Kang Ryoung Park

List of Publications by Citations

Source: https://exaly.com/author-pdf/2976710/kang-ryoung-park-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

165 papers

3,074 citations

30 h-index

45 g-index

170 ext. papers

4,130 ext. citations

3.7 avg, IF

5.99 L-index

#	Paper	IF	Citations
165	Finger vein recognition using minutia-based alignment and local binary pattern-based feature extraction. <i>International Journal of Imaging Systems and Technology</i> , 2009 , 19, 179-186	2.5	160
164	Person Recognition System Based on a Combination of Body Images from Visible Light and Thermal Cameras. <i>Sensors</i> , 2017 , 17,	3.8	137
163	Detecting driver drowsiness using feature-level fusion and user-specific classification. <i>Expert Systems With Applications</i> , 2014 , 41, 1139-1152	7.8	97
162	Convolutional Neural Network-Based Finger-Vein Recognition Using NIR Image Sensors. <i>Sensors</i> , 2017 , 17,	3.8	82
161	Real-Time Gaze Estimator Based on Driver's Head Orientation for Forward Collision Warning System. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2011 , 12, 254-267	6.1	80
160	Image restoration of skin scattering and optical blurring for finger vein recognition. <i>Optics and Lasers in Engineering</i> , 2011 , 49, 816-828	4.6	69
159	A robust eyelash detection based on iris focus assessment. <i>Pattern Recognition Letters</i> , 2007 , 28, 1630-	1 <u>6</u> 3 9	61
158	IrisDenseNet: Robust Iris Segmentation Using Densely Connected Fully Convolutional Networks in the Images by Visible Light and Near-Infrared Light Camera Sensors. <i>Sensors</i> , 2018 , 18,	3.8	60
157	A brain-computer interface method combined with eye tracking for 3D interaction. <i>Journal of Neuroscience Methods</i> , 2010 , 190, 289-98	3	57
156	The comparative measurements of eyestrain caused by 2D and 3D displays. <i>IEEE Transactions on Consumer Electronics</i> , 2010 , 56, 1677-1683	4.8	55
155	Deep Learning-Based Gaze Detection System for Automobile Drivers Using a NIR Camera Sensor. <i>Sensors</i> , 2018 , 18,	3.8	54
154	Combining Deep and Handcrafted Image Features for Presentation Attack Detection in Face Recognition Systems Using Visible-Light Camera Sensors. <i>Sensors</i> , 2018 , 18,	3.8	52
153	Face liveness detection based on texture and frequency analyses 2012,		52
152	Multimodal Biometric Recognition Based on Convolutional Neural Network by the Fusion of Finger-Vein and Finger Shape Using Near-Infrared (NIR) Camera Sensor. <i>Sensors</i> , 2018 , 18,	3.8	51
151	New iris recognition method for noisy iris images. <i>Pattern Recognition Letters</i> , 2012 , 33, 991-999	4.7	51
150	3D gaze tracking method using Purkinje images on eye optical model and pupil. <i>Optics and Lasers in Engineering</i> , 2012 , 50, 736-751	4.6	48
149	Effective Diagnosis and Treatment through Content-Based Medical Image Retrieval (CBMIR) by Using Artificial Intelligence. <i>Journal of Clinical Medicine</i> , 2019 , 8,	5.1	44

(2019-2020)

