Jiang-Wei Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2979769/publications.pdf

Version: 2024-02-01

76326 118850 4,945 129 40 62 citations h-index g-index papers 131 131 131 4496 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Platinum single-atoms anchored covalent triazine framework for efficient photoreduction of CO2 to CH4. Chemical Engineering Journal, 2022, 427, 131018.	12.7	59
2	Ru single atoms induce surface-mediated discharge in Na-O2 batteries. Chinese Chemical Letters, 2022, 33, 491-496.	9.0	6
3	Fine-tuning of Pd-Rh core-shell catalysts by interstitial hydrogen doping for enhanced methanol oxidation. Nano Research, 2022, 15, 1288-1294.	10.4	18
4	Integration of Morphology and Electronic Structure Modulation on Atomic Ironâ€Nitrogenâ€Carbon Catalysts for Highly Efficient Oxygen Reduction. Advanced Functional Materials, 2022, 32, 2108345.	14.9	61
5	Sub-2 nm ultra-thin Bi2O2CO3 nanosheets with abundant Bi-O structures toward formic acid electrosynthesis over a wide potential window. Nano Research, 2022, 15, 2919-2927.	10.4	27
6	Regulating the coordination metal center in immobilized molecular complexes as single-atomic electrocatalysts for highly active, selective and durable electrochemical CO2 reduction. Journal of Power Sources, 2022, 519, 230788.	7.8	8
7	Porous \hat{I}^2 -FeOOH nanotube stabilizing Au single atom for high-efficiency nitrogen fixation. Nano Research, 2022, 15, 3026-3033.	10.4	28
8	A Reconstructed Cu $<$ sub $>$ 2 $<$ /sub $>$ P $<$ sub $>$ 2 $<$ /sub $>$ O $<$ sub $>$ 7 $<$ /sub $>$ Catalyst for Selective CO $<$ sub $>$ 2 $<$ /sub $>$ Electroreduction to Multicarbon Products. Angewandte Chemie, 2022, 134, .	2.0	12
9	A Reconstructed Cu ₂ P ₂ O ₇ Catalyst for Selective CO ₂ Electroreduction to Multicarbon Products. Angewandte Chemie - International Edition, 2022, 61, e202114238.	13.8	71
10	P-block tin single atom catalyst for improved electrochemistry in a lithium–sulfur battery: a theoretical and experimental study. Journal of Materials Chemistry A, 2022, 10, 3667-3677.	10.3	28
11	Unraveling of cocatalysts photodeposited selectively on facets of BiVO4 to boost solar water splitting. Nature Communications, 2022, 13, 484.	12.8	156
12	Strain-Assisted Single Pt Sites on High-Curvature MoS ₂ Surface for Ultrasensitive H ₂ S Sensing. CCS Chemistry, 2022, 4, 3842-3851.	7.8	13
13	Precise Control of Radial Catenane Synthesis via Clipping and Pumping. Journal of the American Chemical Society, 2022, 144, 2085-2089.	13.7	22
14	Atomically Defined Undercoordinated Copper Active Sites over Nitrogenâ€Doped Carbon for Aerobic Oxidation of Alcohols. Small, 2022, 18, e2106614.	10.0	15
15	Engineering the Local Atomic Environments of Indium Singleâ€Atom Catalysts for Efficient Electrochemical Production of Hydrogen Peroxide. Angewandte Chemie, 2022, 134, .	2.0	27
16	Engineering the Local Atomic Environments of Indium Singleâ€Atom Catalysts for Efficient Electrochemical Production of Hydrogen Peroxide. Angewandte Chemie - International Edition, 2022, 61, .	13.8	127
17	Doping Ruthenium into Metal Matrix for Promoted pHâ€Universal Hydrogen Evolution. Advanced Science, 2022, 9, e2200010.	11.2	29
18	Unraveling the Synergistic Effect of Heteroatomic Substitution and Vacancy Engineering in CoFe ₂ O ₄ for Superior Electrocatalysis Performance. Nano Letters, 2022, 22, 3503-3511.	9.1	62

