
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/297762/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Stereoselective Cyclopropanation Reactions. Chemical Reviews, 2003, 103, 977-1050.                                                                                                                                                                    | 23.0 | 1,638     |
| 2  | Synthesis of Pyridine and Dihydropyridine Derivatives by Regio- and Stereoselective Addition to <i>N</i> -Activated Pyridines. Chemical Reviews, 2012, 112, 2642-2713.                                                                                | 23.0 | 770       |
| 3  | Structure and Reactivity of "Unusual―N-Heterocyclic Carbene (NHC) Palladium Complexes Synthesized from Imidazolium Salts. Journal of the American Chemical Society, 2004, 126, 5046-5047.                                                             | 6.6  | 363       |
| 4  | Direct Functionalization Processes: A Journey from Palladium to Copper to Iron to Nickel to<br>Metal-Free Coupling Reactions. Accounts of Chemical Research, 2013, 46, 412-424.                                                                       | 7.6  | 278       |
| 5  | Catalytic Asymmetric Hydrogenation ofN-Iminopyridinium Ylides:Â Expedient Approach to<br>Enantioenriched Substituted Piperidine Derivatives. Journal of the American Chemical Society, 2005,<br>127, 8966-8967.                                       | 6.6  | 275       |
| 6  | Chemoselective synthesis of ketones and ketimines by addition of organometallic reagents to secondary amides. Nature Chemistry, 2012, 4, 228-234.                                                                                                     | 6.6  | 228       |
| 7  | Experimental Evidence for the All-Up Reactive Conformation of Chiral Rhodium(II) Carboxylate<br>Catalysts: Enantioselective Synthesis of <i>cis</i> -Cyclopropane α-Amino Acids. Journal of the American<br>Chemical Society, 2009, 131, 16383-16385. | 6.6  | 223       |
| 8  | Design of Amphoteric Bifunctional Ligands: Application to the Enantioselective Simmons-Smith<br>Cyclopropanation of Allylic Alcohols. Journal of the American Chemical Society, 1994, 116, 2651-2652.                                                 | 6.6  | 207       |
| 9  | Cycloadditions of Aromatic Azomethine Imines with 1,1-Cyclopropane Diesters. Organic Letters, 2008, 10, 689-692.                                                                                                                                      | 2.4  | 204       |
| 10 | Enantioselective Cyclopropanation of Allylic Alcohols with Dioxaborolane Ligands:Â Scope and<br>Synthetic Applications. Journal of the American Chemical Society, 1998, 120, 11943-11952.                                                             | 6.6  | 203       |
| 11 | Palladium-Catalyzed Direct Câ^'H Arylation of <i>N</i> -Iminopyridinium Ylides:  Application to the<br>Synthesis of (±)-Anabasine. Journal of the American Chemical Society, 2008, 130, 52-54.                                                        | 6.6  | 191       |
| 12 | Doubly Activated Cyclopropanes as Synthetic Precursors for the Preparation of 4-Nitro- and 4-Cyano-dihydropyrroles and Pyrroles. Organic Letters, 2005, 7, 2313-2316.                                                                                 | 2.4  | 186       |
| 13 | Expedient Synthesis of Cyclopropane α-Amino Acids by the Catalytic Asymmetric Cyclopropanation of<br>Alkenes Using Iodonium Ylides Derived from Methyl Nitroacetate. Journal of the American Chemical<br>Society, 2005, 127, 18014-18015.             | 6.6  | 165       |
| 14 | Asymmetric, Catalytic Synthesis of α-Chiral Amines Using a Novel Bis(phosphine) Monoxide Chiral<br>Ligand. Journal of the American Chemical Society, 2003, 125, 14260-14261.                                                                          | 6.6  | 162       |
| 15 | Practical and Highly Regio- and Stereoselective Synthesis of 2-Substituted Dihydropyridines and<br>Piperidines:Â Application to the Synthesis of (â^²)-Coniine. Journal of the American Chemical Society, 2001,<br>123, 11829-11830.                  | 6.6  | 161       |
| 16 | A Mild Procedure for the Lewis Acid-Catalyzed Ring-Opening of Activated Cyclopropanes with Amine<br>Nucleophiles. Organic Letters, 2008, 10, 2809-2812.                                                                                               | 2.4  | 161       |
| 17 | Catalytic Enantioselective Reduction of β,β-Disubstituted Vinyl Phenyl Sulfones by Using Bisphosphine<br>Monoxide Ligands. Angewandte Chemie - International Edition, 2007, 46, 5955-5957.                                                            | 7.2  | 149       |
| 18 | Asymmetric Rh(II)-Catalyzed Cyclopropanation of Alkenes with Diacceptor Diazo Compounds:<br><i>p</i> -Methoxyphenyl Ketone as a General Stereoselectivity Controlling Group. Journal of the<br>American Chemical Society, 2011, 133, 8972-8981.       | 6.6  | 148       |

| #  | Article                                                                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Catalytic Asymmetric Cyclopropanation of Allylic Alcohols with Titanium-TADDOLate:Â Scope of the<br>Cyclopropanation Reaction. Journal of the American Chemical Society, 2001, 123, 12168-12175.                                                                                                                           | 6.6 | 146       |
| 20 | Copperâ€Catalyzed Direct Alkenylation of <i>N</i> â€Iminopyridinium Ylides. Angewandte Chemie -<br>International Edition, 2010, 49, 1115-1118.                                                                                                                                                                             | 7.2 | 146       |
| 21 | Stereoselective Rh <sub>2</sub> ( <i>S</i> -IBAZ) <sub>4</sub> -Catalyzed Cyclopropanation of Alkenes,<br>Alkynes, and Allenes: Asymmetric Synthesis of Diacceptor Cyclopropylphosphonates and<br>Alkylidenecyclopropanes. Journal of the American Chemical Society, 2013, 135, 1463-1470.                                 | 6.6 | 142       |
| 22 | Spectroscopic studies of the electrophilic activation of amides with triflic anhydride and pyridine.<br>Canadian Journal of Chemistry, 2001, 79, 1694-1703.                                                                                                                                                                | 0.6 | 140       |