148	Artificial Intelligence-Based Mitosis Detection in Breast Cancer Histopathology Images Using Faster R-CNN and Deep CNNs. <i>Journal of Clinical Medicine</i> , 2020 , 9,	5.1	43
147	Finger-vein image enhancement using a fuzzy-based fusion method with Gabor and Retinex filtering. <i>Sensors</i> , 2014 , 14, 3095-129	3.8	42
146	Gaze tracking system at a distance for controlling IPTV. <i>IEEE Transactions on Consumer Electronics</i> , 2010 , 56, 2577-2583	4.8	42
145	. IEEE Access, 2019 , 7, 66845-66863	3.5	39
144	Pedestrian detection based on faster R-CNN in nighttime by fusing deep convolutional features of successive images. <i>Expert Systems With Applications</i> , 2018 , 114, 15-33	7.8	39
143	FRED-Net: Fully residual encoderflecoder network for accurate iris segmentation. <i>Expert Systems With Applications</i> , 2019 , 122, 217-241	7.8	39
142	Assessment of eye fatigue caused by 3D displays based on multimodal measurements. <i>Sensors</i> , 2014 , 14, 16467-85	3.8	36
141	Finger vein recognition using weighted local binary pattern code based on a support vector machine. <i>Journal of Zhejiang University: Science C</i> , 2010 , 11, 514-524		36
140	Robust pedestrian detection by combining visible and thermal infrared cameras. Sensors, 2015, 15, 105	589 . % 15	34
139	Fuzzy system based human behavior recognition by combining behavior prediction and recognition. <i>Expert Systems With Applications</i> , 2017 , 81, 108-133	7.8	33
138	A Study of Deep CNN-Based Classification of Open and Closed Eyes Using a Visible Light Camera Sensor. <i>Sensors</i> , 2017 , 17,	3.8	33
137	Convolutional Neural Network-Based Human Detection in Nighttime Images Using Visible Light Camera Sensors. <i>Sensors</i> , 2017 , 17,	3.8	32
136	Aiding the Diagnosis of Diabetic and Hypertensive Retinopathy Using Artificial Intelligence-Based Semantic Segmentation. <i>Journal of Clinical Medicine</i> , 2019 , 8,	5.1	30
135	Human detection based on the generation of a background image by using a far-infrared light camera. <i>Sensors</i> , 2015 , 15, 6763-88	3.8	30
134	A study on eyelid localization considering image focus for iris recognition. <i>Pattern Recognition Letters</i> , 2008 , 29, 1698-1704	4.7	29
133	Ultrasound Image-Based Diagnosis of Malignant Thyroid Nodule Using Artificial Intelligence. <i>Sensors</i> , 2020 , 20,	3.8	29
132	A realistic game system using multi-modal user interfaces. <i>IEEE Transactions on Consumer Electronics</i> , 2010 , 56, 1364-1372	4.8	28
131	Conditional Generative Adversarial Network- Based Data Augmentation for Enhancement of Iris Recognition Accuracy. <i>IEEE Access</i> , 2019 , 7, 122134-122152	3.5	26

130	Artificial Intelligence-Based Classification of Multiple Gastrointestinal Diseases Using Endoscopy Videos for Clinical Diagnosis. <i>Journal of Clinical Medicine</i> , 2019 , 8,	5.1	26
129	LightDenseYOLO: A Fast and Accurate Marker Tracker for Autonomous UAV Landing by Visible Light Camera Sensor on Drone. <i>Sensors</i> , 2018 , 18,	3.8	25
128	A robust gaze detection method by compensating for facial movements based on corneal specularities. <i>Pattern Recognition Letters</i> , 2008 , 29, 1474-1485	4.7	25
127	A robust eye gaze tracking method based on a virtual eyeball model. <i>Machine Vision and Applications</i> , 2009 , 20, 319-337	2.8	24
126	Gender Recognition from Human-Body Images Using Visible-Light and Thermal Camera Videos Based on a Convolutional Neural Network for Image Feature Extraction. <i>Sensors</i> , 2017 , 17,	3.8	23
125	Road Lane Detection Robust to Shadows Based on a Fuzzy System Using a Visible Light Camera Sensor. <i>Sensors</i> , 2017 , 17,	3.8	23
124	Road Lane Detection by Discriminating Dashed and Solid Road Lanes Using a Visible Light Camera Sensor. <i>Sensors</i> , 2016 , 16,	3.8	23
123	Deep Learning-Based Enhanced Presentation Attack Detection for Iris Recognition by Combining Features from Local and Global Regions Based on NIR Camera Sensor. <i>Sensors</i> , 2018 , 18,	3.8	23
122	A Survey on Banknote Recognition Methods by Various Sensors. Sensors, 2017, 17,	3.8	22
121	Convolutional Neural Network-Based Classification of Driver's Emotion during Aggressive and Smooth Driving Using Multi-Modal Camera Sensors. <i>Sensors</i> , 2018 , 18,	3.8	22
120	Artificial Intelligence-Based Thyroid Nodule Classification Using Information from Spatial and Frequency Domains. <i>Journal of Clinical Medicine</i> , 2019 , 8,	5.1	22
119	Gait-Based Human Identification by Combining Shallow Convolutional Neural Network-Stacked Long Short-Term Memory and Deep Convolutional Neural Network. <i>IEEE Access</i> , 2018 , 6, 63164-63186	3.5	22
118	Remote Marker-Based Tracking for UAV Landing Using Visible-Light Camera Sensor. <i>Sensors</i> , 2017 , 17,	3.8	21
117	Spoof Detection for Finger-Vein Recognition System Using NIR Camera. Sensors, 2017, 17,	3.8	21
116	Remote gaze tracking system on a large display. Sensors, 2013, 13, 13439-63	3.8	21
115	Face Detection in Nighttime Images Using Visible-Light Camera Sensors with Two-Step Faster Region-Based Convolutional Neural Network. <i>Sensors</i> , 2018 , 18,	3.8	21
114	Person Re-Identification Between Visible and Thermal Camera Images Based on Deep Residual CNN Using Single Input. <i>IEEE Access</i> , 2019 , 7, 57972-57984	3.5	20
113	Body-movement-based human identification using convolutional neural network. <i>Expert Systems With Applications</i> , 2018 , 101, 56-77	7.8	20

