Shaoxing Qu

List of Publications by Citations

Source: https://exaly.com/author-pdf/2977905/shaoxing-qu-publications-by-citations.pdf

Version: 2024-04-11

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

3,034 50 129 32 h-index g-index citations papers 6.2 5.84 4,149 137 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
129	Bonding dissimilar polymer networks in various manufacturing processes. <i>Nature Communications</i> , 2018 , 9, 846	17.4	136
128	Self-powered soft robot in the Mariana Trench. <i>Nature</i> , 2021 , 591, 66-71	50.4	131
127	3D Printing of Multifunctional Hydrogels. <i>Advanced Functional Materials</i> , 2019 , 29, 1900971	15.6	114
126	Electromechanical and dynamic analyses of tunable dielectric elastomer resonator. <i>International Journal of Solids and Structures</i> , 2012 , 49, 3754-3761	3.1	106
125	Effect of pre-existing shear bands on the tensile mechanical properties of a bulk metallic glass. <i>Acta Materialia</i> , 2010 , 58, 1276-1292	8.4	103
124	An atomistic investigation of structural evolution in metallic glass matrix composites. <i>International Journal of Plasticity</i> , 2013 , 44, 147-160	7.6	81
123	A jogged dislocation governed strengthening mechanism in nanotwinned metals. <i>Nano Letters</i> , 2014 , 14, 5075-80	11.5	74
122	3D printing of highly stretchable hydrogel with diverse UV curable polymers. <i>Science Advances</i> , 2021 , 7,	14.3	70
121	Dual pH-Responsive Hydrogel Actuator for Lipophilic Drug Delivery. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 12010-12017	9.5	63
120	Tough and Conductive Hybrid Hydrogels Enabling Facile Patterning. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 13685-13692	9.5	63
119	A Mechanically Robust and Versatile Liquid-Free Ionic Conductive Elastomer. <i>Advanced Materials</i> , 2021 , 33, e2006111	24	62
118	Highly conductive 1D-2D composite film for skin-mountable strain sensor and stretchable triboelectric nanogenerator. <i>Nano Energy</i> , 2019 , 62, 319-328	17.1	61
117	Printable Liquid-Metal@PDMS Stretchable Heater with High Stretchability and Dynamic Stability for Wearable Thermotherapy. <i>Advanced Materials Technologies</i> , 2019 , 4, 1800435	6.8	61
116	Analysis of the twin spacing and grain size effects on mechanical properties in hierarchically nanotwinned face-centered cubic metals based on a mechanism-based plasticity model. <i>Journal of the Mechanics and Physics of Solids</i> , 2015 , 76, 162-179	5	59
115	A general constitutive model of soft elastomers. <i>Journal of the Mechanics and Physics of Solids</i> , 2018 , 117, 110-122	5	56
114	Agile and Resilient Insect-Scale Robot. Soft Robotics, 2019, 6, 133-141	9.2	56
113	Non-localized deformation in metallic alloys with amorphous structure. <i>Acta Materialia</i> , 2014 , 68, 32-41	8.4	54

(2012-2012)

