Shahzada Ahmad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2978302/publications.pdf

Version: 2024-02-01

29994 33814 10,391 139 54 99 citations g-index h-index papers 154 154 154 11728 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Strategic factors to design the next generation of molecular water oxidation catalysts: Lesson learned from ruthenium complexes. Coordination Chemistry Reviews, 2022, 450, 214256.	9.5	16
2	Substituents interplay in piperidinyl-perylenediimide as dopant-free hole-selective layer for perovskite solar cells fabrication. Emergent Materials, 2022, 5, 977-985.	3.2	4
3	Predicting Perovskite Bandgap and Solar Cell Performance with Machine Learning. Solar Rrl, 2022, 6, 2100927.	3.1	12
4	Leverage of Pyridine Isomer on Phenothiazine Core: Organic Semiconductors as Selective Layers in Perovskite Solar Cells. ACS Applied Materials & Samp; Interfaces, 2022, 14, 5729-5739.	4.0	7
5	Molecular Interface Engineering via Triazatruxeneâ€Based Moieties/NiO _{<i>x</i>} as Holeâ€Selective Bilayers in Perovskite Solar Cells for Reliability. Solar Rrl, 2022, 6, .	3.1	6
6	The impact of fluorine atoms on a triphenylamine-based dopant-free hole-selective layer for perovskite solar cells. Journal of Materials Chemistry C, 2022, 10, 476-484.	2.7	5
7	Review of degradation and failure phenomena in photovoltaic modules. Renewable and Sustainable Energy Reviews, 2022, 159, 112160.	8.2	166
8	Enhancing operational stability in perovskite solar cells by solvent-free encapsulation method. Sustainable Energy and Fuels, 2022, 6, 2264-2275.	2.5	5
9	Evaluating the Capacitive Response in Metal Halide Perovskite Solar Cells. Chemical Record, 2022, 22, e202100330.	2.9	13
10	Perovskite Materials and Devices. ChemPlusChem, 2022, 87, e202200066.	1.3	0
10	Perovskite Materials and Devices. ChemPlusChem, 2022, 87, e202200066. Reducing the Trap Density in MAPbl ₃ Based Perovskite Solar Cells via Bromide Substitution. ChemPlusChem, 2022, 87, e202200021.	1.3	6
	Reducing the Trap Density in MAPbl ₃ Based Perovskite Solar Cells via Bromide		
11	Reducing the Trap Density in MAPbl ₃ Based Perovskite Solar Cells via Bromide Substitution. ChemPlusChem, 2022, 87, e202200021. Microstrain and Urbach Energy Relaxation in FAPbl ₃ -Based Solar Cells through Powder Engineering and Perfluoroalkyl Phosphate Ionic Liquid Additives. ACS Applied Materials & Density Phosphate Ionic Liquid Additives.	1.3	6
11 12	Reducing the Trap Density in MAPbl ₃ Based Perovskite Solar Cells via Bromide Substitution. ChemPlusChem, 2022, 87, e202200021. Microstrain and Urbach Energy Relaxation in FAPbl ₃ -Based Solar Cells through Powder Engineering and Perfluoroalkyl Phosphate Ionic Liquid Additives. ACS Applied Materials & Density Interfaces, 2022, 14, 24546-24556. Structural and photophysical investigation of single-source evaporation of CsFAPbl ₃ and	1.3	10
11 12 13	Reducing the Trap Density in MAPbl ₃ Based Perovskite Solar Cells via Bromide Substitution. ChemPlusChem, 2022, 87, e202200021. Microstrain and Urbach Energy Relaxation in FAPbl ₃ -Based Solar Cells through Powder Engineering and Perfluoroalkyl Phosphate Ionic Liquid Additives. ACS Applied Materials & Description of Structural and Photophysical investigation of single-source evaporation of CsFAPbl ₃ and FAPbl ₃ perovskite thin films. Journal of Materials Chemistry C, 2022, 10, 10075-10082. Review of technology specific degradation in crystalline silicon, cadmium telluride, copper indium gallium selenide, dye sensitised, organic and perovskite solar cells in photovoltaic modules: Understanding how reliability improvements in mature technologies can enhance emerging	1.3 4.0 2.7	6 10 8