#	Article	IF	Citations
19	Reinforced Layered Double Hydroxide Oxygenâ€Evolution Electrocatalysts: A Polyoxometallic Acid Wetâ€Etching Approach and Synergistic Mechanism. Advanced Materials, 2022, 34, e2110696.	21.0	57
20	Construction of isolated Ni sites on nitrogen-doped hollow carbon spheres with Ni–N3 configuration for enhanced reduction of nitroarenes. Nano Research, 2022, 15, 6001-6009.	10.4	19
21	Atomic-level modulation of local coordination environment at Fe single-atom sites for enhanced oxygen reduction. Applied Catalysis B: Environmental, 2022, 313, 121429.	20.2	19
22	Engineering the morphology and electronic structure of atomic cobalt-nitrogen-carbon catalyst with highly accessible active sites for enhanced oxygen reduction. Journal of Energy Chemistry, 2022, 73, 469-477.	12.9	26
23	Synthesis of Nickel Nitrideâ€Based 1D/0D Heterostructure via a Morphologyâ€Inherited Nitridation Strategy for Efficient Electrocatalytic Hydrogen Evolution. Small, 2022, 18, .	10.0	13
24	Spatial confinement of copper single atoms into covalent triazine-based frameworks for highly efficient and selective photocatalytic CO2 reduction. Nano Research, 2022, 15, 8001-8009.	10.4	20
25	N-doped graphitic carbon shell-encapsulated FeCo alloy derived from metal–polyphenol network and melamine sponge for oxygen reduction, oxygen evolution, and hydrogen evolution reactions in alkaline media. Journal of Colloid and Interface Science, 2021, 581, 362-373.	9.4	61
26	Salt melt synthesis of Chlorella-derived nitrogen-doped porous carbon with atomically dispersed CoN4 sites for efficient oxygen reduction reaction. Journal of Colloid and Interface Science, 2021, 586, 498-504.	9.4	29
27	Entropy Engineered Cubic nâ€Type AgBiSe ₂ Alloy with High Thermoelectric Performance in Fully Extended Operating Temperature Range. Advanced Energy Materials, 2021, 11, 2003304.	19.5	51
28	Fe atoms anchored on defective nitrogen doped hollow carbon spheres as efficient electrocatalysts for oxygen reduction reaction. Nano Research, 2021, 14, 1069-1077.	10.4	71
29	Solvent responses and substituent effects upon magnetic properties of mononuclear Dy ^{III} compounds. Dalton Transactions, 2021, 50, 624-637.	3.3	13
30	Direct transformation of raw biomass into a Fe $\hat{a}\in \text{``N}\subset \hat{a}\in \text{``C}$ single-atom catalyst for efficient oxygen reduction reaction. Materials Chemistry Frontiers, 2021, 5, 3093-3098.	5.9	11
31	The influence of organic bases and substituted groups on coordination structures affording two mononuclear Dy(<scp>iii</scp>) single-molecule magnets (SMMs) and a novel Dy(<scp>iii</scp>)–K(<scp>i</scp>) compound with unusually coordinated fluorine atoms. CrystEngComm. 2021. 23. 4013-4027.	2.6	9
32	A high-nuclearity Cu ^I /Cu ^{II} nanocluster catalyst for phenol degradation. Chemical Communications, 2021, 57, 5586-5589.	4.1	14
33	Controllable atomic defect engineering in layered Ni _x Fe _{1â^'x} (OH) ₂ nanosheets for electrochemical overall water splitting. Journal of Materials Chemistry A, 2021, 9, 14432-14443.	10.3	84
34	Boosted Catalytic Hydrogenation Performance Using Isolated Co Sites Anchored on Nitrogen-Incorporated Hollow Porous Carbon. Journal of Physical Chemistry C, 2021, 125, 5088-5098.	3.1	18
35	Boosting Room Temperature Sensing Performances by Atomically Dispersed Pd Stabilized via Surface Coordination. ACS Sensors, 2021, 6, 1103-1110.	7.8	16
36	Atomic Evolution of Metal–Organic Frameworks into Co–N ₃ Coupling Vacancies by Cooperative Cascade Protection Strategy for Promoting Triiodide Reduction. Journal of Physical Chemistry C, 2021, 125, 6147-6156.	3.1	13