112	Energy harvesting of dielectric elastomer generators concerning inhomogeneous fields and viscoelastic deformation. <i>Journal of Applied Physics</i> , 2012 , 112, 034119	2.5	54	
111	Adhesive Tough Magnetic Hydrogels with High FeO Content. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 10292-10300	9.5	54	
110	Functional hydrogel coatings. <i>National Science Review</i> , 2021 , 8, nwaa254	10.8	51	
109	Multiple mechanism based constitutive modeling of gradient nanograined material. <i>International Journal of Plasticity</i> , 2020 , 125, 314-330	7.6	45	
108	Polyacrylamide hydrogels. II. elastic dissipater. <i>Journal of the Mechanics and Physics of Solids</i> , 2019 , 133, 103737	5	40	•
107	Prestretch effect on snap-through instability of short-length tubular elastomeric balloons under inflation. <i>International Journal of Solids and Structures</i> , 2014 , 51, 2109-2115	3.1	40	
106	Controllable synthesis of nickel nanowires and its application in high sensitivity, stretchable strain sensor for body motion sensing. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 4737-4745	7.1	38	
105	Mechanically Robust and UV-Curable Shape-Memory Polymers for Digital Light Processing Based 4D Printing. <i>Advanced Materials</i> , 2021 , 33, e2101298	24	38	
104	A physically based visco-hyperelastic constitutive model for soft materials. <i>Journal of the Mechanics and Physics of Solids</i> , 2019 , 128, 208-218	5	37	
103	A finite element method for dielectric elastomer transducers. <i>Acta Mechanica Solida Sinica</i> , 2012 , 25, 459-466	2	37	
102	Intrinsically Stretchable Resistive Switching Memory Enabled by Combining a Liquid Metal B ased Soft Electrode and a Metal D rganic Framework Insulator. <i>Advanced Electronic Materials</i> , 2019 , 5, 180065	55 ^{6.4}	35	
101	Recent Advances in Stretchable Supercapacitors Enabled by Low-Dimensional Nanomaterials. <i>Small</i> , 2018 , 14, e1803976	11	35	
100	Elastic moduli of polycrystalline Li15Si4 produced in lithium ion batteries. <i>Journal of Power Sources</i> , 2013 , 242, 732-735	8.9	33	
99	Electromechanical Bistable Behavior of a Novel Dielectric Elastomer Actuator. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2014 , 81,	2.7	33	
98	Soft Display Using Photonic Crystals on Dielectric Elastomers. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 24758-24766	9.5	32	
97	Effect of structural relaxation on plastic flow in a NiNb metallic glassy film. <i>Acta Materialia</i> , 2012 , 60, 3667-3676	8.4	32	
96	Strain localization and fatigue cracking behaviors of Cu bicrystal with an inclined twin boundary. <i>Acta Materialia</i> , 2014 , 73, 167-176	8.4	31	
95	Stress-state-dependent deformation behavior in NiNb metallic glassy film. <i>Acta Materialia</i> , 2012 , 60, 4136-4143	8.4	31	

94	A physically-based damage model for soft elastomeric materials with anisotropic Mullins effect. <i>International Journal of Solids and Structures</i> , 2019 , 176-177, 121-134	3.1	30
93	A quantitative analysis for the stress field around an elastoplastic indentation/contact. <i>Journal of Materials Research</i> , 2009 , 24, 704-718	2.5	30
92	Two-dimensional electron gas at the PbTiO3/SrTiO3 interface: An ab initio study. <i>Physical Review B</i> , 2015 , 92,	3.3	29
91	A cohesive zone model incorporating a Coulomb friction law for fiber-reinforced composites. <i>Composites Science and Technology</i> , 2018 , 157, 195-201	8.6	28
90	Ambiently and Mechanically Stable Ionogels for Soft Ionotronics. <i>Advanced Functional Materials</i> , 2021 , 31, 2102773	15.6	27
89	Dielectric elastomer peristaltic pump module with finite deformation. <i>Smart Materials and Structures</i> , 2015 , 24, 075026	3.4	26
88	Hardening by twin boundary during nanoindentation in nanocrystals. <i>Nanotechnology</i> , 2010 , 21, 335704	1 3.4	26
87	Nucleation and propagation of voltage-driven wrinkles in an inflated dielectric elastomer balloon. <i>Soft Matter</i> , 2015 , 11, 6569-75	3.6	23
86	Enhanced Compressive Sensing of Dielectric Elastomer Sensor Using a Novel Structure. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2015 , 82,	2.7	23
85	Phase transitions in metastable phases of silicon. <i>Journal of Applied Physics</i> , 2014 , 115, 103514	2.5	23
84	Integrated multifunctional flexible electronics based on tough supramolecular hydrogels with patterned silver nanowires. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 7688-7697	7.1	22
83	Toward Highly Thermal Stable Perovskite Solar Cells by Rational Design of Interfacial Layer. <i>IScience</i> , 2019 , 22, 534-543	6.1	22
82	Rate dependent stress-stretch relation of dielectric elastomers subjected to pure shear like loading and electric field. <i>Acta Mechanica Solida Sinica</i> , 2012 , 25, 542-549	2	22
81	Time-dependent shear transformation zone in thin film metallic glasses revealed by nanoindentation creep. <i>Journal of Alloys and Compounds</i> , 2017 , 696, 239-245	5.7	20
80	3D Printing Method for Tough Multifunctional Particle-Based Double-Network Hydrogels. <i>ACS Applied Materials & Double Materials</i>	9.5	20
79	Failure analysis of syntactic foams: A computational model with cohesive law and XFEM. <i>Composites Part B: Engineering</i> , 2016 , 89, 18-26	10	20
78	Morphology of Voltage-Triggered Ordered Wrinkles of a Dielectric Elastomer Sheet. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2017 , 84,	2.7	19
77	Pneumatically Actuated Soft Robotic Arm for Adaptable Grasping. <i>Acta Mechanica Solida Sinica</i> , 2018 , 31, 608-622	2	19