| 23 | Improved Procedure for the Synthesis of Enantiomerically Enriched Cyclopropylmethanol Derivatives.<br>Journal of Organic Chemistry, 1995, 60, 1081-1083.                                                                                                                                                                   | 1.7 | 125       |
| 24 | Palladium-Catalyzed Benzylic Câ^'H Insertion of 2-Substituted <i>N</i> -Iminopyridinium Ylides. Organic<br>Letters, 2008, 10, 1641-1643.                                                                                                                                                                                   | 2.4 | 111       |
| 25 | General Method for the Synthesis of Phenyliodonium Ylides from Malonate Esters: Easy Access to 1,1-Cyclopropane Diesters. Journal of Organic Chemistry, 2009, 74, 470-473.                                                                                                                                                 | 1.7 | 109       |
| 26 | Transition Metal-Catalyzed Cyclopropanation of Alkenes in Water:  Catalyst Efficiency and in Situ<br>Generation of the Diazo Reagent. Organic Letters, 2002, 4, 4531-4533.                                                                                                                                                 | 2.4 | 108       |
| 27 | Catalytic Enantioselective Addition of Dialkylzinc toN-Diphenylphosphinoylimines. A Practical<br>Synthesis of α-Chiral Amines. Journal of the American Chemical Society, 2003, 125, 1692-1693.                                                                                                                             | 6.6 | 102       |
| 28 | TfNH <sub>2</sub> as Achiral Hydrogen-Bond Donor Additive to Enhance the Selectivity of a<br>Transition Metal Catalyzed Reaction. Highly Enantio- and Diastereoselective Rhodium-Catalyzed<br>Cyclopropanation of Alkenes Using α-Cyano Diazoacetamide. Journal of the American Chemical Society,<br>2009, 131, 6970-6972. | 6.6 | 102       |
| 29 | The Asymmetric Cyclopropanation of Acyclic Allylic Alcohols: Efficient Stereocontrol with<br>Iodomethylzinc Reagents. Synlett, 1995, 1995, 1197-1207.                                                                                                                                                                      | 1.0 | 101       |
| 30 | lodomethylzinc Phosphates:  Powerful Reagents for the Cyclopropanation of Alkenes. Journal of the<br>American Chemical Society, 2005, 127, 12440-12441.                                                                                                                                                                    | 6.6 | 101       |
| 31 | Diastereoselective Cyclopropanation of Chiral Allylic Alcohols: A More Efficient Reagent for the Relative Stereocontrol. Journal of Organic Chemistry, 1995, 60, 2966-2967.                                                                                                                                                | 1.7 | 100       |
| 32 | Asymmetric Catalysis Special Feature Part I: Catalytic asymmetric addition of diorganozinc reagents to<br>N-phosphinoylalkylimines. Proceedings of the National Academy of Sciences of the United States of<br>America, 2004, 101, 5405-5410.                                                                              | 3.3 | 99        |
| 33 | Recent Progress Toward the Synthesis of Trifluoromethyl―and Difluoromethylâ€Substituted<br>Cyclopropanes. Chemistry - A European Journal, 2017, 23, 4950-4961.                                                                                                                                                             | 1.7 | 99        |
| 34 | Enantioselective Total Synthesis of (+)-U-106305. Journal of the American Chemical Society, 1996, 118, 10327-10328.                                                                                                                                                                                                        | 6.6 | 98        |
| 35 | A new strategy for the Lewis acid-catalyzed cyclopropanation of allylic alcohols Journal of the American Chemical Society, 1995, 117, 11367-11368.                                                                                                                                                                         | 6.6 | 97        |
| 36 | Synthesis of 2-Substituted Pyrazolo[1,5- <i>a</i> ]pyridines through Cascade Direct<br>Alkenylation/Cyclization Reactions. Organic Letters, 2010, 12, 516-519.                                                                                                                                                             | 2.4 | 95        |

| #  | Article                                                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Diastereoselective Borocyclopropanation of Allylic Ethers Using a Boromethylzinc Carbenoid.<br>Journal of the American Chemical Society, 2017, 139, 1364-1367.                                                                                                                                                 | 6.6 | 93        |
| 38 | Carbohydrates as chiral auxiliaries: asymmetric cyclopropanation reaction of acyclic olefins. Journal of the American Chemical Society, 1991, 113, 8166-8167.                                                                                                                                                  | 6.6 | 92        |
| 39 | Synthesis of 2- and 2,3-Substituted Pyrazolo[1,5- <i>a</i> ]pyridines: Scope and Mechanistic<br>Considerations of a Domino Direct Alkynylation and Cyclization of <i>N</i> -Iminopyridinium Ylides<br>Using Alkenyl Bromides, Alkenyl Iodides, and Alkynes. Journal of Organic Chemistry, 2011, 76, 8243-8261. | 1.7 | 90        |
| 40 | Palladium-Catalyzed Suzuki-Type Cross-Couplings of Iodocyclopropanes with Boronic Acids:Â Synthesis<br>oftrans-1,2-Dicyclopropyl Alkenes. Journal of Organic Chemistry, 1996, 61, 8718-8719.                                                                                                                   | 1.7 | 89        |