#	Article	IF	CITATIONS
37	A Robust PtNi Nanoframe/Nâ€Doped Graphene Aerogel Electrocatalyst with Both High Activity and Stability. Angewandte Chemie - International Edition, 2021, 60, 9590-9597.	13.8	88
38	A Robust PtNi Nanoframe/Nâ€Doped Graphene Aerogel Electrocatalyst with Both High Activity and Stability. Angewandte Chemie, 2021, 133, 9676-9683.	2.0	9
39	Atomically Dispersed Vanadium Sites Anchored on N-Doped Porous Carbon for the Efficient Oxidative Coupling of Amines to Imines. ACS Applied Materials & Samp; Interfaces, 2021, 13, 15168-15177.	8.0	25
40	Two-dimensional oxide derived from high-temperature liquid metals via bubble templating. Nano Research, 2021, 14, 4795-4801.	10.4	7
41	Tuned single atom coordination structures mediated by polarization force and sulfur anions for photovoltaics. Nano Research, 2021, 14, 4025-4032.	10.4	14
42	Characterization of a strong covalent Th3+ \hat{a} e"Th3+ bond inside an Ih(7)-C80 fullerene cage. Nature Communications, 2021, 12, 2372.	12.8	34
43	Atomic-Dispersed Coordinated Unsaturated Nickel–Nitrogen Sites in Hollow Carbon Spheres for the Efficient Electrochemical CO ₂ Reduction. ACS Sustainable Chemistry and Engineering, 2021, 9, 5437-5444.	6.7	17
44	Real-Time Tracking of Emitter Generation in a Zero-Dimensional Perovskite. Chemistry of Materials, 2021, 33, 3721-3728.	6.7	20
45	Constructing FeN4/graphitic nitrogen atomic interface for high-efficiency electrochemical CO2 reduction over a broad potential window. CheM, 2021, 7, 1297-1307.	11.7	133
46	Skeleton-Sn anchoring isolated Pt site to confine subnanometric clusters within *BEA topology. Journal of Catalysis, 2021, 397, 44-57.	6.2	36
47	Electronic structure engineering through Fe-doping CoP enables hydrogen evolution coupled with electro-Fenton. Nano Energy, 2021, 84, 105943.	16.0	64
48	Atomically Dispersed Ptâ€"N ₃ C ₁ Sites Enabling Efficient and Selective Electrocatalytic Câ€"C Bond Cleavage in Lignin Models under Ambient Conditions. Journal of the American Chemical Society, 2021, 143, 9429-9439.	13.7	120
49	Enhancing the activity, selectivity, and recyclability of Rh/PPh3 system-catalyzed hydroformylation reactions through the development of a PPh3-derived quasi-porous organic cage as a ligand. Chinese Journal of Catalysis, 2021, 42, 1216-1226.	14.0	13
50	Constructing Precise Coordination of Nickel Active Sites on Hierarchical Porous Carbon Framework for Superior Oxygen Reduction. Small, 2021, 17, e2102125.	10.0	35
51	Synergetic Metal Defect and Surface Chemical Reconstruction into NiCo ₂ S ₄ /ZnS Heterojunction to Achieve Outstanding Oxygen Evolution Performance. Angewandte Chemie - International Edition, 2021, 60, 19435-19441.	13.8	167
52	Iodine-Mediated Cyclization of Enamines to Imidazole-4-Carboxylic Derivatives with Sequential Removal of Nitrogen Atoms from TMSN3. Journal of Organic Chemistry, 2021, 86, 10492-10500.	3.2	8
53	Development of Sn2+-based oxyfluoride photocatalyst with visible light response of ca. 650Ânm via strengthened hybridization of Sn 5s and O 2p orbitals. Journal of Energy Chemistry, 2021, 63, 385-390.	12.9	9
54	Covalent immobilization of molecular complexes on metal-organic frameworks towards robust and highly efficient heterogeneous water oxidation catalysts. Applied Catalysis B: Environmental, 2021, 291, 120070.	20.2	22

#	Article	IF	CITATIONS
55	Application of Xâ€Ray Absorption Spectroscopy in Electrocatalytic Water Splitting and CO ₂ Reduction. Small Science, 2021, 1, 2100023.	9.9	16