11 12 13	Reducing the Trap Density in MAPbl ₃ Based Perovskite Solar Cells via Bromide Substitution. ChemPlusChem, 2022, 87, e202200021. Microstrain and Urbach Energy Relaxation in FAPbl ₃ -Based Solar Cells through Powder Engineering and Perfluoroalkyl Phosphate Ionic Liquid Additives. ACS Applied Materials & Samp; Interfaces, 2022, 14, 24546-24556. Structural and photophysical investigation of single-source evaporation of CsFAPbl ₃ and FAPbl ₃ perovskite thin films. Journal of Materials Chemistry C, 2022, 10, 10075-10082. Review of technology specific degradation in crystalline silicon, cadmium telluride, copper indium gallium selenide, dye sensitised, organic and perovskite solar cells in photovoltaic modules: Understanding how reliability improvements in mature technologies can enhance emerging technologies. Progress in Photovoltaics: Research and Applications, 2022, 30, 1365-1392. Energy level engineering of charge selective contact and halide perovskite by modulating band offset:	1.3 4.0 2.7 4.4	6 10 8 26
11 12 13 14	Reducing the Trap Density in MAPbl ₃ Based Perovskite Solar Cells via Bromide Substitution. ChemPlusChem, 2022, 87, e202200021. Microstrain and Urbach Energy Relaxation in FAPbl ₃ -Based Solar Cells through Powder Engineering and Perfluoroalkyl Phosphate Ionic Liquid Additives. ACS Applied Materials & Density Interfaces, 2022, 14, 24546-24556. Structural and photophysical investigation of single-source evaporation of CsFAPbl ₃ and FAPbl ₃ perovskite thin films. Journal of Materials Chemistry C, 2022, 10, 10075-10082. Review of technology specific degradation in crystalline silicon, cadmium telluride, copper indium gallium selenide, dye sensitised, organic and perovskite solar cells in photovoltaic modules: Understanding how reliability improvements in mature technologies can enhance emerging technologies. Progress in Photovoltaics: Research and Applications, 2022, 30, 1365-1392. Energy level engineering of charge selective contact and halide perovskite by modulating band offset: Mechanistic insights. Journal of Energy Chemistry, 2021, 54, 822-829. Unravelling the theoretical window to fabricate high performance inorganic perovskite solar cells.	1.3 4.0 2.7 4.4 7.1	6 10 8 26 60

#	Article	IF	CITATIONS
19	Tetra-indole core as a dual agent: a hole selective layer that passivates defects in perovskite solar cells. Journal of Materials Chemistry C, 2021, 9, 7074-7082.	2.7	8
20	Advanced research trends in dye-sensitized solar cells. Journal of Materials Chemistry A, 2021, 9, 10527-10545.	5.2	205
21	Low-Temperature-Processed Perovskite Solar Cells Fabricated from Presynthesized CsFAPbl ₃ Powder. ACS Applied Energy Materials, 2021, 4, 2600-2606.	2.5	25
22	Mechanistic origin and unlocking of negative capacitance in perovskites solar cells. IScience, 2021, 24, 102024.	1.9	30
23	<i>N</i> -Bromosuccinimide as an Interfacial Alleviator for Br/I Exchange in Perovskite for Solar Cell Fabrication. ACS Applied Energy Materials, 2021, 4, 3130-3140.	2.5	4
24	A Machine Learning Approach for Metal Oxide Based Polymer Composites as Charge Selective Layers in Perovskite Solar Cells. ChemPlusChem, 2021, 86, 785-793.	1.3	10
25	Protocol for deciphering the electrical parameters of perovskite solar cells using immittance spectroscopy. STAR Protocols, 2021, 2, 100510.	0.5	0
26	Tailoring of a Phenothiazine Core for Electrical Conductivity and Thermal Stability: Hole-Selective Layers in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 33311-33320.	4.0	20
27	Sulfurization temperature effects on crystallization and performance of superstrate CZTS solar cells. Solar Energy, 2021, 224, 1136-1143.	2.9	7