| 41 | Nucleophilic Addition to 3-Substituted Pyridinium Salts:  Expedient Syntheses of (â^)-L-733,061 and<br>(â^')-CP-99,994. Organic Letters, 2004, 6, 3517-3520.                                                                                                                                                   | 2.4 | 89        |
| 42 | Probing the Importance of the Hemilabile Site of Bis(phosphine) Monoxide Ligands in the<br>Copper-Catalyzed Addition of Diethylzinc to <i>N</i> -Phosphinoylimines: Discovery of New Effective<br>Chiral Ligands. Journal of Organic Chemistry, 2008, 73, 6330-6340.                                           | 1.7 | 89        |
| 43 | Mild Method for the Synthesis of Thiazolines from Secondary and Tertiary Amides. Journal of Organic<br>Chemistry, 1998, 63, 908-909.                                                                                                                                                                           | 1.7 | 88        |
| 44 | Total Synthesis of (+)-Lepadin B: Stereoselective Synthesis of Nonracemic Polysubstituted<br>Hydroquinolines Using an RC-ROM Process. Journal of the American Chemical Society, 2008, 130,<br>13873-13875.                                                                                                     | 6.6 | 84        |
| 45 | Silver-Promoted, Palladium-Catalyzed Direct Arylation of Cyclopropanes: Facile Access to Spiro<br>3,3′-Cyclopropyl Oxindoles. Organic Letters, 2013, 15, 1350-1353.                                                                                                                                            | 2.4 | 84        |
| 46 | C–H Functionalization of Cyclopropanes: A Practical Approach Employing a Picolinamide Auxiliary.<br>Organic Letters, 2013, 15, 4394-4397.                                                                                                                                                                      | 2.4 | 83        |
| 47 | <i>trans</i> â€Directing Ability of Amide Groups in Cyclopropanation: Application to the Asymmetric<br>Cyclopropanation of Alkenes with Diazo Reagents Bearing Two Carboxy Groups. Angewandte Chemie -<br>International Edition, 2008, 47, 10155-10158.                                                        | 7.2 | 82        |
| 48 | Spectroscopic Characterization of (Iodomethyl)zinc Reagents Involved in Stereoselective Reactions:Â<br>Spectroscopic Evidence That IZnCH2I Is Not Zn(CH2I)2+ ZnI2in the Presence of an Ether. Journal of the<br>American Chemical Society, 1996, 118, 4539-4549.                                               | 6.6 | 80        |
| 49 | Hypervalent Iodine(III) Reagents as Safe Alternatives to α-Nitro-α-diazocarbonyls. Organic Letters, 2003, 5,<br>2327-2329.                                                                                                                                                                                     | 2.4 | 80        |
| 50 | Stereoselective Synthesis of All Four Isomers of Coronamic Acid: A General Approach to<br>3-Methanoamino Acids. Journal of the American Chemical Society, 1995, 117, 12721-12732.                                                                                                                              | 6.6 | 79        |
| 51 | The chemistry of cyclic vinyl ethers. 6. Total synthesis of polyether ionophore antibiotics of the calcimycin (A-23187) class. Journal of the American Chemical Society, 1991, 113, 5337-5353.                                                                                                                 | 6.6 | 78        |
| 52 | Palladium-Catalyzed Synthesis of Functionalized Tetraarylphosphonium Salts. Journal of Organic<br>Chemistry, 2008, 73, 590-593.                                                                                                                                                                                | 1.7 | 77        |
| 53 | New Family of Cyclopropanating Reagents: Synthesis, Reactivity, and Stability Studies of<br>Iodomethylzinc Phenoxides. Angewandte Chemie - International Edition, 2000, 39, 4539-4542.                                                                                                                         | 7.2 | 76        |
| 54 | Triflic Anhydride Mediated Synthesis of Imidazo[1,5- <i>a</i> ]azines. Organic Letters, 2013, 15, 2290-2293.                                                                                                                                                                                                   | 2.4 | 75        |

| #  | Article                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Complexation Promoted Additions toN-Benzoyliminopyridinium Ylides. A Novel and Highly<br>Regioselective Approach to Polysubstituted Piperidines. Journal of the American Chemical Society,<br>2003, 125, 6360-6361.                                                  | 6.6 | 74        |
| 56 | <i>trans</i> -Directing Ability of the Amide Group: Enabling the Enantiocontrol in the Synthesis of 1,1-Dicarboxy Cyclopropanes. Reaction Development, Scope, and Synthetic Applications. Journal of Organic Chemistry, 2009, 74, 8939-8955.                         | 1.7 | 74        |
| 57 | Highly Enantioselective Simmons–Smith Fluorocyclopropanation of Allylic Alcohols via the Halogen<br>Scrambling Strategy of Zinc Carbenoids. Journal of the American Chemical Society, 2013, 135, 7819-7822.                                                          | 6.6 | 74        |
| 58 | Diastereo- and Enantioselective Synthesis of 1,2,3-Substituted Cyclopropanes with Zinc Carbenoids.<br>Angewandte Chemie International Edition in English, 1997, 36, 1090-1092.                                                                                       | 4.4 | 73        |
| 59 | <i>In Situ</i> Generation of Zinc Carbenoids from Diazo Compounds and Zinc Salts: Asymmetric<br>Synthesis of 1,2,3-Substituted Cyclopropanes. Journal of the American Chemical Society, 2009, 131,<br>15633-15635.                                                   | 6.6 | 73        |
| 60 | Nickel atalyzed Synthesis of Phosphonium Salts from Aryl Halides and Triphenylphosphine. Advanced Synthesis and Catalysis, 2008, 350, 2967-2974.                                                                                                                     | 2.1 | 71        |
