoblast fusion. Developmental Biology, 2014, 393, 298-311.	0.9	26
167	Moderate exercise improves function and increases adiponectin in the mdx mouse model of muscular dystrophy. Scientific Reports, 2019, 9, 5770.	1.6	26
168	Duchenne muscular dystrophy: how bad is the heart?. Heart, 2008, 94, 976-977.	1.2	25
169	Distinct pathological signatures in human cellular models of myotonic dystrophy subtypes. JCI Insight, 2019, 4, .	2.3	25
170	Ventricular myosin light chain 1 is developmentally regulated and does not change in hypertension. Nucleic Acids Research, 1989, 17, 2753-2768.	6.5	24
171	[31] Expression of myosin and actin in Escherichia coli. Methods in Enzymology, 1991, 196, 368-389.	0.4	24
172	Genetic Variation in Cardiomyopathy and Cardiovascular Disorders. Circulation Journal, 2015, 79, 1409-1415.	0.7	24
173	MicroRNAs promote skeletal muscle differentiation of mesodermal iPSC-derived progenitors. Nature Communications, 2017, 8, 1249.	5.8	24
174	Patterns and persistence of SARS-CoV-2 IgG antibodies in Chicago to monitor COVID-19 exposure. JCI Insight, 2021, 6, .	2.3	24
175	Enhanced Muscular Dystrophy from Loss of Dysferlin Is Accompanied by Impaired Annexin A6 Translocation after Sarcolemmal Disruption. American Journal of Pathology, 2016, 186, 1610-1622.	1.9	23
176	Therapy Insight: cardiovascular complications associated with muscular dystrophies. Nature Clinical Practice Cardiovascular Medicine, 2005, 2, 301-308.	3.3	22
177	A novel FKRP mutation in congenital muscular dystrophy disrupts the dystrophin glycoprotein complex. Neuromuscular Disorders, 2007, 17, 285-289.	0.3	22
178	Genetic Modifiers for Neuromuscular Diseases. Journal of Neuromuscular Diseases, 2014, 1, 3-13.	1.1	22
179	Outside in: The matrix as a modifier of muscular dystrophy. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 572-579.	1.9	22
180	A role for alternative splicing in circadian control of exocytosis and glucose homeostasis. Genes and Development, 2020, 34, 1089-1105.	2.7	22

#	Article	IF	CITATIONS
181	Genomic Autopsy of Sudden Deaths in Young Individuals. JAMA Cardiology, 2021, 6, 1247.	3.0	22
182	Cardiomyopathy is independent of skeletal muscle disease in muscular dystrophy. FASEB Journal, 2002, 16, 1096-1098.	0.2	21
183	Nuclear sequestration of Î'-sarcoglycan disrupts the nuclear localization of lamin A/C and emerin in cardiomyocytes. Human Molecular Genetics, 2007, 16, 355-363.	1.4	21
184	Genetic modifiers of muscular dystrophy: Implications for therapy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2007, 1772, 216-228.	1.8	21
185	Modifiers of heart and muscle function: where genetics meets physiology. Experimental Physiology, 2014, 99, 621-626.	0.9	21
186	DNA Electroporation, Isolation and Imaging of Myofibers. Journal of Visualized Experiments, 2015, , e53551.	0.2	21
187	Identification of sequences necessary for the association of cardiac myosin subunits Journal of Cell Biology, 1991, 113, 585-590.	2.3	20
188	Skeletal Muscle Structure and Function. , 2006, , 674-681.		20
189	Anti-latent TGFÎ ² binding protein 4 antibody improves muscle function and reduces muscle fibrosis in muscular dystrophy. Science Translational Medicine, 2021, 13, eabf0376.	5.8	20
190	Cardiomyopathy in animal models of muscular dystrophy. Current Opinion in Cardiology, 2001, 16, 211-217.	0.8	19
191	Cardiomyocyte sulfonylurea receptor 2-K _{ATP} channel mediates cardioprotection and ST segment elevation. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H1100-H1108.	1.5	19