112	Convolutional Neural Network-Based Shadow Detection in Images Using Visible Light Camera Sensor. <i>Sensors</i> , 2018 , 18,	3.8	20
111	Evaluation of Fear Using Nonintrusive Measurement of Multimodal Sensors. <i>Sensors</i> , 2015 , 15, 17507-3	33.8	20
110	Recognition of Damaged Arrow-Road Markings by Visible Light Camera Sensor Based on Convolutional Neural Network. <i>Sensors</i> , 2016 , 16,	3.8	20
109	Nonintrusive Finger-Vein Recognition System Using NIR Image Sensor and Accuracy Analyses According to Various Factors. <i>Sensors</i> , 2015 , 15, 16866-94	3.8	19
108	Comparative study of human age estimation with or without preclassification of gender and facial expression. <i>Scientific World Journal, The</i> , 2014 , 2014, 905269	2.2	19
107	Fake iris detection based on 3D structure of iris pattern. <i>International Journal of Imaging Systems and Technology</i> , 2010 , 20, 162-166	2.5	19
106	Artificial Intelligence-Based Diagnosis of Cardiac and Related Diseases. <i>Journal of Clinical Medicine</i> , 2020 , 9,	5.1	18
105	Face recognition system for set-top box-based intelligent TV. Sensors, 2014 , 14, 21726-49	3.8	18
104	Quantitative measurement of eyestrain on 3D stereoscopic display considering the eye foveation model and edge information. <i>Sensors</i> , 2014 , 14, 8577-604	3.8	18
103	Enhanced Detection and Recognition of Road Markings Based on Adaptive Region of Interest and Deep Learning. <i>IEEE Access</i> , 2019 , 7, 109817-109832	3.5	17
102	Human Detection Based on the Generation of a Background Image and Fuzzy System by Using a Thermal Camera. <i>Sensors</i> , 2016 , 16, 453	3.8	17
101	OR-Skip-Net: Outer residual skip network for skin segmentation in non-ideal situations. <i>Expert Systems With Applications</i> , 2020 , 141, 112922	7.8	17
100	Deep Learning-Based Super-Resolution Reconstruction and Marker Detection for Drone Landing. <i>IEEE Access</i> , 2019 , 7, 61639-61655	3.5	16
99	Deep Residual CNN-Based Ocular Recognition Based on Rough Pupil Detection in the Images by NIR Camera Sensor. <i>Sensors</i> , 2019 , 19,	3.8	16
98	Body-Based Gender Recognition Using Images from Visible and Thermal Cameras. <i>Sensors</i> , 2016 , 16, 156	3.8	16
97	New computer interface combining gaze tracking and brainwave measurements. <i>IEEE Transactions on Consumer Electronics</i> , 2011 , 57, 1646-1651	4.8	15
96	Robust Behavior Recognition in Intelligent Surveillance Environments. Sensors, 2016, 16,	3.8	15
95	Action Recognition From Thermal Videos. <i>IEEE Access</i> , 2019 , 7, 103893-103917	3.5	14