56	Unraveling the synergistic effect of defects and interfacial electronic structure modulation of pealike CoFe@Fe3N to achieve superior oxygen reduction performance. Applied Catalysis B: Environmental, 2021, 295, 120314.	20.2	61
57	Electronics and coordination engineering of atomic cobalt trapped by oxygen-driven defects for efficient cathode in solar cells. Nano Energy, 2021, 89, 106365.	16.0	25
58	Single-atom control of electrical conductance and thermopower through single-cluster junctions. Nanoscale, 2021, 13, 12594-12601.	5.6	6
59	Single-atom-catalyst with abundant Co–S ₄ sites for use as a counter electrode in photovoltaics. Chemical Communications, 2021, 57, 5302-5305.	4.1	11
60	Multiscale Assembly of [AgS 4] Tetrahedrons into Hierarchical Ag–S Networks for Robust Photonic Water. Advanced Materials, 2021, 33, 2006459.	21.0	12
61	In Situ Ligand Formation in the Synthetic Processes from Mononuclear Dy(III) Compounds to Binuclear Dy(III) Compounds: Synthesis, Structure, Magnetic Behavior, and Theoretical Analysis. Inorganic Chemistry, 2021, 60, 816-830.	4.0	19
62	Oneâ€Step Prepared Waterâ€Resistant Organicâ€"Inorganicâ€Hybrid Perovskite Quantum Dots with Znâ€"Oxygen Vacancies for Attempts at Nitrogen Fixation. Small, 2021, 17, e2103773.	10.0	7
63	Synergistic Modulation of the Separation of Photoâ€Generated Carriers via Engineering of Dual Atomic Sites for Promoting Photocatalytic Performance. Advanced Materials, 2021, 33, e2105904.	21.0	117
64	<i>In situ</i> ion-exchange preparation and topological transformation of trimetal–organic frameworks for efficient electrocatalytic water oxidation. Energy and Environmental Science, 2021, 14, 6546-6553.	30.8	72
65	Ti1–graphene single-atom material for improved energy level alignment in perovskite solar cells. Nature Energy, 2021, 6, 1154-1163.	39.5	72
66	Achieving naphthalimide-based aggregation-enhanced emission via the fluorophore-linker-aromatic strategy. Dyes and Pigments, 2020, 174, 108025.	3.7	7
67	Bismuth halide perovskite derivatives for direct X-ray detection. Journal of Materials Chemistry C, 2020, 8, 1239-1243.	5.5	59
68	Zirconium metal–organic frameworks incorporating tetrathiafulvalene linkers: robust and redox-active matrices for ⟨i⟩in situ⟨ i⟩ confinement of metal nanoparticles. Chemical Science, 2020, 11, 1918-1925.	7.4	43
69	Terahertz time-domain absorption spectra of Cu(<scp>i</scp>) complexes bearing tetraphosphine ligands: the bridge between the C–Hâ∢Ï€ and Ĭ€â∢Ï€ interactions and photoluminescence properties. Dalton Transactions, 2020, 49, 14941-14950.	3.3	11
70	Boosting electrochemical oxygen evolution over yolk-shell structured O–MoS2 nanoreactors with sulfur vacancy and decorated Pt nanoparticles. Nano Energy, 2020, 78, 105284.	16.0	108
71	Atomically precise nanoclusters with reversible isomeric transformation for rotary nanomotors. Nature Communications, 2020, 11 , 6019 .	12.8	60
72	Preparation of ZrO ₂ -Based Catalytic Fibers via the Assistance of Microfluidic Chips. Industrial & Description of Engineering Chemistry Research, 2020, 59, 21592-21601.	3.7	3

#	Article	IF	CITATIONS
73	Elucidating dual-defect mechanism in rhenium disulfide nanosheets with multi-dimensional ion transport channels for ultrafast sodium storage. Nano Energy, 2020, 77, 105189.	16.0	31
74	Highâ€Performance Bismuthâ€Doped Nickel Aerogel Electrocatalyst for the Methanol Oxidation Reaction. Angewandte Chemie, 2020, 132, 13995-14003.	2.0	22