| 61 | One-Pot Synthesis of 3,4,5-Trisubstituted 1,2,4-Triazoles via the Addition of Hydrazides to Activated Secondary Amides. Organic Letters, 2015, 17, 1184-1187.                                                                                                        | 2.4 | 71        |
| 62 | Application of the Chiral Bis(phosphine) Monoxide Ligand to Catalytic Enantioselective Addition of Dialkylzinc Reagents to β-Nitroalkenes. Organic Letters, 2007, 9, 85-87.                                                                                          | 2.4 | 69        |
| 63 | Synthesis of Enantiopure Substituted Piperidines <i>via</i> an Aziridinium Ring Expansion. Organic<br>Letters, 2011, 13, 3830-3833.                                                                                                                                  | 2.4 | 69        |
| 64 | Design and Synthesis of Chiral Heteroleptic Rhodium(II) Carboxylate Catalysts: Experimental<br>Investigation of Halogen Bond Rigidification Effects in Asymmetric Cyclopropanation. ACS Catalysis,<br>2012, 2, 1221-1225.                                            | 5.5 | 66        |
| 65 | Preparation, Solid-State Structure, and Synthetic Applications of Isolable and Storable Haloalkylzinc<br>Reagents. Journal of the American Chemical Society, 2000, 122, 4508-4509.                                                                                   | 6.6 | 65        |
| 66 | Synthesis of -Nitrodiazocarbonyl Derivatives and Their Applications in the Cyclopropanation of Alkenes and in OH Insertion Reactions. Helvetica Chimica Acta, 2002, 85, 4468-4484.                                                                                  | 1.0 | 65        |
| 67 | Stereoselective Synthesis of 2,6-Disubstituted 3-Piperidinols:  Application to the Expedient Synthesis of<br>(+)-Julifloridine. Organic Letters, 2005, 7, 2747-2750.                                                                                                 | 2.4 | 65        |
| 68 | An expedient approach to E,Z-dienes using the Julia olefination. Tetrahedron Letters, 2001, 42, 5149-5153.                                                                                                                                                           | 0.7 | 64        |
| 69 | Electrophilic Activation of Lactams with Tf2O and Pyridine:  Expedient Synthesis of (±)-Tetraponerine<br>T4. Organic Letters, 2005, 7, 5401-5404.                                                                                                                    | 2.4 | 64        |
| 70 | Intramolecular Simmonsâ^'Smith Cyclopropanation. Studies into the Reactivity of Alkyl-Substituted<br>Zinc Carbenoids, Effect of Directing Groups and Synthesis of Bicyclo[ <i>n</i> .1.0]alkanes. Journal of<br>the American Chemical Society, 2010, 132, 1895-1902. | 6.6 | 64        |
| 71 | Enantioselective Synthesis of 1,2,3-Trisubstituted Cyclopropanes Using <i>gem</i> -Dizinc Reagents.<br>Journal of the American Chemical Society, 2009, 131, 15624-15626.                                                                                             | 6.6 | 63        |
| 72 | Acyloxymethylzinc Reagents:Â Preparation, Reactivity, and Solid-State Structure of This Novel Class of<br>Cyclopropanating Reagents. Journal of the American Chemical Society, 2001, 123, 8139-8140.                                                                 | 6.6 | 62        |

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Mild Method for the Conversion of Amides to Thioamides. Journal of Organic Chemistry, 2003, 68, 5792-5794.                                                                                                         | 1.7 | 61        |
| 74 | Diastereoselective Zinco-Cyclopropanation of Chiral Allylic Alcohols withgem-Dizinc Carbenoids.<br>Journal of the American Chemical Society, 2005, 127, 13140-13141.                                               | 6.6 | 60        |
| 75 | Convenient One-Pot Synthesis of ( <i>E</i> )-β-Aryl Vinyl Halides from Benzyl Bromides and<br>Dihalomethanes. Organic Letters, 2008, 10, 5485-5488.                                                                | 2.4 | 59        |
| 76 | Catalytic Enantioselective Synthesis of Highly Functionalized Difluoromethylated Cyclopropanes.<br>Angewandte Chemie - International Edition, 2017, 56, 13319-13323.                                               | 7.2 | 58        |
| 77 | A New Mild Method for the Cleavage of the Amide Bond: Conversion of Secondary and Tertiary Amides to Esters. Synlett, 1998, 1998, 163-165.                                                                         | 1.0 | 57        |
| 78 | Synthesis of a Triphenylphosphine Reagent on Non-Cross-Linked Polystyrene Support:  Application to<br>the Staudinger/Aza-Wittig Reaction. Organic Letters, 2000, 2, 3777-3779.                                     | 2.4 | 56        |
| 79 | Stability, Reactivity, Solution, and Solid-State Structure of Halomethylzinc Alkoxides. Journal of the American Chemical Society, 2001, 123, 12160-12167.                                                          | 6.6 | 56        |
| 80 | Preparation of a Storable Zinc Carbenoid Species and Its Application in Cyclopropanation, Chain<br>Extension, and [2,3]-Sigmatropic Rearrangement Reactions. Journal of Organic Chemistry, 2010, 75,<br>1244-1250. | 1.7 | 56        |
| 81 | First Evidence for the Formation of a Geminal Dizinc Carbenoid:  A Highly Stereoselective Synthesis of 1,2,3-Substituted Cyclopropanes. Journal of the American Chemical Society, 2002, 124, 386-387.              | 6.6 | 55        |
| 82 | Asymmetric cyclopropanation of allylic ethers: cleavage and regeneration of the chiral auxiliary.<br>Journal of Organic Chemistry, 1993, 58, 933-936.                                                              | 1.7 | 54        |
| 83 | Intramolecular Pyridine Activationâ^'Dearomatization Reaction: Highly Stereoselective Synthesis of Polysubstituted Indolizidines and Quinolizidines. Organic Letters, 2009, 11, 3398-3401.                         | 2.4 | 54        |
| 84 | Improved Zinc-Catalyzed Simmons–Smith Reaction: Access to Various 1,2,3-Trisubstituted<br>Cyclopropanes. Organic Letters, 2014, 16, 1490-1493.                                                                     | 2.4 | 54        |