(2015-2019)

76	Magnetic-Assisted Transparent and Flexible Percolative Composite for Highly Sensitive Piezoresistive Sensor via Hot Embossing Technology. <i>ACS Applied Materials & District Mater</i>	9.5	18
75	Design and Characterization of a Soft Dielectric Elastomer Peristaltic Pump Driven by Electromechanical Load. <i>IEEE/ASME Transactions on Mechatronics</i> , 2018 , 23, 2132-2143	5.5	18
74	Dependence of room-temperature nanoindentation creep behavior and shear transformation zone on the glass transition temperature in bulk metallic glasses. <i>Journal of Non-Crystalline Solids</i> , 2016 , 445-446, 19-29	3.9	17
73	Constitutive models of artificial muscles: a review. <i>Journal of Zhejiang University: Science A</i> , 2016 , 17, 22-36	2.1	16
72	A Review of Physically Based and Thermodynamically Based Constitutive Models for Soft Materials. Journal of Applied Mechanics, Transactions ASME, 2020, 87,	2.7	16
71	Ultrastretchable and conductive core/sheath hydrogel fibers with multifunctionality. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2019 , 57, 272-280	2.6	15
70	Analysis of ductile fracture by extended unified strength theory. <i>International Journal of Plasticity</i> , 2018 , 104, 196-213	7.6	15
69	On the grain size dependent working hardening behaviors of severe plastic deformation processed metals. <i>Scripta Materialia</i> , 2020 , 178, 171-175	5.6	15
68	Prescribing patterns in growing tubular soft matter by initial residual stress. Soft Matter, 2019 , 15, 8468-5	86 74	15
67	X-Mechanics An endless frontier. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1	3.6	15
66	Micromechanical modeling of the multi-axial deformation behavior in double network hydrogels. International Journal of Plasticity, 2021 , 137, 102901	7.6	15
65	A Wearable Capacitive Sensor Based on Ring/Disk-Shaped Electrode and Porous Dielectric for Noncontact Healthcare Monitoring. <i>Global Challenges</i> , 2020 , 4, 1900079	4.3	14
64	Puncture mechanics of soft elastomeric membrane with large deformation by rigid cylindrical indenter. <i>Journal of the Mechanics and Physics of Solids</i> , 2018 , 112, 458-471	5	14
63	Stretch tuning of the Debye ring for 2D photonic crystals on a dielectric elastomer membrane. <i>Soft Matter</i> , 2018 , 14, 1120-1129	3.6	13
62	Controlling wrinkles on the surface of a dielectric elastomer balloon. <i>Extreme Mechanics Letters</i> , 2016 , 9, 139-146	3.9	13
61	Irreversible deformation of metal matrix composites: A study via the mechanism-based cohesive zone model. <i>Mechanics of Materials</i> , 2015 , 89, 72-84	3.3	12
60	A Thermochromic Hydrogel for Camouflage and Soft Display. Advanced Optical Materials, 2020 , 8, 200008	8.1	12
59	Enhanced plasticity in ZrŒuAgAlBe bulk metallic glasses. <i>Journal of Non-Crystalline Solids</i> , 2015 , 412, 35-44	3.9	12