75	Atomically Precise Structure Determination of Porous Organic Cage from Ab Initio PXRD Structure Analysis: Its Molecular Click Postfunctionalization and CO2 Capture Application. ACS Applied Materials & Amp; Interfaces, 2020, 12, 17815-17823.	8.0	7
76	Melt-salt-assisted direct transformation of solid oxide into atomically dispersed FeN4 sites on nitrogen-doped porous carbon. Nano Energy, 2020, 72, 104670.	16.0	58
77	Ionic liquid-assisted one-step preparation of ultrafine amorphous metallic hydroxide nanoparticles for the highly efficient oxygen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 15767-15773.	10.3	37
78	Principle of progressively and strongly immobilizing polysulfides on polyoxovanadate clusters for excellent Li–S batteries application. Nano Energy, 2020, 71, 104596.	16.0	15
79	Rare CH ₃ O ^{â^'} /CH ₃ CH ₂ O ^{â^'} -bridged nine-coordinated binuclear Dy ^{III} single-molecule magnets (SMMs) significantly regulate and enhance the effective energy barriers. CrystEngComm, 2020, 22, 1712-1724.	2.6	6
80	Highâ€Performance Bismuthâ€Doped Nickel Aerogel Electrocatalyst for the Methanol Oxidation Reaction. Angewandte Chemie - International Edition, 2020, 59, 13891-13899.	13.8	179
81	Asymmetric alkyl diamine based Dion–Jacobson low-dimensional perovskite solar cells with efficiency exceeding 15%. Journal of Materials Chemistry A, 2020, 8, 9919-9926.	10.3	38
82	Inter-chain double-site synergistic photocatalytic hydrogen evolution in robust cuprous coordination polymers. Chemical Communications, 2020, 56, 6261-6264.	4.1	11
83	Recent Advances in Polyoxometalates for Applications in Electrocatalytic Hydrogen Evolution Reaction. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, 36, 1906063-0.	4.9	37
84	Motif-mediated Au25(SPh)5(PPh3)10X2 nanorods with conjugated electron delocalization. Nano Research, 2019, 12, 501-507.	10.4	46
85	[MW ₁₂ O ₄₄] clusters: unprecedented central heteroatoms atomically dispersed in the eight coordination state bridging the 1 : 12 polyoxometalate family of Keggin and Silverton. Nanoscale, 2019, 11, 22270-22276.	5.6	9
86	Regulation of Substituent Effects on Configurations and Magnetic Performances of Mononuclear Dylll Single-Molecule Magnets. Inorganic Chemistry, 2019, 58, 15330-15343.	4.0	25
87	Solvothermal Syntheses and Characterizations of Four Quaternary Copper Sulfides BaCu ₃ MS ₄ (M = In, Ga) and BaCu ₂ MS ₄ (M = Sn, Ge). Inorganic Chemistry, 2019, 58, 15101-15109.	4.0	19
88	Fabrication of silver chalcogenolate cluster hybrid membranes with enhanced structural stability and luminescence efficiency. Chemical Communications, 2019, 55, 14677-14680.	4.1	16
89	New sesquiterpenoids from the stems of Dendrobium nobile and their neuroprotective activities. FìtoterapìA¢, 2019, 138, 104351.	2.2	33
90	A Giant Mo/Ta/W Ternary Mixed-Addenda Polyoxometalate with Efficient Photocatalytic Activity for Primary Amine Coupling. ACS Applied Materials & Samp; Interfaces, 2019, 11, 43287-43293.	8.0	42

#	Article	IF	CITATIONS
91	Designing a mononuclear Dy ^{III} single-molecule magnet (SMM) by using a N,O,N,O-based multichelating Schiff base ligand and a β-diketonate ligand. New Journal of Chemistry, 2019, 43, 454-462.	2.8	6
92	Tris functionalized Cu-centered cyclohexamolybdate molecular armor as a bimetallic catalyst for rapid p-nitrophenol hydrogenation. New Journal of Chemistry, 2019, 43, 28-36.	2.8	6