94	Human Age Estimation Method Robust to Camera Sensor and/or Face Movement. <i>Sensors</i> , 2015 , 15, 21898-930	3.8	14
93	Presentation Attack Detection for Iris Recognition System Using NIR Camera Sensor. <i>Sensors</i> , 2018 , 18,	3.8	13
92	Pedestrian Detection Based on Adaptive Selection of Visible Light or Far-Infrared Light Camera Image by Fuzzy Inference System and Convolutional Neural Network-Based Verification. <i>Sensors</i> , 2017 , 17,	3.8	13
91	A novel gaze tracking method based on the generation of virtual calibration points. <i>Sensors</i> , 2013 , 13, 10802-22	3.8	13
90	Deep RetinaNet-Based Detection and Classification of Road Markings by Visible Light Camera Sensors. <i>Sensors</i> , 2019 , 19,	3.8	12
89	A comparative study of facial appearance modeling methods for active appearance models. <i>Pattern Recognition Letters</i> , 2009 , 30, 1335-1346	4.7	12
88	CNN-Based Multimodal Human Recognition in Surveillance Environments. Sensors, 2018, 18,	3.8	12
87	Segmentation method of eye region based on fuzzy logic system for classifying open and closed eyes. <i>Optical Engineering</i> , 2015 , 54, 033103	1.1	11
86	Noisy Ocular Recognition Based on Three Convolutional Neural Networks. Sensors, 2017, 17,	3.8	11
85	Image Quality Enhancement Using the Direction and Thickness of Vein Lines for Finger-Vein Recognition. <i>International Journal of Advanced Robotic Systems</i> , 2012 , 9, 154	1.4	11
84	Enhanced Gender Recognition System Using an Improved Histogram of Oriented Gradient (HOG) Feature from Quality Assessment of Visible Light and Thermal Images of the Human Body. <i>Sensors</i> , 2016 , 16,	3.8	11
83	. IEEE Access, 2020 , 8, 96748-96766	3.5	10
82	Multi-National Banknote Classification Based on Visible-light Line Sensor and Convolutional Neural Network. <i>Sensors</i> , 2017 , 17,	3.8	10
81	. IEEE Access, 2019 , 7, 93448-93461	3.5	10
80	Banknote recognition based on optimization of discriminative regions by genetic algorithm with one-dimensional visible-light line sensor. <i>Pattern Recognition</i> , 2017 , 72, 27-43	7.7	10
79	A High Performance Banknote Recognition System Based on a One-Dimensional Visible Light Line Sensor. <i>Sensors</i> , 2015 , 15, 14093-115	3.8	10
78	Compensation Method of Natural Head Movement for Gaze Tracking System Using an Ultrasonic Sensor for Distance Measurement. <i>Sensors</i> , 2016 , 16,	3.8	10
77	Periocular-based biometrics robust to eye rotation based on polar coordinates. <i>Multimedia Tools and Applications</i> , 2017 , 76, 11177-11197	2.5	9

(2019-2020)