192	Risk-Based Approach for the Prediction and Prevention of Heart Failure. Circulation: Heart Failure, 2021, 14, e007761.	1.6	19
193	Prelamin A causes aberrant myonuclear arrangement and results in muscle fiber weakness. JCI Insight, 2018, 3, .	2.3	19
194	Questions and Answers About Myostatin, GDF11, and the Aging Heart. Circulation Research, 2016, 118, 6-8.	2.0	18
195	A gene-edited mouse model of Limb-Girdle muscular dystrophy 2C for testing exon skipping. DMM Disease Models and Mechanisms, 2019, 13, .	1.2	18
196	Genotype-Specific Interaction of Latent TGFÎ ² Binding Protein 4 with TGFÎ ² . PLoS ONE, 2016, 11, e0150358.	1.1	18
197	Arrhythmia Variant Associations and Reclassifications in the eMERGE-III Sequencing Study. Circulation, 2022, 145, 877-891.	1.6	18
198	The emerging genetic landscape underlying cardiac conduction system function. Birth Defects Research Part A: Clinical and Molecular Teratology, 2011, 91, 578-585.	1.6	17

#	Article	IF	CITATIONS
199	Deficiency of Adhalin in a Patient with Muscular Dystrophy and Cardiomyopathy. New England Journal of Medicine, 1996, 334, 1610-1611.	13.9	16
200	Severe Î ³ -sarcoglycanopathy caused by a novel missense mutation and a large deletion. Neuromuscular Disorders, 2000, 10, 100-107.	0.3	16
201	Sarcomere Mutations in Cardiomyopathy, Noncompaction, and the Developing Heart. Circulation, 2008, 117, 2847-2849.	1.6	16
202	<i>Abcc9</i> is required for the transition to oxidative metabolism in the newborn heart. FASEB Journal, 2014, 28, 2804-2815.	0.2	16
203	The Sarcoglycan Complex in Striated and Vascular Smooth Muscle. Cold Spring Harbor Symposia on Quantitative Biology, 2002, 67, 389-398.	2.0	16
204	Intermittent glucocorticoid treatment enhances skeletal muscle performance through sexually dimorphic mechanisms. Journal of Clinical Investigation, 2022, 132, .	3.9	16
205	Muscle mitochondrial remodeling by intermittent glucocorticoid drugs requires an intact circadian clock and muscle PGC11±. Science Advances, 2022, 8, eabm1189.	4.7	16
206	Setting the Pace. Circulation Research, 2009, 104, 285-287.	2.0	15
207	GRAF1 deficiency blunts sarcolemmal injury repair and exacerbates cardiac and skeletal muscle pathology in dystrophin-deficient mice. Skeletal Muscle, 2015, 5, 27.	1.9	15
208	Standard Operating Procedures (SOPs) for Evaluating the Heart in Preclinical Studies of Duchenne Muscular Dystrophy. Journal of Cardiovascular Translational Research, 2016, 9, 85-86.	1.1	15
209	Efficient exon skipping of SGCG mutations mediated by phosphorodiamidate morpholino oligomers. JCI Insight, 2018, 3, .	2.3	15
210	Genotype and Cardiac Outcomes in Pediatric Dilated Cardiomyopathy. Journal of the American Heart Association, 2022, 11, e022854.	1.6	15
211	Long-Term Survival of Transplanted Stem Cells in Immunocompetent Mice with Muscular Dystrophy. American Journal of Pathology, 2008, 173, 792-802.	1.9	14
212	Genetic deletion of NOS3 increases lethal cardiac dysfunction following mouse cardiac arrest. Resuscitation, 2011, 82, 115-121.	1.3	14
213	Broken giant linked to heart failure. Nature, 2012, 483, 281-282.	13.7	14
214	Vasodilation induced by oxygen/glucose deprivation is attenuated in cerebral arteries of SUR2 null mice. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H1360-H1368.	1.5	13
215	Mutation-Based Therapy for Duchenne Muscular Dystrophy. Circulation, 2017, 136, 979-981.	1.6	13
216	Genetic Counselors' Approach To Postmortem Genetic Testing After Sudden Death. Academic Forensic Pathology, 2018, 8, 738-751.	0.3	13

#	Article	IF	CITATIONS
217	Conference report on contractures in musculoskeletal and neurological conditions. Muscle and Nerve, 2020, 61, 740-744.	1.0	13