28	Asymmetrically Substituted Phthalocyanines as Dopant-Free Hole Selective Layers for Reliability in Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 10124-10135.	2.5	16
29	Deciphering the Orientation of the Aromatic Spacer Cation in Bilayer Perovskite Solar Cells through Spectroscopic Techniques. ACS Applied Materials & Spectroscopic Techniques. ACS Applied Materials & Spectroscopic Techniques.	4.0	6
30	Harnessing the potential of lead-free Sn–Ge based perovskite solar cells by unlocking the recombination channels. Sustainable Energy and Fuels, 2021, 5, 4661-4667.	2.5	34
31	Decoding the charge carrier dynamics in triple cation-based perovskite solar cells. Sustainable Energy and Fuels, 2021, 5, 6352-6360.	2.5	10
32	Interfacial modification of perovskite solar cells via Cs2CO3: Computational and experimental approach. Solar Energy, 2021, 228, 700-705.	2.9	4
33	An Approach to Quantify the Negative Capacitance Features in a Triple ation based Perovskite Solar Cells. Advanced Materials Interfaces, 2021, 8, 2101002.	1.9	11
34	Polymer Amplification to Improve Performance and Stability toward Semitransparent Perovskite Solar Cells Fabrication. Energy Technology, 2020, 8, 1900728.	1.8	14
35	Electrical Methods to Elucidate Charge Transport in Hybrid Perovskites Thin Films and Devices. Chemical Record, 2020, 20, 452-465.	2.9	28
36	Reduced trap density and mitigating the interfacial losses by placing 2D dichalcogenide material at perovskite/HTM interface in a dopant free perovskite solar cells. Nano Energy, 2020, 77, 105292.	8.2	37

3

#	Article	IF	CITATIONS
37	Molecularly engineered thienyl-triphenylamine substituted zinc phthalocyanine as dopant free hole transporting materials in perovskite solar cells. Sustainable Energy and Fuels, 2020, 4, 6188-6195.	2.5	12
38	Understanding and harnessing the potential of layered perovskite-based absorbersÂfor solar cells. Emergent Materials, 2020, 3, 751-778.	3.2	13
39	Partial substitution of the CdS buffer layer with interplay of fullerenes in kesterite solar cells. Journal of Materials Chemistry C, 2020, 8, 12533-12542.	2.7	13
40	Dibenzo-tetraphenyl diindeno perylene as hole transport layer for high-bandgap perovskite solar cells. Emergent Materials, 2020, 3, 109-116.	3.2	6
41	Tuning of MEH-PPV electro-optical properties by incorporation of benzylidene-malononitrile-based small organic molecules. Emergent Materials, 2020, 3, 687-692.	3.2	4
42	Interface Engineering by Thiazolium Iodide Passivation Towards Reduced Thermal Diffusion and Performance Improvement in Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 1910561.	7.8	47
43	Elucidating the Doping Mechanism in Fluorene–Dithiophene-Based Hole Selective Layer Employing Ultrahydrophobic Ionic Liquid Dopant. ACS Applied Materials & Interfaces, 2020, 12, 9395-9403.	4.0	26
44	Pyridine Bridging Diphenylamine-Carbazole with Linking Topology as Rational Hole Transporter for Perovskite Solar Cells Fabrication. ACS Applied Materials & Earny; Interfaces, 2020, 12, 22881-22890.	4.0	38
45	Advances in design engineering and merits of electron transporting layers in perovskite solar cells. Materials Horizons, 2020, 7, 2276-2291.	6.4	66
46	Performance analysis of MAPbI3 based perovskite solar cells employing diverse charge selective contacts: Simulation study. Solar Energy, 2019, 193, 948-955.	2.9	218
47	Toward Phase Stability: Dion–Jacobson Layered Perovskite for Solar Cells. ACS Energy Letters, 2019, 4, 2960-2974.	8.8	124
48	Elucidating the Impact of Charge Selective Contact in Halide Perovskite through Impedance Spectroscopy. Advanced Materials Interfaces, 2019, 6, 1901193.	1.9	30