76	Deep Learning-Based Fake-Banknote Detection for the Visually Impaired People Using Visible-Light Images Captured by Smartphone Cameras. <i>IEEE Access</i> , 2020 , 8, 63144-63161	3.5	9	
75	Nonwearable gaze tracking system for controlling home appliance. <i>Scientific World Journal, The</i> , 2014 , 2014, 303670	2.2	9	
74	Robust Eye and Pupil Detection Method for Gaze Tracking. <i>International Journal of Advanced Robotic Systems</i> , 2013 , 10, 98	1.4	9	
73	Robust query-by-singing/humming system against background noise environments. <i>IEEE Transactions on Consumer Electronics</i> , 2011 , 57, 720-725	4.8	9	
72	Automated Diagnosis of Various Gastrointestinal Lesions Using a Deep Learning-Based Classification and Retrieval Framework With a Large Endoscopic Database: Model Development and Validation. <i>Journal of Medical Internet Research</i> , 2020 , 22, e18563	7.6	9	
71	Enhanced Image-Based Endoscopic Pathological Site Classification Using an Ensemble of Deep Learning Models. <i>Sensors</i> , 2020 , 20,	3.8	9	
70	Age Estimation by Super-Resolution Reconstruction Based on Adversarial Networks. <i>IEEE Access</i> , 2020 , 8, 17103-17120	3.5	8	
69	Gaze tracking system for user wearing glasses. Sensors, 2014 , 14, 2110-34	3.8	8	
68	Deep Feature-Based Three-Stage Detection of Banknotes and Coins for Assisting Visually Impaired People. <i>IEEE Access</i> , 2020 , 8, 184598-184613	3.5	8	
67	Visible-Light Camera Sensor-Based Presentation Attack Detection for Face Recognition by Combining Spatial and Temporal Information. <i>Sensors</i> , 2019 , 19,	3.8	7	
66	Region-Based Removal of Thermal Reflection Using Pruned Fully Convolutional Network. <i>IEEE Access</i> , 2020 , 8, 75741-75760	3.5	7	
65	Semantic Segmentation With Low Light Images by Modified CycleGAN-Based Image Enhancement. <i>IEEE Access</i> , 2020 , 8, 93561-93585	3.5	7	
64	Recognizing Banknote Fitness with a Visible Light One Dimensional Line Image Sensor. <i>Sensors</i> , 2015 , 15, 21016-32	3.8	7	
63	A study on restoration of iris images with motion-and-optical blur on mobile iris recognition devices. <i>International Journal of Imaging Systems and Technology</i> , 2009 , 19, 323-331	2.5	7	
62	A novel portable iris recognition system and usability evaluation. <i>International Journal of Control, Automation and Systems</i> , 2010 , 8, 91-98	2.9	7	
61	Efficient Banknote Recognition Based on Selection of Discriminative Regions with One-Dimensional Visible-Light Line Sensor. <i>Sensors</i> , 2016 , 16,	3.8	7	
60	Recognition of Banknote Fitness Based on a Fuzzy System Using Visible Light Reflection and Near-infrared Light Transmission Images. <i>Sensors</i> , 2016 , 16,	3.8	7	
59	A Study on the Elimination of Thermal Reflections. <i>IEEE Access</i> , 2019 , 7, 174597-174611	3.5	7	

58	Light-weighted ensemble network with multilevel activation visualization for robust diagnosis of COVID19 pneumonia from large-scale chest radiographic database. <i>Applied Soft Computing Journal</i> , 2021 , 108, 107490	7.5	7
57	Deep Learning-Based Multinational Banknote Type and Fitness Classification with the Combined Images by Visible-Light Reflection and Infrared-Light Transmission Image Sensors. <i>Sensors</i> , 2019 , 19,	3.8	6
56	Deep Learning-Based Detection of Pigment Signs for Analysis and Diagnosis of Retinitis Pigmentosa. <i>Sensors</i> , 2020 , 20,	3.8	6
55	. IEEE Access, 2020 , 8, 16281-16301	3.5	6
54	Fuzzy System-Based Target Selection for a NIR Camera-Based Gaze Tracker. Sensors, 2017, 17,	3.8	6
53	New Fuzzy-Based Retinex Method for the Illumination Normalization of Face Recognition. <i>International Journal of Advanced Robotic Systems</i> , 2012 , 9, 103	1.4	6
52	Thermal Image Reconstruction Using Deep Learning. IEEE Access, 2020, 8, 126839-126858	3.5	6
51	SlimDeblurGAN-Based Motion Deblurring and Marker Detection for Autonomous Drone Landing. <i>Sensors</i> , 2020 , 20,	3.8	6
50	Multilevel Deep-Aggregated Boosted Network to Recognize COVID-19 Infection from Large-Scale Heterogeneous Radiographic Data. <i>IEEE Journal of Biomedical and Health Informatics</i> , 2021 , 25, 1881-1	89 ⁷ 1 ²	6
49	Enhanced Cycle Generative Adversarial Network for Generating Face Images of Untrained Races and Ages for Age Estimation. <i>IEEE Access</i> , 2021 , 9, 6087-6112	3.5	6
48	Deep Residual Network-Based Recognition of Finger Wrinkles Using Smartphone Camera. <i>IEEE Access</i> , 2019 , 7, 71270-71285	3.5	5
47	Deep Learning-Based Banknote Fitness Classification Using the Reflection Images by a Visible-Light One-Dimensional Line Image Sensor. <i>Sensors</i> , 2018 , 18,	3.8	5
46	Multimodal Camera-Based Gender Recognition Using Human-Body Image With Two-Step Reconstruction Network. <i>IEEE Access</i> , 2019 , 7, 104025-104044	3.5	5
45	Comprehensive Computer-Aided Decision Support Framework to Diagnose Tuberculosis From Chest X-Ray Images: Data Mining Study. <i>JMIR Medical Informatics</i> , 2020 , 8, e21790	3.6	5
44	Accurate Segmentation of Nuclear Regions with Multi-Organ Histopathology Images Using Artificial Intelligence for Cancer Diagnosis in Personalized Medicine. <i>Journal of Personalized Medicine</i> , 2021 , 11,	3.6	5
43	Empirical Study on Designing of Gaze Tracking Camera Based on the Information of User's Head Movement. <i>Sensors</i> , 2016 , 16,	3.8	5
42	A new gaze estimation method considering external light. Sensors, 2015, 15, 5935-81	3.8	4
41	A Fuzzy-Based Fusion Method of Multimodal Sensor-Based Measurements for the Quantitative Evaluation of Eye Fatigue on 3D Displays. <i>Sensors</i> , 2015 , 15, 10825-51	3.8	4