218	2022 HRS expert consensus statement on evaluation and management of arrhythmic risk in neuromuscular disorders. Heart Rhythm, 2022, 19, e61-e120.	0.3	13
219	Bacterial expression of eukaryotic contractile proteins. Cytoskeleton, 1989, 14, 3-11.	4.4	12
220	Genetic Profiling for Risk Reduction in Human Cardiovascular Disease. Genes, 2014, 5, 214-234.	1.0	12
221	Temporal Associations Between Immunization With the COVID-19 mRNA Vaccines and Myocarditis. JAMA Cardiology, 2021, 6, 1117.	3.0	12
222	A decade of optimizing drug development for rare neuromuscular disorders through TACT. Nature Reviews Drug Discovery, 2020, 19, 1-2.	21.5	12
223	Dynamin 2 the rescue for centronuclear myopathy. Journal of Clinical Investigation, 2014, 124, 976-978.	3.9	12
224	Cardiomyopathy in neuromuscular disorders. Progress in Pediatric Cardiology, 2007, 24, 35-46.	0.2	11
225	Impaired exercise tolerance and skeletal muscle myopathy in sulfonylurea receptor-2 mutant mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 297, R1144-R1153.	0.9	11
226	The mitochondrial bioenergetic phenotype for protection from cardiac ischemia in SUR2 mutant mice. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H1884-H1890.	1.5	11
227	Cardiac function in muscular dystrophy associates with abdominal muscle pathology. Journal of Neuromuscular Diseases, 2015, 2, 39-49.	1.1	11
228	New approaches to establish genetic causality. Trends in Cardiovascular Medicine, 2015, 25, 646-652.	2.3	11
229	Impact of the COVID-19 Pandemic on Cardiovascular Science: Anticipating Problems and Potential Solutions: A Presidential Advisory From the American Heart Association. Circulation, 2021, 144, e461-e471.	1.6	11
230	The CO-Regulation Database (CORD): A Tool to Identify Coordinately Expressed Genes. PLoS ONE, 2014, 9, e90408.	1.1	10
231	Altered Enhancer and Promoter Usage Leads to Differential Gene Expression in the Normal and Failed Human Heart. Circulation: Heart Failure, 2020, 13, e006926.	1.6	10
232	SGLT2 Inhibition on Cardiac Mitochondrial Function: Searching for a Sweet Spot. Journal of the American Heart Association, 2021, 10, e021949.	1.6	10
233	Eps 15 Homology Domain (EHD)-1 Remodels Transverse Tubules in Skeletal Muscle. PLoS ONE, 2015, 10, e0136679.	1.1	10
234	Geographic disparities in COVID-19 case rates are not reflected in seropositivity rates using a neighborhood survey in Chicago. Annals of Epidemiology, 2022, 66, 44-51.	0.9	10

#	Article	IF	CITATIONS
235	A Pilot Study of a Family History Risk Assessment Tool for Cardiovascular Disease. Journal of Genetic Counseling, 2008, 17, 499-507.	0.9	9
236	Two Strikes and You're Out. Circulation Research, 2014, 115, 208-210.	2.0	9
237	Prevalence of Abnormal Heart Weight After Sudden Death in People Younger than 40 Years of Age. Journal of the American Heart Association, 2020, 9, e015699.	1.6	9
238	Genomic Context Differs Between Human Dilated Cardiomyopathy and Hypertrophic Cardiomyopathy. Journal of the American Heart Association, 2021, 10, e019944.	1.6	9
239	Loss of dysferlin or myoferlin results in differential defects in excitation–contraction coupling in mouse skeletal muscle. Scientific Reports, 2021, 11, 15865.	1.6	9
240	Ventricular fibrillation following autologous intramyocardial cell therapy for inherited cardiomyopathy. Cardiovascular Pathology, 2010, 19, e33-e36.	0.7	8
241	Interplay Between Heart and Skeletal Muscle Disease in Heart Failure. Circulation Research, 2012, 110, 749-754.	2.0	8