49	Layered Ruddlesden–Popper Efficient Perovskite Solar Cells with Controlled Quantum and Dielectric Confinement Introduced via Doping. Advanced Functional Materials, 2019, 29, 1903293.	7.8	66
50	Leadâ€Free Perovskites: Metals Substitution towards Environmentally Benign Solar Cell Fabrication. ChemSusChem, 2019, 12, 4116-4139.	3.6	36
51	Appraisement of Crystal Expansion in CH3 NH3 PbI3 on Doping: Improved Photovoltaic Properties. ChemSusChem, 2019, 12, 2329-2329.	3.6	1
52	Dye sensitized photoelectrolysis cells. Chemical Society Reviews, 2019, 48, 3705-3722.	18.7	133
53	Appraisement of Crystal Expansion in CH ₃ NH ₃ Pbl ₃ on Doping: Improved Photovoltaic Properties. ChemSusChem, 2019, 12, 2366-2372.	3.6	6
54	The role of Cs+ inclusion in formamidinium lead triiodide-based perovskite solar cell. Chemical Papers, 2018, 72, 1645-1650.	1.0	11

#	Article	IF	Citations
55	Oxazolium Iodide Modified Perovskites for Solar Cell Fabrication. ChemPlusChem, 2018, 83, 279-284.	1.3	10
56	RF plasma-enhanced graphene–polymer composites as hole transport materials for perovskite solar cells. Polymer Bulletin, 2018, 75, 4531-4545.	1.7	11
57	Surface passivation of perovskite layers using heterocyclic halides: Improved photovoltaic properties and intrinsic stability. Nano Energy, 2018, 50, 220-228.	8.2	79
58	A Generic Route of Hydrophobic Doping in Hole Transporting Material to Increase Longevity of Perovskite Solar Cells. Joule, 2018, 2, 1800-1815.	11.7	139
59	Benzothiadiazole–triphenylamine as an efficient exciton blocking layer in small molecule based organic solar cells. Sustainable Energy and Fuels, 2018, 2, 2296-2302.	2.5	8
60	Understanding the Influence of Interface Morphology on the Performance of Perovskite Solar Cells. Materials, 2018, 11, 1073.	1.3	19
61	Design of cyclopentadithiophene-based small organic molecules as hole selective layers for perovskite solar cells. Sustainable Energy and Fuels, 2018, 2, 2179-2186.	2.5	16
62	Carbazole-based enamine: Low-cost and efficient hole transporting material for perovskite solar cells. Nano Energy, 2017, 32, 551-557.	8.2	97
63	Vacuum deposited perovskite solar cells employing dopant-free triazatruxene as the hole transport material. Solar Energy Materials and Solar Cells, 2017, 163, 237-241.	3.0	54
64	Origin and Whereabouts of Recombination in Perovskite Solar Cells. Journal of Physical Chemistry C, 2017, 121, 9705-9713.	1.5	65
65	Impact of moisture on efficiency-determining electronic processes in perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 10917-10927.	5.2	95
66	Probing the molecular orientation of chemically polymerized polythiophene-polyrotaxane via solid state NMR. Arabian Journal of Chemistry, 2017, 10, 708-714.	2.3	6
67	Methoxydiphenylamine-substituted fluorene derivatives as hole transporting materials: role of molecular interaction on device photovoltaic performance. Scientific Reports, 2017, 7, 150.	1.6	22
68	1-dimensional TiO2 nano-forests as photoanodes for efficient and stable perovskite solar cells fabrication. Nano Energy, 2017, 35, 215-222.	8.2	34
69	Cesium power: low Cs ⁺ levels impart stability to perovskite solar cells. Physical Chemistry Chemical Physics, 2017, 19, 4069-4077.	1.3	155
70	Cu(<scp>ii</scp>) and Zn(<scp>ii</scp>) based phthalocyanines as hole selective layers for perovskite solar cells. Sustainable Energy and Fuels, 2017, 1, 2071-2077.	2.5	35
71	Towards Extending Solar Cell Lifetimes: Addition of a Fluorous Cation to Triple Cationâ€Based Perovskite Films. ChemSusChem, 2017, 10, 3846-3853.	3.6	49
72	Towards a Universal Approach for the Analysis of Impedance Spectra of Perovskite Solar Cells: Equivalent Circuits and Empirical Analysis. ChemElectroChem, 2017, 4, 2891-2901.	1.7	84