(2020-2020)

40	ESSN: Enhanced Semantic Segmentation Network by Residual Concatenation of Feature Maps. <i>IEEE Access</i> , 2020 , 8, 21363-21379	3.5	4
39	A new query-by-humming system based on the score level fusion of two classifiers. <i>International Journal of Communication Systems</i> , 2012 , 25, 717-733	1.7	4
38	Driver eye-based gaze tracking system by one-point calibration. <i>Multimedia Tools and Applications</i> , 2019 , 78, 7155-7179	2.5	4
37	Action Recognition From Thermal Videos Using Joint and Skeleton Information. <i>IEEE Access</i> , 2021 , 9, 11716-11733	3.5	4
36	. IEEE Access, 2018 , 6, 57291-57310	3.5	4
35	Detecting retinal vasculature as a key biomarker for deep Learning-based intelligent screening and analysis of diabetic and hypertensive retinopathy. <i>Expert Systems With Applications</i> , 2022 , 200, 117009	7.8	4
34	Presentation Attack Face Image Generation Based on a Deep Generative Adversarial Network. <i>Sensors</i> , 2020 , 20,	3.8	3
33	Object Recognition and Selection Method by Gaze Tracking and SURF Algorithm 2011 ,		3
32	Artificial Intelligence-Based Recognition of Different Types of Shoulder Implants in X-ray Scans Based on Dense Residual Ensemble-Network for Personalized Medicine. <i>Journal of Personalized Medicine</i> , 2021 , 11,	3.6	3
31	Estimation of Gaze Detection Accuracy Using the Calibration Information-Based Fuzzy System. <i>Sensors</i> , 2016 , 16,	3.8	3
30	. IEEE Access, 2019 , 7, 163461-163477	3.5	3
29	. IEEE Access, 2021 , 9, 6296-6324	3.5	3
28	Enhanced Iris Recognition Method by Generative Adversarial Network-Based Image Reconstruction. <i>IEEE Access</i> , 2021 , 9, 10120-10135	3.5	3
27	Deep Learning-Based Thermal Image Reconstruction and Object Detection. <i>IEEE Access</i> , 2021 , 9, 5951-5	59;7 5 1	3
26	. IEEE Access, 2020 , 8, 49857-49872	3.5	2
25	Gaze detection based on head pose estimation in smart TV 2013 ,		2
24	Domain-Adaptive Artificial Intelligence-Based Model for Personalized Diagnosis of Trivial Lesions Related to COVID-19 in Chest Computed Tomography Scans. <i>Journal of Personalized Medicine</i> , 2021 , 11,	3.6	2
23	Face and Body-Based Human Recognition by GAN-Based Blur Restoration. Sensors, 2020 , 20,	3.8	2