242	Cardiomyopathy in Muscular Dystrophy. JAMA Cardiology, 2017, 2, 199.	3.0	8
243	Gene Editing and Gene-Based Therapeutics for Cardiomyopathies. Heart Failure Clinics, 2018, 14, 179-188.	1.0	8
244	Myocarditis in Duchenne Muscular Dystrophy After Changing Steroids. JAMA Cardiology, 2018, 3, 1006.	3.0	8
245	Current state of cardiac troponin testing in Duchenne muscular dystrophy cardiomyopathy: review and recommendations from the Parent Project Muscular Dystrophy expert panel. Open Heart, 2021, 8, e001592.	0.9	8
246	Identification of Cardiac Fibrosis in Young Adults With a Homozygous Frameshift Variant in <i>SERPINE1</i> . JAMA Cardiology, 2021, 6, 841.	3.0	8
247	Assessment of Virological Contributions to COVID-19 Outcomes in a Longitudinal Cohort of Hospitalized Adults. Open Forum Infectious Diseases, 2022, 9, ofac027.	0.4	8
248	Welcome to the splice age: antisense oligonucleotide–mediated exon skipping gains wider applicability. Journal of Clinical Investigation, 2016, 126, 1236-1238.	3.9	7
249	Genetic Spectrum of Arrhythmogenic Cardiomyopathy. Circulation: Heart Failure, 2019, 12, e005850.	1.6	7
250	Association of the V122I Transthyretin Amyloidosis Genetic Variant With Cardiac Structure and Function in Middle-aged Black Adults. JAMA Cardiology, 2021, 6, 718.	3.0	7
251	An Open Label Exploratory Clinical Trial Evaluating Safety and Tolerability of Once-Weekly Prednisone in Becker and Limb-Girdle Muscular Dystrophy. Journal of Neuromuscular Diseases, 2022, 9, 275-287.	1.1	7
252	Practitioners' Confidence and Desires for Education in Cardiovascular and Sudden Cardiac Death Genetics. Journal of the American Heart Association, 2022, 11, e023763.	1.6	7

#	Article	IF	CITATIONS
253	Intermittent prednisone treatment in mice promotes exercise tolerance in obesity through adiponectin. Journal of Experimental Medicine, 2022, 219, .	4.2	7
254	The interaction of coronary tone and cardiac fibrosis. Current Atherosclerosis Reports, 2005, 7, 219-226.	2.0	6
255	Genetics of Vascular Calcification. Circulation Research, 2011, 109, 248-249.	2.0	6
256	Dusp6 is a genetic modifier of growth through enhanced ERK activity. Human Molecular Genetics, 2018, 28, 279-289.	1.4	6
257	Risk Prediction Model in Children With Hypertrophic Cardiomyopathy. JAMA Cardiology, 2019, 4, 927.	3.0	6
258	238th ENMC International Workshop: Updating management recommendations of cardiac dystrophinopathyHoofddorp, The Netherlands, 30 November - 2 December 2018. Neuromuscular Disorders, 2019, 29, 634-643.	0.3	6
259	South Asian–Specific <i>MYBPC3</i> ^{<i>Δ25bp</i>} Intronic Deletion and Its Role in Cardiomyopathies and Heart Failure. Circulation Genomic and Precision Medicine, 2020, 13, e002986.	1.6	6
260	Cohabitation With a Known Coronavirus Disease 2019 Case Is Associated With Greater Antibody Concentration and Symptom Severity in a Community-Based Sample of Seropositive Adults. Open Forum Infectious Diseases, 2021, 8, ofab244.	0.4	6
261	mRNA intramuscular vaccination produces a robust IgG antibody response in advanced neuromuscular disease. Neuromuscular Disorders, 2022, 32, 33-35.	0.3	6
262	Integrating clinical genetics in cardiology: Current practices and recommendations for education. Genetics in Medicine, 2022, 24, 1054-1061.	1.1	6
263	Novel Targets and Approaches to Treating Skeletal Muscle Disease. , 2012, , 1095-1103.		5
264	Deletion of Sulfonylurea Receptor 2 in the Adult Myocardium Enhances Cardiac Glucose Uptake and Is Cardioprotective. JACC Basic To Translational Science, 2019, 4, 251-268.	1.9	5