#	Article	IF	Citations
73	Identifying the charge generation dynamics in Cs ⁺ -based triple cation mixed perovskite solar cells. Physical Chemistry Chemical Physics, 2017, 19, 22905-22914.	1.3	50
74	Large guanidinium cation mixed with methylammonium in lead iodide perovskites for 19% efficient solar cells. Nature Energy, 2017, 2, 972-979.	19.8	445
75	Solar conversion of CO2 to CO using Earth-abundant electrocatalysts prepared by atomic layer modification of CuO. Nature Energy, 2017, 2, .	19.8	436
76	Unraveling the Role of Monovalent Halides in Mixedâ€Halide Organic–Inorganic Perovskites. ChemPhysChem, 2016, 17, 913-920.	1.0	13
77	Truly quasi-solid-state lithium cells utilizing carbonate free polymer electrolytes on engineered LiFePO4. Electrochimica Acta, 2016, 199, 172-179.	2.6	27
78	Influence of the mixed organic cation ratio in lead iodide based perovskite on the performance of solar cells. Physical Chemistry Chemical Physics, 2016, 18, 27148-27157.	1.3	75
79	Holeâ€Transport Materials for Perovskite Solar Cells. Angewandte Chemie - International Edition, 2016, 55, 14522-14545.	7.2	786
80	Extending the Lifetime of Perovskite Solar Cells using a Perfluorinated Dopant. ChemSusChem, 2016, 9, 2708-2714.	3.6	62
81	Interface Play between Perovskite and Hole Selective Layer on the Performance and Stability of Perovskite Solar Cells. ACS Applied Materials & Samp; Interfaces, 2016, 8, 34414-34421.	4.0	56
82	Lochtransportmaterialien fÃ⅓r Perowskitâ€Solarzellen. Angewandte Chemie, 2016, 128, 14740-14764.	1.6	72
83	Performance and stability of mixed FAPbI3(0.85)MAPbBr3(0.15) halide perovskite solar cells under outdoor conditions and the effect of low light irradiation. Nano Energy, 2016, 30, 570-579.	8.2	110
84	Specific cation interactions as the cause of slow dynamics and hysteresis in dye and perovskite solar cells: a small-perturbation study. Physical Chemistry Chemical Physics, 2016, 18, 31033-31042.	1.3	89
85	How photon pump fluence changes the charge carrier relaxation mechanism in an organic–inorganic hybrid lead triiodide perovskite. Physical Chemistry Chemical Physics, 2016, 18, 27090-27101.	1.3	32
86	Dye-sensitized solar cells employing polymers. Progress in Polymer Science, 2016, 59, 1-40.	11.8	136
87	Light management: porous 1-dimensional nanocolumnar structures as effective photonic crystals for perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 4962-4970.	5.2	19
88	Unraveling Charge Carriers Generation, Diffusion, and Recombination in Formamidinium Lead Triiodide Perovskite Polycrystalline Thin Film. Journal of Physical Chemistry Letters, 2016, 7, 204-210.	2.1	67
89	A Methoxydiphenylamineâ€Substituted Carbazole Twin Derivative: An Efficient Holeâ€Transporting Material for Perovskite Solar Cells. Angewandte Chemie - International Edition, 2015, 54, 11409-11413.	7.2	239
90	Rational design of triazatruxene-based hole conductors for perovskite solar cells. RSC Advances, 2015, 5, 53426-53432.	1.7	64

#	Article	IF	Citations
91	LiFePO 4 particle conductive composite strategies for improving cathode rate capability. Electrochimica Acta, 2015, 163, 323-329.	2.6	65
92	Recent advances in alternative counter electrode materials for Co-mediated dye-sensitized solar cells. Nanoscale, 2015, 7, 11877-11893.	2.8	126
93	Molecular dynamics simulations of organohalide perovskite precursors: solvent effects in the formation of perovskite solar cells. Physical Chemistry Chemical Physics, 2015, 17, 22770-22777.	1.3	32
94	Judicious design of lithium iron phosphate electrodes using poly(3,4-ethylenedioxythiophene) for high performance batteries. Journal of Materials Chemistry A, 2015, 3, 14254-14262.	5.2	14