| 85 | Evidence for the Structure of the Enantioactive Ligand in the Phosphine-Copper-Catalyzed Addition of<br>Diorganozinc Reagents to Imines. Angewandte Chemie - International Edition, 2004, 43, 6525-6528.           | 7.2 | 53        |
| 86 | Catalytic Enantioselective Addition of Diorganozinc Reagents to Vinyl Sulfones. Organic Letters, 2008, 10, 2315-2318.                                                                                              | 2.4 | 53        |
| 87 | Mild method for the synthesis of amidines by the electrophilic activation of amides. Tetrahedron<br>Letters, 2000, 41, 1677-1680.                                                                                  | 0.7 | 52        |
| 88 | Umpolung Direct Arylation Reactions: Facile Process Requiring Only Catalytic Palladium and<br>Substoichiometric Amount of Silver Salts. Journal of the American Chemical Society, 2010, 132,<br>14412-14414.       | 6.6 | 52        |
| 89 | Difluorocarbene Addition to Alkenes and Alkynes in Continuous Flow. Organic Letters, 2016, 18, 1988-1991.                                                                                                          | 2.4 | 52        |
| 90 | Asymmetric Synthesis of Fluoro, Fluoromethyl, Difluoromethyl, and Trifluoromethylcyclopropanes.<br>Accounts of Chemical Research, 2021, 54, 2969-2990.                                                             | 7.6 | 52        |

| #   | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | X-ray Crystal Structure of a Zinc Carbenoid Cyclopropanating Reagent:  The IZnCH2l·18-crown-6 and<br>Benzo-18-crown-6 Complexes. Journal of the American Chemical Society, 1996, 118, 6792-6793.                                                  | 6.6 | 50        |
| 92  | Diphenylsilane as a coupling reagent for amide bond formation. Green Chemistry, 2017, 19, 5060-5064.                                                                                                                                              | 4.6 | 50        |
| 93  | Enantioselective synthesis of $\hat{l}^2$ -amino alcohols and $\hat{l}\pm$ -amino acids via a copper catalyzed addition of diorganozinc reagents to N-phosphinoylimines. Tetrahedron, 2005, 61, 6186-6192.                                        | 1.0 | 48        |
| 94  | Mitsunobu Reaction Using Triphenylphosphine Linked to Non-Cross-Linked Polystyrene. Journal of Organic Chemistry, 2001, 66, 2178-2180.                                                                                                            | 1.7 | 46        |
| 95  | Tetraarylphosphonium Salts as Solubility-Control Groups: Phosphonium-Supported<br>Triphenylphosphine and Azodicarboxylate Reagents. Angewandte Chemie - International Edition, 2006,<br>45, 1415-1420.                                            | 7.2 | 46        |
| 96  | Rapid Access to 3-Aminoindazoles from Tertiary Amides. Organic Letters, 2015, 17, 3386-3389.                                                                                                                                                      | 2.4 | 45        |
| 97  | Borocyclopropanation of Styrenes Mediated by UVâ€light Under Continuous Flow Conditions.<br>Angewandte Chemie - International Edition, 2018, 57, 13514-13518.                                                                                     | 7.2 | 45        |
| 98  | Asymmetric catalytic addition of diorganozinc reagents to imines: Scope and application. Pure and Applied Chemistry, 2005, 77, 1259-1267.                                                                                                         | 0.9 | 44        |
| 99  | Synthesis and Applications of Fluorocyclopropanes. Synthesis, 2016, 48, 4060-4071.                                                                                                                                                                | 1.2 | 43        |
| 100 | Defying Ring Strain: New Approaches to Cyclopropanes. Angewandte Chemie - International Edition, 2010, 49, 486-488.                                                                                                                               | 7.2 | 42        |
| 101 | Tetraarylphosphonium Salts as Soluble Supports for the Synthesis of Small Molecules. Angewandte<br>Chemie - International Edition, 2007, 46, 5011-5014.                                                                                           | 7.2 | 41        |
| 102 | General Catalytic Enantioselective Access to Monohalomethyl and Trifluoromethyl Cyclopropanes.<br>Chemistry - A European Journal, 2018, 24, 10339-10343.                                                                                          | 1.7 | 41        |
| 103 | Highly Enantioselective Synthesis of 1,2,3â€Substituted Cyclopropanes by Using αâ€Iodo―and<br>αâ€Chloromethylzinc Carbenoids. Chemistry - A European Journal, 2012, 18, 14784-14791.                                                              | 1.7 | 40        |
| 104 | Synthesis of Fluoroâ€; Monofluoromethylâ€; Difluoromethylâ€; and Trifluoromethylâ€Substituted<br>Threeâ€Membered Rings. Chemistry - A European Journal, 2021, 27, 2935-2962.                                                                      | 1.7 | 40        |
| 105 | Enantio―and Diastereoselective Iodocyclopropanation of Allylic Alcohols by Using a Substituted Zinc<br>Carbenoid. Chemistry - A European Journal, 2009, 15, 11829-11832.                                                                          | 1.7 | 39        |
| 106 | Synthesis of Enantioenriched Allenes from 1,1-Cyclopropanediesters. Organic Letters, 2010, 12, 564-567.                                                                                                                                           | 2.4 | 39        |
| 107 | Stereoselective Syntheses of <scp>l</scp> -Pipecolic Acid and (2 <i>S</i> ,3 <i>S</i> )-3-Hydroxypipecolic<br>Acid from a Chiral <i>N</i> -Imino-2-phenyl-1,2-dihydropyridine Intermediate. Journal of Organic<br>Chemistry, 2010, 75, 2077-2080. | 1.7 | 39        |
| 108 | 9‣ilafluorenyl Dichlorides as Chemically Ligating Coupling Agents and Their Application in Peptide<br>Synthesis. Angewandte Chemie - International Edition, 2016, 55, 13833-13837.                                                                | 7.2 | 39        |