93	Tailoring the stability, photocatalysis and photoluminescence properties of Au ₁₁ nanoclusters <i>via</i> doping engineering. Nanoscale Advances, 2019, 1, 2529-2536.	4.6	42
94	Activating peroxydisulfate by morphology-dependent NiO catalysts: Structural origin of different catalytic properties. Applied Catalysis B: Environmental, 2019, 256, 117806.	20.2	44
95	Supramolecular topology design of silver(<scp>i</scp>) and copper(<scp>ii</scp>) coordination polymers through a new semi-rigid sulfonyl ligand with different anion templates. Dalton Transactions, 2019, 48, 6730-6737.	3.3	7
96	Semi-Rigid Molecular-Clip-Based Molecular Crystal Gearshift. ACS Applied Materials & Eamp; Interfaces, 2019, 11, 998-1003.	8.0	21
97	Recent advances in alkoxylation chemistry of polyoxometalates: From synthetic strategies, structural overviews to functional applications. Coordination Chemistry Reviews, 2019, 378, 395-414.	18.8	220
98	Green synthesis of new pyrrolidine-fused spirooxindoles via three-component domino reaction in EtOH/H2O. RSC Advances, 2018, 8, 5702-5713.	3.6	32
99	Nitrogenâ€Doped Porous Molybdenum Carbide and Phosphide Hybrids on a Carbon Matrix as Highly Effective Electrocatalysts for the Hydrogen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1701601.	19.5	215
100	Diphosphine-induced chiral propeller arrangement of gold nanoclusters for singlet oxygen photogeneration. Nano Research, 2018, 11, 5787-5798.	10.4	53
101	Single-Atom Mn Active Site in a Triol-Stabilized β-Anderson Manganohexamolybdate for Enhanced Catalytic Activity towards Adipic Acid Production. Catalysts, 2018, 8, 121.	3.5	26
102	Synthesis and characterization of size-controlled atomically precise gold clusters. Physical Sciences Reviews, 2018, 3, .	0.8	7
103	Experimental and theoretical interpretation of the magnetic behavior of two Dy($<$ scp $>$ iii $<$ /scp $>$) single-ion magnets constructed through \hat{I}^2 -diketonate ligands with different substituent groups (\hat{a} €"Cl/ \hat{a} €"OCH $<$ sub $>$ 3 $<$ /sub $>$). RSC Advances, 2018, 8, 29513-29525.	3.6	9
104	Recent advances in controllable alkoxylation chemistry of Anderson-type polyoxometalates from synthetic strategies perspective. Chinese Science Bulletin, 2018, 63, 3263-3276.	0.7	2
105	[V ₄ Mo ₃ O ₁₄ (NAr) ₃ (ν ₂ -NAr) ₃] _{151-2554.}	up>2â^'4.1	sup>: 13
106	$ \hat{l}^2-\{Cr[RC(CH\langle sub\rangle 2\langle sub\rangle 0)\langle sub\rangle 3\langle sub\rangle 2\langle sub\rangle Mo\langle sub\rangle 6\langle sub\rangle 0\langle sub\rangle 18\langle sub\rangle 3\hat{a}^*\langle sup\rangle the first organically-functionalized \hat{l}^2 isomer of Anderson-type polyoxometalates. Inorganic Chemistry Frontiers, 2017, 4, 1215-1218.$: 6.0	25
107	Cu-Induced [H ₆ W ₁₂ O ₄₂] ^{6â^'} polyoxometalate-based bimetallic cluster formation for renewable biomass inulin hydrolysis toward fructose production. Inorganic Chemistry Frontiers, 2017, 4, 1917-1922.	6.0	13
108	(C ₆ H ₅ C ₂ H ₄ NH ₃) ₂ Gel _{4A Layered Two-Dimensional Perovskite with Potential for Photovoltaic Applications. Journal of Physical Chemistry Letters, 2017, 8, 4402-4406.})>: 4.6	98

#	Article	IF	CITATIONS
109	A Waugh type [CoMo ₉ O ₃₂] ^{6â^'} cluster with atomically dispersed Co ^{IV} originates from Anderson type [CoMo ₆ O ₂₄] ^{3â^'} for photocatalytic oxygen molecule activation. Nanoscale, 2017, 9, 15332-15339.	5.6	33
110	Degradable Organically-Derivatized Polyoxometalate with Enhanced Activity against Glioblastoma Cell Line. Scientific Reports, 2016, 6, 33529.	3.3	51