95	Direct monitoring of ultrafast electron and hole dynamics in perovskite solar cells. Physical Chemistry Chemical Physics, 2015, 17, 14674-14684.	1.3	141
96	Non-aggregated Zn(<scp>ii</scp>)octa(2,6-diphenylphenoxy) phthalocyanine as a hole transporting material for efficient perovskite solar cells. Dalton Transactions, 2015, 44, 10847-10851.	1.6	83
97	A dopant free linear acene derivative as a hole transport material for perovskite pigmented solar cells. Energy and Environmental Science, 2015, 8, 1816-1823.	15.6	202
98	Nanocolumnar 1-dimensional TiO ₂ photoanodes deposited by PVD-OAD for perovskite solar cell fabrication. Journal of Materials Chemistry A, 2015, 3, 13291-13298.	5.2	24
99	Triazatruxene-Based Hole Transporting Materials for Highly Efficient Perovskite Solar Cells. Journal of the American Chemical Society, 2015, 137, 16172-16178.	6.6	321
100	Perovskite as Light Harvester: A Game Changer in Photovoltaics. Angewandte Chemie - International Edition, 2014, 53, 2812-2824.	7.2	862
101	Perovskite Solar Cells Based on Nanocolumnar Plasmaâ€Deposited ZnO Thin Films. ChemPhysChem, 2014, 15, 1148-1153.	1.0	59
102	Yttrium-substituted nanocrystalline TiO ₂ photoanodes for perovskite based heterojunction solar cells. Nanoscale, 2014, 6, 1508-1514.	2.8	162
103	Highly efficient flexible cathodes for dye sensitized solar cells to complement Pt@TCO coatings. Journal of Materials Chemistry A, 2014, 2, 3175.	5.2	22
104	Electrochemical in battery polymerization of poly(alkylenedioxythiophene) over lithium iron phosphate for high-performance cathodes. Physical Chemistry Chemical Physics, 2014, 16, 20724-20730.	1.3	8
105	Investigation Regarding the Role of Chloride in Organic–Inorganic Halide Perovskites Obtained from Chloride Containing Precursors. Nano Letters, 2014, 14, 6991-6996.	4.5	185
106	Photoanode Based on (001)-Oriented Anatase Nanoplatelets for Organic–Inorganic Lead Iodide Perovskite Solar Cell. Chemistry of Materials, 2014, 26, 4675-4678.	3.2	39
107	Real-space observation of unbalanced charge distribution inside a perovskite-sensitized solar cell. Nature Communications, 2014, 5, 5001.	5.8	294
108	Elucidating Transport-Recombination Mechanisms in Perovskite Solar Cells by Small-Perturbation Techniques. Journal of Physical Chemistry C, 2014, 118, 22913-22922.	1.5	175

#	Article	IF	Citations
109	Improving the cycling performance of LiFePO ₄ cathode material by poly(3,4-ethylenedioxythiopene) coating. RSC Advances, 2014, 4, 26108-26114.	1.7	33
110	Electrochemically determined biosensing ability of DNA probed by using poly(propylenedioxythiophene). Electrochimica Acta, 2014, 122, 87-92.	2.6	8
111	Metal free sensitizer and catalyst for dye sensitized solar cells. Energy and Environmental Science, 2013, 6, 3439.	15.6	365
112	Electroactive Coatings: For Electrically Controlled on Demand Power Windows. Nanoscience and Nanotechnology Letters, 2013, 5, 3-12.	0.4	6
113	Influence of the counter electrode on the photovoltaic performance of dye-sensitized solar cells using a disulfide/thiolate redox electrolyte. Energy and Environmental Science, 2012, 5, 6089.	15.6	144
114	A new generation of platinum and iodine free efficient dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2012, 14, 10631.	1.3	89
115	Surface polymerization of (3,4-ethylenedioxythiophene) probed by in situ scanning tunneling microscopy on Au(111) in ionic liquids. Nanoscale, 2011, 3, 251-257.	2.8	17
116	Conduction behavior in ionic liquids assisted electrodeposited polypyrrole layers. Polymer Engineering and Science, 2011, 51, 1513-1518.	1.5	2
