
Wei Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2977761/publications.pdf Version: 2024-02-01

\\/гі 7н1

#	Article	IF	CITATIONS
1	Cancer stem cells in colorectal cancer and the association with chemotherapy resistance. Medical Oncology, 2021, 38, 43.	2.5	20
2	Prognostic Significance of Autophagy-Relevant Gene Markers in Colorectal Cancer. Frontiers in Oncology, 2021, 11, 566539.	2.8	10
3	Inhibition of hsa_circ_0003489 shifts balance from autophagy to apoptosis and sensitizes multiple myeloma cells to bortezomib via miRâ€874â€3p/HDAC1 axis. Journal of Gene Medicine, 2021, 23, e3329.	2.8	14
4	Cancer-secreted exosomal miR-21-5p induces angiogenesis and vascular permeability by targeting KRIT1. Cell Death and Disease, 2021, 12, 576.	6.3	71
5	The underlying molecular mechanisms and prognostic factors of RNA binding protein in colorectal cancer: a study based on multiple online databases. Cancer Cell International, 2021, 21, 325.	4.1	2
6	Emerging functions of PRKDC in the initiation and progression of cancer. Tumori, 2020, 107, 030089162095047.	1.1	4
7	The effect of miRNA and autophagy on colorectal cancer. Cell Proliferation, 2020, 53, e12900.	5.3	43
8	Emerging roles of circRNA in formation and progression of cancer. Journal of Cancer, 2019, 10, 5015-5021.	2.5	183
9	MicroRNA‑34a suppresses the invasion and migration of colorectal cancer cells by enhancing EGR1 and inhibiting vimentin. Experimental and Therapeutic Medicine, 2019, 18, 2459-2466.	1.8	8
10	<p>IL-37 promotes cell apoptosis in cervical cancer involving Bim upregulation</p> . OncoTargets and Therapy, 2019, Volume 12, 2703-2712.	2.0	11
11	Microbial antigens-loaded myeloma cells enhance Th2 cell proliferation and myeloma clonogenicity via Th2–myeloma cell interaction. BMC Cancer, 2019, 19, 1246.	2.6	8
12	The mechanisms and clinical significance of PDCD4 in colorectal cancer. Gene, 2019, 680, 59-64.	2.2	26
13	Emerging Roles of IncRNAs in the Formation and Progression of Colorectal Cancer. Frontiers in Oncology, 2019, 9, 1542.	2.8	31
14	Inhibition of human cervical cancer cell invasion by IL-37 involving runt related transcription factor 2 suppression. Annals of Translational Medicine, 2019, 7, 568-568.	1.7	13
15	The function and clinical significance of eIF3 in cancer. Gene, 2018, 673, 130-133.	2.2	46
16	LncRNA HOTTIP-Mediated HOXA11 Expression Promotes Cell Growth, Migration and Inhibits Cell Apoptosis in Breast Cancer. International Journal of Molecular Sciences, 2018, 19, 472.	4.1	36
17	Characterization of CSF2A fusion gene and its effect on Epstein–Barr virus–positive tumor cells. Journal of Medical Virology, 2018, 90, 1750-1756.	5.0	0
18	The role of eukaryotic translation initiation factor 6 in tumors. Oncology Letters, 2017, 14, 3-9.	1.8	14

Wei Zhu

#	Article	IF	CITATIONS
19	Foxp3 is correlated with VEGF-C expression and lymphangiogenesis in cervical cancer. World Journal of Surgical Oncology, 2017, 15, 173.	1.9	21
20	Clinicopathological Significance of MTA 1 Expression in Patients with Non-Small Cell Lung Cancer: A Meta-Analysis. Asian Pacific Journal of Cancer Prevention, 2017, 18, 2903-2909.	1.2	11
21	Interleukin-10 gene transfer into insulin-producing β cells protects against diabetes in non-obese diabetic mice. Molecular Medicine Reports, 2015, 12, 3881-3889.	2.4	17
22	Construction of a recombinant-BCG containing the LMP2A and BZLF1 genes and its significance in the Epstein-Barr virus positive gastric carcinoma. Journal of Medical Virology, 2014, 86, 1780-1787.	5.0	6
23	Overexpression of EIF5A2 promotes colorectal carcinoma cell aggressiveness by upregulating MTA1 through C-myc to induce epithelial–mesenchymaltransition. Gut, 2012, 61, 562-575.	12.1	153