CycleGAN-Based Deblurring for Gaze Tracking in Vehicle Environments. IEEE Access, 2020, 8, 137418-137437 2 2.2 Image Region Prediction from Thermal Videos Based on Image Prediction Generative Adversarial 21 2.3 2 Network. Mathematics, 2021, 9, 1053 Restoration of Motion Blurred Image by Modified DeblurGAN for Enhancing the Accuracies of 20 3.8 2 Finger-Vein Recognition. Sensors, 2021, 21, Discriminating between intentional and unintentional gaze fixation using multimodal-based fuzzy logic algorithm for gaze tracking system with NIR camera sensor. Optical Engineering, **2016**, 55, 063109 $^{1.1}$ 19 Finger-Vein Recognition Using Heterogeneous Databases by Domain Adaption Based on a 18 3.8 2 Cycle-Consistent Adversarial Network, Sensors, 2021, 21. GRA-GAN: Generative adversarial network for image style transfer of Gender, Race, and age. Expert 7.8 17 2 Systems With Applications, 2022, 198, 116792 Diabetic and Hypertensive Retinopathy Screening in Fundus Images Using Artificially Intelligent 16 3.6 2 Shallow Architectures.. Journal of Personalized Medicine, 2021, 12, DSRD-Net: Dual-stream residual dense network for semantic segmentation of instruments in 7.8 2 robot-assisted surgery. Expert Systems With Applications, 2022, 202, 117420 Deep features aggregation-based joint segmentation of cytoplasm and nuclei in white blood cells. 7.2 2 14 IEEE Journal of Biomedical and Health Informatics, 2022, 1-1 New system for tracking a device for diagnosing scalp skin. Sensors, 2014, 14, 6516-34 13 3.8 1 Detecting Blastocyst Components by Artificial Intelligence for Human Embryological Analysis to 12 3.6 1 Improve Success Rate of In Vitro Fertilization.. Journal of Personalized Medicine, 2022, 12, Artificial Intelligence-Based Solution in Personalized Computer-Aided Arthroscopy of Shoulder 3.6 11 Prostheses.. Journal of Personalized Medicine, 2022, 12, Fast Query-by-Singing/Humming System That Combines Linear Scaling and Quantized Dynamic 10 1.7 1 Time Warping Algorithm. International Journal of Distributed Sensor Networks, 2015, 11, 176091 Semantic Segmentation by Multi-Scale Feature Extraction Based on Grouped Dilated Convolution 9 2.3 1 Module. *Mathematics*, **2021**, 9, 947 Fuzzy-based estimation of continuous Z-distances and discrete directions of home appliances for 8 2.5 1 NIR camera-based gaze tracking system. Multimedia Tools and Applications, 2018, 77, 11925-11955 Deep Learning-Based Detection of Fake Multinational Banknotes in a Cross-Dataset Environment 1 2.3 Utilizing Smartphone Cameras for Assisting Visually Impaired Individuals. Mathematics, 2022, 10, 1616 Segmenting Retinal Vessels Using a Shallow Segmentation Network to Aid Ophthalmic Analysis. 2.3 1 Mathematics, 2022, 10, 1536 DMDF-Net: Dual multiscale dilated fusion network for accurate segmentation of lesions related to 7.8 COVID-19 in lung radiographic scans.. Expert Systems With Applications, 2022, 202, 117360

LIST OF PUBLICATIONS

4	Face Recognition Algorithm for Photographs and Viewed Sketch Matching Using Score-Level Fusion. <i>International Journal of Advanced Robotic Systems</i> , 2012 , 9, 80	1.4	О
3	Pedestrian Gender Recognition by Style Transfer of Visible-Light Image to Infrared-Light Image Based on an Attention-Guided Generative Adversarial Network. <i>Mathematics</i> , 2021 , 9, 2535	2.3	O
2	Enlargement of the Field of View Based on Image Region Prediction Using Thermal Videos. <i>Mathematics</i> , 2021 , 9, 2379	2.3	0
1	AS-RIG: Adaptive Selection of Reconstructed Input by Generator or Interpolation for Person Re-Identification in Cross-Modality Visible and Thermal Images. <i>IEEE Access</i> , 2021 , 9, 12055-12066	3.5	O