| #   | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Bis(oxazoline)·copper(I)-catalyzed enantioselective cyclopropanation of cinnamate esters with diazomethane. Tetrahedron: Asymmetry, 2003, 14, 867-872.                                                                               | 1.8 | 38        |
| 110 | Safe and Facile Access to Nonstabilized Diazoalkanes Using Continuous Flow Technology. Angewandte<br>Chemie - International Edition, 2018, 57, 5777-5782.                                                                            | 7.2 | 37        |
| 111 | Diastereoselective Synthesis of 1,2,3-Substituted Potassium Cyclopropyl Trifluoroborates via an<br>Unusual Zinc-Boron Exchange. Synlett, 2005, 2005, 1779-1782.                                                                      | 1.0 | 36        |
| 112 | Use of achiral additives to increase the stereoselectivity in Rh(ii)-catalyzed cyclopropanations.<br>Chemical Communications, 2010, 46, 910.                                                                                         | 2.2 | 36        |
| 113 | Access to Cyclopropyl-Fused Azacycles via a Palladium-Catalyzed Direct Alkenylation Strategy. Organic<br>Letters, 2016, 18, 6046-6049.                                                                                               | 2.4 | 36        |
| 114 | Removal, Recovery, and Recycling of Triarylphosphonium-Supported Tin Reagents for Various Organic<br>Transformations. Organic Letters, 2007, 9, 3591-3594.                                                                           | 2.4 | 35        |
| 115 | [4+2] Cycloaddition of 2-Substituted 1,2-Dihydropyridines with Nitrosobenzene:Â Asymmetric Synthesis<br>oftrans-2-Substituted 3-Amino-1,2,3,6-tetrahydropyridines. Journal of Organic Chemistry, 2005, 70,<br>2368-2371.             | 1.7 | 34        |
| 116 | Stereoselective Synthesis of 2,3,6-Trisubstituted Tetrahydropyridines via Tf <sub>2</sub> O-Mediated<br>Grob Fragmentation: Access to Indolizidines (â^')-2091 and (â^')-223J. Journal of Organic Chemistry, 2010,<br>75, 7465-7467. | 1.7 | 34        |
| 117 | Palladium-catalyzed ring-opening of cyclopropyl benzamides: synthesis of benzo[c]azepine-1-ones via<br>C(sp3)–H functionalization. Tetrahedron, 2013, 69, 4479-4487.                                                                 | 1.0 | 34        |
| 118 | Rhodium-Catalyzed Cyclopropanation of Fluorinated Olefins: A Straightforward Route to Highly<br>Functionalized Fluorocyclopropanes. Organic Letters, 2015, 17, 1790-1793.                                                            | 2.4 | 34        |
| 119 | Continuous Flow Synthesis and Purification of Aryldiazomethanes through Hydrazone<br>Fragmentation. Angewandte Chemie - International Edition, 2017, 56, 837-841.                                                                    | 7.2 | 33        |
| 120 | General C–H Arylation Strategy for the Synthesis of Tunable Visible Light-Emitting<br>Benzo[ <i>a</i> ]imidazo[2,1,5- <i>c</i> , <i>d</i> ]indolizine Fluorophores. Journal of Organic Chemistry,<br>2017, 82, 5046-5067.            | 1.7 | 32        |
| 121 | The use of $\hat{I}_{\pm}$ -d-glucopyranosides as surrogates for the $\hat{I}^2$ -l-glucopyranosides in the stereoselective cyclopropanation reaction. Tetrahedron Letters, 1994, 35, 513-516.                                       | 0.7 | 31        |
| 122 | Catalytic asymmetric synthesis of nitrocyclopropane carboxylates. Tetrahedron, 2012, 68, 3487-3496.                                                                                                                                  | 1.0 | 31        |
| 123 | Noyori–Ikariya catalyst supported on tetra-arylphosphonium salt for asymmetric transfer<br>hydrogenation in water. Green Chemistry, 2015, 17, 3255-3259.                                                                             | 4.6 | 31        |
| 124 | The use of 1,2-trans-cyclohexanediol as an efficient chiral auxiliary for the asymmetric cyclopropanation of allylic ethers. Tetrahedron Letters, 1993, 34, 7157-7160.                                                               | 0.7 | 29        |
| 125 | Highly Efficient Two-Step Synthesis of C-sp3-Centered Geminal Diiodides. Organic Letters, 2004, 6, 4731-4734.                                                                                                                        | 2.4 | 29        |
| 126 | Catalytic Enantioselective Cyclopropanation of α-Fluoroacrylates: An Experimental and Theoretical<br>Study. ACS Catalysis, 2019, 9, 2594-2598.                                                                                       | 5.5 | 29        |

| #   | Article                                                                                                                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Cyclopropanation of Protected Chiral, Acyclic Allylic Alcohols:  Expedient Access to the anti-Cyclopropylcarbinol Derivatives. Organic Letters, 2002, 4, 3351-3353.                            | 2.4 | 28        |
| 128 | Mechanismâ€Driven Elaboration of an Enantioselective Bromocyclopropanation Reaction of Allylic<br>Alcohols. Angewandte Chemie - International Edition, 2015, 54, 14108-14112.                  | 7.2 | 28        |
| 129 | Cyclopropanation Reactions of Semi-stabilized and Non-stabilized Diazo Compounds. Synthesis, 2019, 51, 3947-3963.                                                                              | 1.2 | 28        |
| 130 | Enantioselective Synthesis of Spiropentanes from Hydroxymethylallenes. Organic Letters, 2001, 3, 3293-3295.                                                                                    | 2.4 | 27        |
| 131 | Improved Procedure for the Synthesis of <i>gem-</i> Diiodoalkanes by the Alkylation of<br>Diiodomethane. Scope and Limitations. Journal of Organic Chemistry, 2008, 73, 8097-8100.             | 1.7 | 27        |
| 132 | Silver Ion-Induced Grob Fragmentation of γ-Amino Iodides: Highly Stereoselective Synthesis of Polysubstituted Piperidines. Organic Letters, 2008, 10, 5497-5499.                               | 2.4 | 27        |
| 133 | Tetraarylphosphonium Salts as Soluble Supports for Oxidative Catalysts and Reagents. Journal of Organic Chemistry, 2009, 74, 8510-8515.                                                        | 1.7 | 27        |