265	A Small-Molecule Approach to Restore a Slow-Oxidative Phenotype and Defective CaMKIIÎ ² Signaling in Limb Girdle Muscular Dystrophy. Cell Reports Medicine, 2020, 1, 100122.	3.3	5
266	Cardiac Macrophages — Keeping the Engine Running Clean. New England Journal of Medicine, 2020, 383, 2474-2476.	13.9	5
267	Reporting Genetic Markers and the Social Determinants of Health in Clinical Cardiovascular Research <i>—</i> It Is Time to Recalibrate the Use of Race. JAMA Cardiology, 2021, 6, 400.	3.0	5
268	β-Myosin Heavy Chain Gene Mutations in Familial Hypertrophic Cardiomyopathy. Circulation Research, 2002, 90, 246-247.	2.0	5
269	Regenerating More Than Muscle in Muscular Dystrophy. Circulation, 2004, 110, 3290-3292.	1.6	4
270	Cardiac Magnetic Resonance of Left Ventricular Trabeculation. Circulation: Cardiovascular Imaging, 2011, 4, 84-86.	1.3	4

#	Article	IF	CITATIONS
271	A KCNE1 missense variant (V47I) causing exercise-induced long QT syndrome (Romano Ward). International Journal of Cardiology, 2012, 156, e33-e35.	0.8	4
272	Can We Do Better Than Dobutamine?. Circulation Research, 2013, 113, 355-357.	2.0	4
273	Reproductive Aging and Cardiovascular Disease Risk. JAMA Cardiology, 2016, 1, 778.	3.0	4
274	Reducing Racial/Ethnic Disparities in Cardiovascular Genetic Testing. JAMA Cardiology, 2018, 3, 277.	3.0	4
275	Genetic correction strategies for Duchenne muscular dystrophy and their impact on the heart. Progress in Pediatric Cardiology, 2021, 63, 101460.	0.2	4
276	Low Levels of Neutralizing Antibodies After Natural Infection With Severe Acute Respiratory Syndrome Coronavirus 2 in a Community-Based Serological Study. Open Forum Infectious Diseases, 2022, 9, ofac055.	0.4	4
277	Pediatric Hypertrophy Cardiomyopathy—Another Case Where Children Are Not Small Adults. JAMA Cardiology, 2018, 3, 526.	3.0	3
278	Modeling Human Dilated Cardiomyopathy Using Humans. JACC Basic To Translational Science, 2018, 3, 741-743.	1.9	3
279	Transgenic overexpression of the SUR2A-55 splice variant in mouse heart reduces infract size and promotes protective mitochondrial function. Heliyon, 2018, 4, e00677.	1.4	3
280	Mitochondrial cardiomyopathy and ventricular arrhythmias associated with biallelic variants in C1QBP. American Journal of Medical Genetics, Part A, 2021, 185, 2496-2501.	0.7	3
281	Neptune: an environment for the delivery of genomic medicine. Genetics in Medicine, 2021, 23, 1838-1846.	1.1	3
282	Advocacy: yes we can. Journal of Clinical Investigation, 2012, 122, 4274-4279.	3.9	3
283	Partial and complete loss of myosin binding protein H-like cause cardiac conduction defects. Journal of Molecular and Cellular Cardiology, 2022, 169, 28-40.	0.9	3
284	Cardiovascular Genetics: Paying Individual Dividends. Science Translational Medicine, 2014, 6, 239ed12.	5.8	2
285	Hypertrophic Cardiomyopathy Gene Testing. Circulation: Cardiovascular Genetics, 2017, 10, .	5.1	2
286	Is Heart Failure Inherited?. JAMA Cardiology, 2018, 3, 710.	3.0	2
287	Predicting Arrhythmia Risk in DilatedÂCardiomyopathy Using GeneticÂMutationÂStatus. Journal of the American College of Cardiology, 2019, 74, 1491-1493.	1.2	2
288	Epigenetic reprogramming to prevent genetic cardiomyopathy. Journal of Clinical Investigation, 2021, 131, .	3.9	2

#	Article	IF	CITATIONS
289	Genome-wide association for heart failure: from discovery to clinical use. European Heart Journal, 2021, 42, 2012-2014.	1.0	2
290	Better living through peptide-conjugated chemistry: next-generation antisense oligonucleotides. Journal of Clinical Investigation, 2019, 129, 4570-4571.	3.9	2