58	Can nanoscale twin boundaries serve as dislocation sources in single crystals?. <i>Computational Materials Science</i> , 2011 , 50, 1567-1570	3.2	12
57	A constitutive model for multi network elastomers pre-stretched by swelling. <i>Extreme Mechanics Letters</i> , 2020 , 40, 100926	3.9	11
56	Effects of load configuration on partial slip contact between an elastic?plastic sphere and a rigid flat. <i>Tribology International</i> , 2013 , 61, 120-128	4.9	10
55	Indentation size effects of mechanical behavior and shear transformation zone in thin film metallic glasses. <i>Thin Solid Films</i> , 2018 , 646, 36-43	2.2	10
54	Numerical Study on Mechanical Properties of Discontinuously Reinforced Titanium Matrix Composite with Network Reinforcement Architecture. <i>International Journal of Applied Mechanics</i> , 2017 , 09, 1750073	2.4	9
53	Stretchable tactile sensor with high sensitivity and dynamic stability based on vertically aligned urchin-shaped nanoparticles. <i>Materials Today Physics</i> , 2020 , 14, 100219	8	9
52	Mechanical characterization and modeling of sponge-reinforced hydrogel composites under compression. <i>Soft Matter</i> , 2018 , 14, 4355-4363	3.6	8
51	Voltage-controlled radial wrinkles of a trumpet-like dielectric elastomer structure. <i>AIP Advances</i> , 2018 , 8, 035314	1.5	8
50	A versatile hydrogel network-repairing strategy achieved by the covalent-like hydrogen bond interaction <i>Science Advances</i> , 2022 , 8, eabl5066	14.3	8
49	Effects of hollow particle shape and distribution on the elastic properties of syntactic foams: 3D computational modeling. <i>Computational Materials Science</i> , 2014 , 95, 106-112	3.2	7
48	Electromechanical coupling properties and stability analysis of ferroelectrets. <i>Journal of Applied Physics</i> , 2011 , 110, 043525	2.5	7
47	An electro-mechanically coupled visco-hyperelastic-plastic constitutive model for cyclic deformation of dielectric elastomers. <i>Mechanics of Materials</i> , 2020 , 150, 103575	3.3	7
46	Effect of pre-stress on the onset of yielding in bulk metallic glasses. <i>Journal of Non-Crystalline Solids</i> , 2019 , 503-504, 44-51	3.9	7
45	Effect of Partition on the Mechanical Behaviors of Soft Adhesive Layers. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2019 , 86,	2.7	6
44	Bistable rotating mechanism based on dielectric elastomer actuator. <i>Smart Materials and Structures</i> , 2020 , 29, 015008	3.4	6
43	Size-dependent inertial cavitation of soft materials. <i>Journal of the Mechanics and Physics of Solids</i> , 2020 , 137, 103859	5	6
42	Inclusion Size Effect on Mechanical Properties of Particle Hydrogel Composite. <i>Acta Mechanica Solida Sinica</i> , 2019 , 32, 643-651	2	5
41	A chemo-mechanical model for fully-coupled lithiation reaction and stress generation in viscoplastic lithiated silicon. <i>Science China Technological Sciences</i> , 2019 , 62, 1365-1374	3.5	5

(2021-2020)

40	Experimental investigation on electro-mechanically coupled cyclic deformation of laterally constrained dielectric elastomer. <i>Polymer Testing</i> , 2020 , 81, 106220	4.5	5
39	Acarid Suction Cup-Inspired Rapid and Tunable Magnetic Adhesion. <i>Advanced Materials Technologies</i> , 2021 , 6, 2100004	6.8	5
38	Numerical investigation on the loading-delamination-unloading behavior of adhesive joints. <i>Composites Part A: Applied Science and Manufacturing</i> , 2016 , 90, 45-50	8.4	5
37	Electrically tunable fast and reversible structural coloration of two-dimensional photonic crystals. Smart Materials and Structures, 2019 , 28, 115019	3.4	5
36	Strength Analysis of Syntactic Foams Using a Three-Dimensional Continuum Damage Finite Element Model. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2015 , 82,	2.7	4
35	EFFECTS OF STRETCHING RATE AND SIZE ON THE RUPTURE OF ACRYLIC DIELECTRIC ELASTOMER. <i>International Journal of Applied Mechanics</i> , 2014 , 06, 1450026	2.4	4
34	Photoinitiator-grafted polymer chains for integrating hydrogels with various materials. <i>Cell Reports Physical Science</i> , 2021 , 2, 100463	6.1	4
33	Modeling the mechanical behaviors of multiple network elastomers. <i>Mechanics of Materials</i> , 2021 , 161, 103992	3.3	4
32	Synthesis and controlled morphology of Ni@Ag core shell nanowires with excellent catalytic efficiency and recyclability. <i>Nanotechnology</i> , 2019 , 30, 385603	3.4	3
31	Size Effect on Microbond Testing Interfacial Shear Strength of Fiber-Reinforced Composites. Journal of Applied Mechanics, Transactions ASME, 2019 , 86,	2.7	3
30	Multiscale Simulation of Damage Progression in 5-Harness Satin Weave Composites. <i>Jom</i> , 2015 , 67, 149	12.1149	83
29	Numerical study of millimeter-scale magnetorheological elastomer robot for undulatory swimming. Journal Physics D: Applied Physics, 2020 , 53, 235402	3	3
28	In Situ and Intraoperative Detection of the Ureter Injury Using a Highly Sensitive Piezoresistive Sensor with a Tunable Porous Structure. <i>ACS Applied Materials & Acs Applied & Acs A</i>	9.5	3
27	Highly stretchable and transparent dielectric gels for high sensitivity tactile sensors. <i>Smart Materials and Structures</i> , 2019 , 28, 024003	3.4	3
26	Tunable piezoresistivity of low percolation threshold micro-nickel wires/PDMS conductive composite regulated by magnetic field. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 5908-5919	7.1	3
25	3D Printing of Conductive Hydrogel-Elastomer Hybrids for Stretchable Electronics. <i>ACS Applied Materials & Description of Conductive Hydrogel</i> .	9.5	2
24	A Numerical Approach Based on Finite Element Method for the Wrinkling Analysis of Dielectric Elastomer Membranes. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2021 , 88,	2.7	2
23	Peel of elastomers of various thicknesses and widths. <i>Extreme Mechanics Letters</i> , 2021 , 46, 101325	3.9	2