| 134 | Directed functionalization of 1,2-dihydropyridines: stereoselective synthesis of 2,6-disubstituted piperidines. Chemical Communications, 2014, 50, 6883-6885.                                  | 2.2 | 27        |
| 135 | Diastereoselective Fluorocyclopropanation of Chiral Allylic Alcohols Using an<br>α-Fluoroiodomethylzinc Carbenoid. Organic Letters, 2015, 17, 4288-4291.                                       | 2.4 | 27        |
| 136 | Synthesis of 3-Aminoimidazo[1,2- <i>a</i> ]pyridines from α-Aminopyridinyl Amides. Journal of Organic<br>Chemistry, 2016, 81, 10348-10356.                                                     | 1.7 | 27        |
| 137 | New Methodology Toward Chiral, Non-Racemic 2,5-cis-Substituted Piperidines via Suzuki<br>Cross-Coupling. Organic Letters, 2006, 8, 3955-3957.                                                  | 2.4 | 26        |
| 138 | Dual Role of Silanol Groups in Cyclopropanation and Hiyamaâ^Denmark Cross-Coupling Reactions.<br>Organic Letters, 2010, 12, 1348-1351.                                                         | 2.4 | 25        |
| 139 | Catalytic Enantioselective Synthesis of Halocyclopropanes. Chemistry - A European Journal, 2016, 22, 6239-6242.                                                                                | 1.7 | 25        |
| 140 | Iron-catalyzed synthesis of cyclopropanes by <i>in situ</i> generation and decomposition of electronically diversified diazo compounds. Chemical Communications, 2018, 54, 13256-13259.        | 2.2 | 25        |
| 141 | New methods in asymmetric catalysis based on new hemi-labile bidentate ligands. Pure and Applied<br>Chemistry, 2008, 80, 881-890.                                                              | 0.9 | 24        |
| 142 | Grob Fragmentation of 2-Azabicyclo[2.2.2]oct-7-ene: Tool for the Stereoselective Synthesis of Polysubstituted Piperidines. Journal of Organic Chemistry, 2012, 77, 5832-5837.                  | 1.7 | 24        |
| 143 | The stereoselective cyclopropanation of chiral allylic alcohols using a chiral dioxaborolane ligand:<br>A new route to anti-cyclopropylmethanol derivatives. Tetrahedron, 1999, 55, 8845-8856. | 1.0 | 21        |
| 144 | Cyclopropanation of Allylic Alcohols using Substituted Haloalkylzinc Reagents: Synthesis of gem-Dimethylcyclopropanes. Synlett, 2002, 2002, 0176-0178.                                         | 1.0 | 21        |

| #   | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Non-stabilized diazoalkane synthesis <i>via</i> the oxidation of free hydrazones by iodosylbenzene<br>and application in <i>in situ</i> MIRC cyclopropanation. Chemical Science, 2019, 10, 3802-3806.                           | 3.7 | 21        |
| 146 | Photoinduced alkyl group exchange of ethylzinc alkoxides: X-ray crystal structure of an iodomethylzinc methoxide. Chemical Communications, 2002, , 466.                                                                         | 2.2 | 20        |
| 147 | One-Pot Synthesis of 1-lodoalkynes and Trisubstituted Alkenes from Benzylic and Allylic Bromides.<br>Organic Letters, 2012, 14, 5464-5467.                                                                                      | 2.4 | 20        |
| 148 | Engineered, highly reactive substrates of microbial transglutaminase enable protein labeling within various secondary structure elements. Protein Science, 2017, 26, 2268-2279.                                                 | 3.1 | 20        |
| 149 | Improved Protocol for the Diastereoselective Cyclopropanation of Alkenes using Geminal Dizinc<br>Carbenoids: A Study on the Effect of Zinc Iodide. European Journal of Organic Chemistry, 2004, 2004,<br>1401-1404.             | 1.2 | 19        |
| 150 | Tetraarylphosphonium-Supported Carbodiimide Reagents:  Synthesis, Structure Optimization and<br>Applications. Journal of Organic Chemistry, 2008, 73, 2542-2547.                                                                | 1.7 | 19        |
| 151 | Phosphonium supported triphenylphosphine reagent: an improved access to α-fluoro-α,β-unsaturated esters. Tetrahedron Letters, 2006, 47, 7931-7933.                                                                              | 0.7 | 18        |
| 152 | Stereoselective synthesis of N-heterocycles: application of the asymmetric Cu-catalyzed addition of Et2Zn to functionalized alkyl and aryl imines. Tetrahedron, 2009, 65, 4968-4976.                                            | 1.0 | 18        |
| 153 | Direct Arylation of Imidazo[1,5â€ <i>a</i> ]azines Through Ruthenium and Palladium Catalysis. European<br>Journal of Organic Chemistry, 2015, 2015, 67-71.                                                                      | 1.2 | 18        |
| 154 | Catalytic Enantioselective Synthesis of Highly Functionalized Difluoromethylated Cyclopropanes.<br>Angewandte Chemie, 2017, 129, 13504-13508.                                                                                   | 1.6 | 18        |
| 155 | Diastereo―und enantioselektive Synthese von 1,2,3â€substituierten Cyclopropanen mit Zinkcarbenoiden.<br>Angewandte Chemie, 1997, 109, 1163-1165.                                                                                | 1.6 | 16        |
| 156 | Reinvestigation of the chemoselective cyclopropanation of allylic alcohols, allylic ethers and<br>alkenes: a comparison between various reagents and protocols. Journal of Organometallic Chemistry,<br>2001, 617-618, 702-708. | 0.8 | 16        |
| 157 | Utilization of BozPhos as an Effective Ligand in Enantioselective C–H Functionalization of<br>Cyclopropanes: Synthesis of Dihydroisoquinolones and Dihydroquinolones. Organic Letters, 2019, 21,<br>2639-2644.                  | 2.4 | 15        |
| 158 | Intramolecular sp <sup>3</sup> Functionalization of Cyclopropyl α-Amino Acid-Derived Benzamides.<br>Journal of Organic Chemistry, 2016, 81, 256-264.                                                                            | 1.7 | 13        |
| 159 | Rhodium catalysed enantioselective synthesis of mono-(halo)-methyl-cyclopropanes. Organic and<br>Biomolecular Chemistry, 2019, 17, 472-476.                                                                                     | 1.5 | 13        |
| 160 | Spectroscopic characterization of (diiodomethyl)zinc iodide: application to the stereoselective synthesis and functionalization of iodocyclopropanes. Chemical Communications, 2017, 53, 9606-9609.                             | 2.2 | 12        |