117	UV-cured polymer electrolytes encompassing hydrophobic room temperature ionic liquid for lithium batteries. Journal of Power Sources, 2010, 195, 1706-1713.	4.0	86
118	Efficient Platinumâ€Free Counter Electrodes for Dyeâ€Sensitized Solar Cell Applications. ChemPhysChem, 2010, 11, 2814-2819.	1.0	124
119	Silica Reinforced Organic–Inorganic Hybrid Polyurethane Nanocomposites From Sustainable Resource. Macromolecular Chemistry and Physics, 2010, 211, 412-419.	1.1	60
120	Dye-sensitized solar cells based on poly (3,4-ethylenedioxythiophene) counter electrode derived from ionic liquids. Journal of Materials Chemistry, 2010, 20, 1654.	6.7	208
121	Electrical field assisted growth of poly(3-hexylthiophene) layers employing ionic liquids: microstructure elucidated by scanning force and electron microscopy. Journal of Materials Chemistry, 2010, 20, 5325.	6.7	10
122	Electropolymerization of poly(methyl pyrrole)/carbon nanotubes composites derived from ionic liquid. Polymer Engineering and Science, 2009, 49, 916-921.	1.5	6
123	A ZnO/PEDOT:PSS based inorganic/organic hetrojunction. Solid State Communications, 2009, 149, 771-774.	0.9	89
124	Effect of nano \hat{I}^3 -Al2O3 addition on ion dynamics in polymer electrolytes. Current Applied Physics, 2009, 9, 108-114.	1.1	23
125	Nanocomposite polymer electrolytes by <i>in situ</i> polymerization of methyl methacrylate: For electrochemical applications. Journal of Applied Polymer Science, 2008, 107, 3042-3048.	1.3	20
126	Electrochromic device based on carbon nanotubes functionalized poly (methyl pyrrole) synthesized in hydrophobic ionic liquid medium. Electrochemistry Communications, 2008, 10, 895-898.	2.3	19

#	Article	IF	CITATIONS
127	Polypyrrole films electropolymerized from ionic liquids and in a traditional liquid electrolyte: A comparison of morphology and electro–optical properties. European Polymer Journal, 2008, 44, 3288-3299.	2.6	46
128	Electrochemical Synthesis and Surface Characterization of Poly(3,4-ethylenedioxythiophene) Films Grown in an Ionic Liquid. Langmuir, 2007, 23, 11430-11433.	1.6	110
129	lonogels encompassing ionic liquid with liquid like performance preferable for fast solid state electrochromic devices. Electrochemistry Communications, 2007, 9, 1635-1638.	2.3	42
130	Electrochromic properties of polyaniline thin film nanostructures derived from solutions of ionic liquid/polyethylene glycol. Electrochimica Acta, 2007, 52, 7453-7463.	2.6	48
131	Synthesis and characterization of in situ prepared poly (methyl methacrylate) nanocomposites. Bulletin of Materials Science, 2007, 30, 31-35.	0.8	100
132	Role of fumed silica on ion conduction and rheology in nanocomposite polymeric electrolytes. Polymer, 2006, 47, 3583-3590.	1.8	93
133	The effect of nanosized TiO2 addition on poly(methylmethacrylate) based polymer electrolytes. Journal of Power Sources, 2006, 159, 205-209.	4.0	73
134	Nanocomposite electrolytes with fumed silica in poly(methyl methacrylate): thermal, rheological and conductivity studies. Journal of Power Sources, 2005, 140, 151-156.	4.0	58
135	Smart electrochromic windows (SECWs) for energy management. Ionics, 2004, 10, 226-232.	1.2	2
136	Composite gel electrolytes based on poly(methylmethacrylate) and hydrophilic fumed silica. Electrochimica Acta, 2004, 49, 2343-2349.	2.6	44
137	Urethane modified boron filled polyesteramide: a novel anti-microbial polymer from a sustainable resource. European Polymer Journal, 2004, 40, 2097-2104.	2.6	54
138	Composite polymeric electrolytes based on PMMA-LiCF3SO3-SiO2. lonics, 2003, 9, 439-443.	1.2	6
139	Impact of cation substitution in all solution-processed Cu2(Cd,Zn)SnS4 superstrate solar cells. Journal of Materials Chemistry C, 0, , .	2.7	3