111	A general and highly regioselective synthesis approach to multi-functionalized organoimido derivatives of Polyoxometalates. Scientific Reports, 2016, 6, 24759.	3.3	12
112	Synthesis and characterization of [NBu 4] [La(CH 3 OH) 2 (DCU)NO 3 {Mo 5 O 13 (OMe) 4 (NO)}]·CH 3 OH: A novel Lanthanide-substituted Lindqvist-type oxo-nitrosyl polymolybdate. Inorganic Chemistry Communication, 2016, 70, 177-180.	3.9	3
113	Methylation, Glucuronidation, and Sulfonation of Daphnetin in Human Hepatic Preparations InÂVitro : Metabolic Profiling, Pathway Comparison, and Bioactivity Analysis. Journal of Pharmaceutical Sciences, 2016, 105, 808-816.	3.3	21
114	Dysprosium(<scp>iii</scp>) complexes with a square-antiprism configuration featuring mononuclear single-molecule magnetic behaviours based on different β-diketonate ligands and auxiliary ligands. Dalton Transactions, 2016, 45, 5310-5320.	3.3	28
115	The proton-controlled synthesis of unprecedented diol functionalized Anderson-type POMs. Chemical Communications, 2016, 52, 2378-2381.	4.1	33
116	Label-free colorimetric detection of mercury via Hg2+ ions-accelerated structural transformation of nanoscale metal-oxo clusters. Scientific Reports, 2015, 5, 16316.	3.3	31
117	In Vitro Evaluation of the Effect of 7-Methyl Substitution on Glucuronidation of Daphnetin: Metabolic Stability, Isoform Selectivity, and Bioactivity Analysis. Journal of Pharmaceutical Sciences, 2015, 104, 3557-3564.	3.3	9
118	Two unprecedented aromatic guanidines supramolecular chains self-assembled by hydrogen bonding interaction. Journal of Molecular Structure, 2015, 1097, 145-150.	3.6	6
119	Facile synthesis of magnetic homochiral metal–organic frameworks for "enantioselective fishing― Chemical Communications, 2015, 51, 3566-3569.	4.1	49
120	Step-by-Step Strategy from Achiral Precursors to Polyoxometalates-Based Chiral Organic–Inorganic Hybrids. Inorganic Chemistry, 2015, 54, 2551-2559.	4.0	60
121	Unprecedented χ isomers of single-side triol-functionalized Anderson polyoxometalates and their proton-controlled isomer transformation. Chemical Communications, 2015, 51, 9097-9100.	4.1	43
122	Aliphatic Organoimido Derivatives of Polyoxometalates Containing a Bioactive Ligand. Chemistry - A European Journal, 2014, 20, 16987-16994.	3.3	45
123	Spontaneous resolution of polyoxometalate-based inorganic–organic hybrids driven by solvent and common ion. Dalton Transactions, 2014, 43, 17296-17302.	3.3	33
124	A direct anchoring of Anderson-type polyoxometalates in aqueous media with tripodal ligands especially containing the carboxyl group. Dalton Transactions, 2014, 43, 2722-2725.	3.3	36
125	trans-Dinitrosyl-Substituted Hexamolybdate and Study of Its Controllable NO Release. European Journal of Inorganic Chemistry, 2013, 2013, 1664-1671.	2.0	6
126	Taxane's Substituents at C3′ Affect Its Regioselective Metabolism: Different in Vitro Metabolism of Cephalomannine and Paclitaxel. Drug Metabolism and Disposition, 2008, 36, 418-426.	3.3	27

#	Article	IF	CITATIONS
127	Metabolic Profiling and Cytochrome P450 Reaction Phenotyping of Medroxyprogesterone Acetate. Drug Metabolism and Disposition, 2008, 36, 2292-2298.	3.3	27
128	Inhibition of Human Liver Cytochrome P450 by Star Fruit Juice. Journal of Pharmacy and Pharmaceutical Sciences, 2007, 10, 496.	2.1	53
129	Inhibitory effect of medroxyprogesterone acetate on human liver cytochrome P450 enzymes. European Journal of Clinical Pharmacology, 2006, 62, 497-502.	1.9	26