| 161 | Catalytic Asymmetric Synthesis of α,α-Difluoromethylated and α-Fluoromethylated Tertiary Alcohols.<br>Organic Letters, 2019, 21, 7509-7513.                                                                                     | 2.4 | 11        |
| 162 | Continuous Flow Synthesis and Purification of Aryldiazomethanes through Hydrazone<br>Fragmentation. Angewandte Chemie, 2017, 129, 855-859.                                                                                      | 1.6 | 9         |

| #   | Article                                                                                                                                                                                             | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | Practical Synthesis of Ethyl 3-Fluoro-1-pyrrole-2-carboxylate: A Key Fragment of a Potent Drug<br>Candidate against Hepatitis B Virus. Organic Process Research and Development, 2020, 24, 792-801. | 1.3  | 9         |
| 164 | Cyclopropanation Mediated by Zinc Organometallics. , 0, , 237-286.                                                                                                                                  |      | 8         |
| 165 | Highly Regioselective Intermolecular Arylation of 1,2,3,4-Tetrahydropyridines. Organic Letters, 2008, 10, 4791-4794.                                                                                | 2.4  | 8         |
| 166 | Catalytic C–H Bond Functionalization of Cyclopropane Derivatives. Topics in Organometallic<br>Chemistry, 2015, , 91-113.                                                                            | 0.7  | 8         |
| 167 | 9â€Silafluorenyl Dichlorides as Chemically Ligating Coupling Agents and Their Application in Peptide<br>Synthesis. Angewandte Chemie, 2016, 128, 14037-14041.                                       | 1.6  | 8         |
| 168 | Continuous Flow Chlorination of Alkenyl Iodides Promoted by Copper Tubing. Synthesis, 2019, 51, 251-257.                                                                                            | 1.2  | 8         |
| 169 | Evidence for the Structure of the Enantioactive Ligand in the Phosphine-Copper-Catalyzed Addition of Diorganozinc Reagents to Imines. Angewandte Chemie, 2004, 116, 6687-6690.                      | 1.6  | 7         |
| 170 | Microwave-assisted hydrolysis: efficient synthesis of α-substituted cysteines on multi-gram scale. RSC<br>Advances, 2012, 2, 5502.                                                                  | 1.7  | 7         |
| 171 | Borocyclopropanation of Styrenes Mediated by UVâ€light Under Continuous Flow Conditions.<br>Angewandte Chemie, 2018, 130, 13702-13706.                                                              | 1.6  | 7         |
| 172 | Stereoselective Formation of Amines by Nucleophilic Addition to Azomethine Derivatives. Topics in Current Chemistry, 2013, 343, 33-73.                                                              | 4.0  | 6         |
| 173 | Synthesis of fluorocyclopropanes via the enantioselective cyclopropanation of fluoro-substituted allylic alcohols using zinc carbenoids. Canadian Journal of Chemistry, 2020, 98, 516-523.          | 0.6  | 5         |
| 174 | Process Intensive Synthesis of Propofol Enabled by Continuous Flow Chemistry. Organic Process<br>Research and Development, 2022, 26, 2330-2336.                                                     | 1.3  | 5         |
| 175 | Short cuts to complexity. Nature, 2008, 456, 452-453.                                                                                                                                               | 13.7 | 4         |
| 176 | Safe and Facile Access to Nonstabilized Diazoalkanes Using Continuous Flow Technology. Angewandte<br>Chemie, 2018, 130, 5879-5884.                                                                  | 1.6  | 4         |
| 177 | Fluorocyclopropane-Containing Proline Analogue: Synthesis and Conformation of an Item in the<br>Peptide Chemist's Toolbox. ACS Omega, 2022, 7, 4868-4878.                                           | 1.6  | 4         |
| 178 | Spectroscopic Characterization of Heterohalogenic Dihalomethylzinc Carbenoids: Application to a More Efficient Chlorocyclopropanation Reaction. Organometallics, 2022, 41, 83-92.                   | 1.1  | 4         |
| 179 | Catalytic Asymmetric Syntheses of Alkylidenecyclopropanes from Allenoates with Donorâ€Acceptor and Diacceptor Diazo Reagents. Chemistry - A European Journal, 2022, 28, .                           | 1.7  | 3         |
| 180 | Enantioselective Synthesis of cis- and trans-Borocyclopropylmethanol: Simple Building Blocks To<br>Access Heterocycle-Substituted Cyclopropylmethanols. Synthesis, 2019, 51, 3834-3846.             | 1.2  | 1         |

| #   | Article                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Implementing flow chemistry in education: the NSERC CREATE program in continuous flow science.<br>Journal of Flow Chemistry, 2021, 11, 13-17.                                 | 1.2 | 1         |
| 182 | Access to hexahydroazepinone heterocycles <i>via</i> palladium-catalysed C(sp <sup>3</sup> )–H<br>alkenylation/ring-opening of cyclopropanes. Chemical Communications, 0, , . | 2.2 | 1         |
| 183 | Cyclopropanation of Protected Chiral Acyclic Allylic Alcohols: Expedient Access to the anti-Cyclopropylcarbinol Derivatives ChemInform, 2003, 34, no.                         | 0.1 | Ο         |
| 184 | Bis(oxazoline)×Copper(I)-Catalyzed Enantioselective Cyclopropanation of Cinnamate Esters with<br>Diazomethane ChemInform, 2003, 34, no.                                       | 0.1 | 0         |
| 185 | Mild Method for the Conversion of Amides to Thioamides ChemInform, 2003, 34, no.                                                                                              | 0.1 | 0         |
| 186 | Frontispiece: Recent Progress Toward the Synthesis of Trifluoromethyl―and<br>Difluoromethylâ€&ubstituted Cyclopropanes. Chemistry - A European Journal, 2017, 23, .           | 1.7 | 0         |
| 187 | Correction to "Access to Cyclopropyl-Fused Azacycles via a Palladium-Catalyzed Direct Alkenylation<br>Strategy― Organic Letters, 0, , .                                       | 2.4 | 0         |