22	Essential work of fracture of soft elastomers. <i>Journal of the Mechanics and Physics of Solids</i> , 2021 , 156, 104616	5	2
21	Study of non-uniform axial magnetic field induced deformation of a soft cylindrical magneto-active actuator. <i>Soft Matter</i> , 2021 , 17, 7498-7505	3.6	2
20	Preface to the Boft Matter Mechanics Special Issue of Acta Mechanica Solida Sinica. <i>Acta Mechanica Solida Sinica</i> , 2019 , 32, 533-534	2	1
19	BioARS: Designing Adaptive and Reconfigurable Bionic Assembly Robotic System with Inchworm Modules 2020 ,		1
18	A hyperelastic-damage model based on the strain invariants. Extreme Mechanics Letters, 2022, 52, 1016	5 43 .9	1
17	Magnetomechanical behavior of soft magnetoactive membranes. <i>International Journal of Solids and Structures</i> , 2022 , 234-235, 111310	3.1	1
16	Hydrogel Coating Enabling Mechanically Friendly, Step-Index, Functionalized Optical Fiber. <i>Advanced Optical Materials</i> , 2021 , 9, 2101036	8.1	1
15	An anisotropic constitutive model for 3D printed hydrogel-fiber composites. <i>Journal of the Mechanics and Physics of Solids</i> , 2021 , 156, 104611	5	1
14	Effects of hole arrangement and trenched hole on multirow film cooling. AIP Advances, 2022, 12, 04520	05 1.5	1
13	Highly Stretchable Bilayer Lattice Structures That Elongate via In-Plane Deformation. <i>Advanced Functional Materials</i> , 2020 , 30, 1909473	15.6	О
12	Fatigue life assessment and damage evolution in Z-pinned laminates. <i>Composites Science and Technology</i> , 2022 , 221, 109328	8.6	0
11	Impact-induced bubble interactions and coalescence in soft materials. <i>International Journal of Solids and Structures</i> , 2022 , 238, 111387	3.1	О
10	Stretch induced thermal conduction anisotropy of hydrogel. <i>International Journal of Heat and Mass Transfer</i> , 2022 , 185, 122445	4.9	0
9	Intelligent Soft Actuators and Flexible Devices. Advanced Intelligent Systems, 2021, 3, 2100173	6	O
8	Intergrated Shape Memory Alloys Soft Actuators with Periodic and Inhomogeneous Deformations by Modulating Elastic Tendon Structures. <i>Advanced Engineering Materials</i> , 2020 , 22, 2000640	3.5	0
7	Preface: Mechanics of soft materials and flexible structures. <i>Acta Mechanica Sinica/Lixue Xuebao</i> , 2021 , 37, 746-747	2	O
6	Low-cycle electro-mechanical fatigue of dielectric elastomers: Pure-shear experiments and life-prediction model. <i>International Journal of Fatigue</i> , 2021 , 148, 106220	5	0
5	S2worm: A Fast-Moving Untethered Insect-Scale Robot With 2-DoF Transmission Mechanism. <i>IEEE Robotics and Automation Letters</i> , 2022 , 7, 6758-6765	4.2	O

LIST OF PUBLICATIONS

4	Failure of soft dielectric membrane with a hole subjected to mechanical and electric loads. <i>International Journal of Non-Linear Mechanics</i> , 2019 , 117, 103243	2.8
3	MECHANICS OF SOFT ACTIVE MATERIALS AND STRUCTURES 2015 , 85-86	
2	Experimental study on the magnetic permeability of inclusion filled soft polymeric composite for soft-core transformer applications. <i>Polymer Testing</i> , 2022 , 106, 107430	4.5
1	Shape-Memory Polymers: Mechanically Robust and UV-Curable Shape-Memory Polymers for Digital Light Processing Based 4D Printing (Adv. Mater. 27/2021). <i>Advanced Materials</i> , 2021 , 33, 2170210	24