291	Lessons From MAVERICK-HCM. Journal of the American College of Cardiology, 2020, 75, 2661-2663.	1.2	2
292	Beta-myosin heavy chain gene mutations in familial hypertrophic cardiomyopathy: the usual suspect?. Circulation Research, 2002, 90, 246-7.	2.0	2
293	Meeting Report: New Directions in Biology and Disease of Skeletal Muscle 2014. Journal of Neuromuscular Diseases, 2014, 1, 197-206.	1.1	1
294	BMP and WNT: the road to cardiomyocytes is paved with precise modulation. Stem Cell Investigation, 2016, 3, 21-21.	1.3	1
295	Incorporating Genetic Testing Into Cardiovascular Practice. JAMA Cardiology, 2017, 2, 1151.	3.0	1
296	New DEStiny Revealed. Circulation, 2018, 138, 1267-1271.	1.6	1
297	At the heart of genetic disease: an interview with Elizabeth McNally. DMM Disease Models and Mechanisms, 2020, 13, .	1.2	1
298	Genetic Contribution to Common Heart Failure—Not So Rare?. JAMA Cardiology, 2021, 6, 387.	3.0	1
299	Practice Patterns After Return of Rare Variants Associated With Cardiomyopathy in the Electronic Medical Records and Genomics Network. Circulation: Heart Failure, 2021, 14, e008155.	1.6	1
300	Expanding Discovery in Cardiovascular Genome-Wide Association Studies. JAMA Cardiology, 2021, 6, 1012.	3.0	1
301	An actin-dependent annexin complex mediates plasma membrane repair in muscle. Journal of Experimental Medicine, 2016, 213, 21370IA58.	4.2	1
302	Resealing and rebuilding injured muscle. Science, 2021, 374, 262-263.	6.0	1
303	Healing health care. Journal of Clinical Investigation, 2009, 119, 2848-2848.	3.9	1
304	South Asian-Specific MYBPC3Δ25bp Deletion Carriers Display Hypercontraction and Impaired Diastolic Function Under Exercise Stress. Frontiers in Cardiovascular Medicine, 2021, 8, 766339.	1.1	1
305	Family Screening After Sudden Death in a Population-Based Study of Children. Pediatrics, 2022, 149, .	1.0	1
306	Case report: DSP truncation variant p. R1951X leads to arrhythmogenic left ventricular cardiomyopathy. European Heart Journal - Case Reports, 2022, 6, ytac105.	0.3	1

#	Article	IF	CITATIONS
307	Response to Letter Regarding Article, "Population-Based Variation in Cardiomyopathy Genes― Circulation: Cardiovascular Genetics, 2012, 5, .	5.1	Ο
308	Elizabeth McNally. Circulation Research, 2015, 117, 317-320.	2.0	0
309	Women in Metabolism: Part 3. Cell Metabolism, 2015, 22, 949-953.	7.2	0
310	Gene Editing for the Heart. Circulation Research, 2017, 121, 896-898.	2.0	0
311	Myosin Binding Protein H-Like Regulates Myofilament Content in Atrial and a Subset of Ventricular Conduction System Cardiomyocytes. Biophysical Journal, 2019, 116, 261a.	0.2	0
312	Aortic Dissection With Pregnancy—Anticipating Prepartum and Postpartum Risk. JAMA Cardiology, 2021, 6, 66-67.	3.0	0
313	Genetic Studies of Atrial Fibrillation in Diverse Cohorts and Identification of Diverse Phenotypes Associated With Single Genes. JAMA Cardiology, 2021, 6, 820.	3.0	0
314	Transthyretin Genetic Testing. JAMA Cardiology, 2021, 6, 849.	3.0	0
315	Knowing More Than the Knowns in Familial Hypercholesterolemia. JAMA Cardiology, 2021, 6, 909.	3.0	0
316	The attachment disorders of muscle: failure to carb-load. Journal of Clinical Investigation, 2012, 122, 3046-3048.	3.9	0
317	Cytoskeletal Nuclear Links in the Cardiomyocyte. Biological and Medical Physics Series, 2013, , 123-140.	0.3	0
318	Inherited Myocardial Diseases. , 2005, , 105-122.		0
319	Factors Affecting Yield of Genetic Testing of Sudden Deaths in Young Individuals—Reply. JAMA Cardiology, 2022, , .	3.0	0
320	Genetic Testing for Early-Onset Atrial Fibrillation—Is It Time to Personalize Care?. JAMA Cardiology, 2022, , .	3.0	0