
J R Gruesbeck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2977204/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Properties of Electron Distributions in the Martian Space Environment. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	1
2	A Fast Bow Shock Location Predictorâ€Estimator From 2D and 3D Analytical Models: Application to Mars and the MAVEN Mission. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	6
3	A Twoâ€Spacecraft Study of Mars' Induced Magnetosphere's Response to Upstream Conditions. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	2
4	The Influence of Crustal Magnetic Fields on the Martian Bow Shock Location: A Statistical Analysis of MAVEN and Mars Express Observations. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	5
5	The Drivers of the Martian Bow Shock Location: A Statistical Analysis of Mars Atmosphere and Volatile EvolutioN and Mars Express Observations. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	14
6	A Statistical Investigation of Factors Influencing the Magnetotail Twist at Mars. Geophysical Research Letters, 2022, 49, .	1.5	14
7	Crossâ€Shock Electrostatic Potentials at Mars Inferred From MAVEN Measurements. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA029064.	0.8	6
8	Observations of Energized Electrons in the Martian Magnetosheath. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028984.	0.8	6
9	A magnetotelluric instrument for probing the interiors of Europa and other worlds. Advances in Space Research, 2021, 68, 2022-2037.	1.2	9
10	On the Growth and Development of Non‣inear Kelvin–Helmholtz Instability at Mars: MAVEN Observations. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029224.	0.8	9
11	Variability of Upstream Proton Cyclotron Wave Properties and Occurrence at Mars Observed by MAVEN. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028616.	0.8	13
12	Kinetic‣cale Turbulence in the Venusian Magnetosheath. Geophysical Research Letters, 2021, 48, e2020GL090783.	1.5	11
13	A Generalized Magnetospheric Disturbance Index: Initial Application to Mars Using MAVEN Observations. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029479.	0.8	2
14	Plasma Waves in the Distant Martian Environment: Implications for Mars' Sphere of Influence. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029686.	0.8	2
15	A <i>K</i> â€Means Clustering Analysis of the Jovian and Terrestrial Magnetopauses: A Technique to Classify Global Magnetospheric Behavior. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006366.	1.5	4
16	The Magnetic Structure of the Subsolar MPB Current Layer From MAVEN Observations: Implications for the Hall Electric Force. Geophysical Research Letters, 2020, 47, e2020GL089230.	1.5	6
17	A Merged Search oil and Fluxgate Magnetometer Data Product for Parker Solar Probe FIELDS. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027813.	0.8	31
18	Variability of the Solar Wind Flow Asymmetry in the Martian Magnetosheath Observed by MAVEN. Geophysical Research Letters, 2020, 47, .	1.5	9

J R GRUESBECK

#	Article	IF	CITATIONS
19	The Modulation of Solar Wind Hydrogen Deposition in the Martian Atmosphere by Foreshock Phenomena. Journal of Geophysical Research: Space Physics, 2019, 124, 7086-7097.	0.8	9
20	Recovery Timescales of the Dayside Martian Magnetosphere to IMF Variability. Geophysical Research Letters, 2019, 46, 10977-10986.	1.5	15
21	MAVEN Case Studies of Plasma Dynamics in Lowâ€Altitude Crustal Magnetic Field at Mars 1: Dayside Ion Spikes Associated With Radial Crustal Magnetic Fields. Journal of Geophysical Research: Space Physics, 2019, 124, 1239-1261.	0.8	6
22	Autocorrelation Study of Solar Wind Plasma and IMF Properties as Measured by the MAVEN Spacecraft. Journal of Geophysical Research: Space Physics, 2018, 123, 2493-2512.	0.8	26
23	The Threeâ€Dimensional Bow Shock of Mars as Observed by MAVEN. Journal of Geophysical Research: Space Physics, 2018, 123, 4542-4555.	0.8	40
24	Loss of the Martian atmosphere to space: Present-day loss rates determined from MAVEN observations and integrated loss through time. Icarus, 2018, 315, 146-157.	1.1	216
25	The Twisted Configuration of the Martian Magnetotail: MAVEN Observations. Geophysical Research Letters, 2018, 45, 4559-4568.	1.5	66
26	MAVEN observations of the solar cycle 24 space weather conditions at Mars. Journal of Geophysical Research: Space Physics, 2017, 122, 2768-2794.	0.8	78
27	Martian magnetic storms. Journal of Geophysical Research: Space Physics, 2017, 122, 6185-6209.	0.8	40
28	MAVEN observations of tail current sheet flapping at Mars. Journal of Geophysical Research: Space Physics, 2017, 122, 4308-4324.	0.8	37
29	Statistical Study of Relations Between the Induced Magnetosphere, Ion Composition, and Pressure Balance Boundaries Around Mars Based On MAVEN Observations. Journal of Geophysical Research: Space Physics, 2017, 122, 9723-9737.	0.8	44
30	The interplanetary magnetic field observed by Juno enroute to Jupiter. Geophysical Research Letters, 2017, 44, 5936-5942.	1.5	7
31	Magnetotail dynamics at Mars: Initial MAVEN observations. Geophysical Research Letters, 2015, 42, 8828-8837.	1.5	52
32	First results of the <scp>MAVEN</scp> magnetic field investigation. Geophysical Research Letters, 2015, 42, 8819-8827.	1.5	102
33	A comet engulfs Mars: MAVEN observations of comet Siding Spring's influence on the Martian magnetosphere. Geophysical Research Letters, 2015, 42, 8810-8818.	1.5	8
34	EVIDENCE FOR LOCAL ACCELERATION OF SUPRATHERMAL HEAVY ION OBSERVATIONS DURING INTERPLANETARY CORONAL MASS EJECTIONS. Astrophysical Journal, 2015, 799, 57.	1.6	4
35	The in-situ manifestation of solar prominence material. Proceedings of the International Astronomical Union, 2013, 8, 289-296.	0.0	1
36	CARBON IONIZATION STAGES AS A DIAGNOSTIC OF THE SOLAR WIND. Astrophysical Journal, 2012, 744, 100.	1.6	66

J R GRUESBECK

#	Article	IF	CITATIONS
37	A GLOBAL TWO-TEMPERATURE CORONA AND INNER HELIOSPHERE MODEL: A COMPREHENSIVE VALIDATION STUDY. Astrophysical Journal, 2012, 745, 6.	1.6	55
38	TWO-PLASMA MODEL FOR LOW CHARGE STATE INTERPLANETARY CORONAL MASS EJECTION OBSERVATIONS. Astrophysical Journal, 2012, 760, 141.	1.6	32
39	Sources of Solar Wind at Solar Minimum: Constraints from Composition Data. Space Science Reviews, 2012, 172, 41-55.	3.7	20
40	CHARGE STATE EVOLUTION IN THE SOLAR WIND. RADIATIVE LOSSES IN FAST SOLAR WIND PLASMAS. Astrophysical Journal Letters, 2012, 758, L21.	3.0	14
41	NEW SOLAR WIND DIAGNOSTIC USING BOTH IN SITU AND SPECTROSCOPIC MEASUREMENTS. Astrophysical Journal, 2012, 750, 159.	1.6	34
42	Sources of Solar Wind at Solar Minimum: Constraints from Composition Data. Space Sciences Series of ISSI, 2012, , 41-55.	0.0	0
43	CONSTRAINTS ON CORONAL MASS EJECTION EVOLUTION FROM IN SITU OBSERVATIONS OF IONIC CHARGE STATES. Astrophysical Journal, 2011, 730, 103.	1.6	69