Carlos M. Duarte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2975834/publications.pdf

Version: 2024-02-01

928 papers 95,204 citations

133 h-index 264 g-index

997 all docs 997
docs citations

997 times ranked 51823 citing authors

#	Article	IF	CITATIONS
1	Projecting coral responses to intensifying marine heatwaves under ocean acidification. Global Change Biology, 2022, 28, 1753-1765.	4.2	32
2	A seaweed aquaculture imperative to meet global sustainability targets. Nature Sustainability, 2022, 5, 185-193.	11.5	134
3	Reef accumulation is decoupled from recent degradation in the central and southern Red Sea. Science of the Total Environment, 2022, 809, 151176.	3.9	7
4	Fingerprinting Arctic and North Atlantic Macroalgae with eDNA – Application and perspectives. Environmental DNA, 2022, 4, 385-401.	3.1	12
5	Underestimated PAH accumulation potential of blue carbon vegetation: Evidence from sedimentary records of saltmarsh and mangrove in Yueqing Bay, China. Science of the Total Environment, 2022, 817, 152887.	3.9	16
6	Global diversity and distribution of aerobic anoxygenic phototrophs in the tropical and subtropical oceans. Environmental Microbiology, 2022, 24, 2222-2238.	1.8	10
7	Fate and Effects of Macro- and Microplastics in Coastal Wetlands. Environmental Science & Eamp; Technology, 2022, 56, 2386-2397.	4.6	66
8	Global biodiversity patterns of marine forests of brown macroalgae. Global Ecology and Biogeography, 2022, 31, 636-648.	2.7	22
9	Decision rules for determining terrestrial movement and the consequences for filtering high-resolution global positioning system tracks: a case study using the African lion (<i>Panthera) Tj ETQq1 1 0</i>	.78 4.3 14 rş	gBѢ/Overlo <mark>ck</mark>
10	Profiling the cell walls of seagrasses from A (Amphibolis) to Z (Zostera). BMC Plant Biology, 2022, 22, 63.	1.6	7
11	In situ monitoring reveals cellular environmental instabilities in human pluripotent stem cell culture. Communications Biology, 2022, 5, 119.	2.0	13
12	Toward Best Practices for Controlling Mammalian Cell Culture Environments. Frontiers in Cell and Developmental Biology, 2022, 10, 788808.	1.8	8
13	Major Expansion of Marine Forests in a Warmer Arctic. Frontiers in Marine Science, 2022, 9, .	1.2	16
14	Unifying the known and unknown microbial coding sequence space. ELife, 2022, 11, .	2.8	41
15	Governing for Transformative Change across the Biodiversity–Climate–Society Nexus. BioScience, 2022, 72, 684-704.	2.2	48
16	Intergovernmental Panel on Blue Foods in Support of Sustainable Development and Nutritional Security. Environmental Science & Echnology, 2022, 56, 5302-5305.	4.6	4
17	Rapid evolution of SARS-CoV-2 challenges human defenses. Scientific Reports, 2022, 12, 6457.	1.6	18
18	Trade-Offs and Synergies Between Seagrass Ecosystems and Fishing Activities: A Global Literature Review. Frontiers in Marine Science, 2022, 9, .	1.2	11

#	Article	IF	CITATIONS
19	Metabolomic Study on Tridacna maxima Giant Clams Reveals Metabolic Fingerprint of Environmental Pollutants. Frontiers in Marine Science, 2022, 9, .	1.2	3
20	Global collision-risk hotspots of marine traffic and the world's largest fish, the whale shark. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117440119.	3.3	26
21	Penetration of Ultravioletâ€B Radiation in Oligotrophic Regions of the Oceans During the Malaspina 2010 Expedition. Journal of Geophysical Research: Oceans, 2022, 127, .	1.0	3
22	Global estimates of the extent and production of macroalgal forests. Global Ecology and Biogeography, 2022, 31, 1422-1439.	2.7	75
23	Mapping seagrass meadows in coastal China using GEE. Geocarto International, 2022, 37, 12602-12617.	1.7	4
24	Ocean sediments as the global sink for marine micro―and mesoplastics. Limnology and Oceanography Letters, 2022, 7, 235-243.	1.6	23
25	Seagrass Thermal Limits and Vulnerability to Future Warming. Frontiers in Marine Science, 2022, 9, .	1.2	5
26	Operationalizing marketable blue carbon. One Earth, 2022, 5, 485-492.	3.6	34
27	Bioturbation Intensity Modifies the Sediment Microbiome and Biochemistry and Supports Plant Growth in an Arid Mangrove System. Microbiology Spectrum, 2022, 10, .	1.2	12
28	eDNA Reveals the Associated Metazoan Diversity of Mediterranean Seagrass Sediments. Diversity, 2022, 14, 549.	0.7	6
29	Mangrove distribution and afforestation potential in the Red Sea. Science of the Total Environment, 2022, 843, 157098.	3.9	8
30	Losses of Soil Organic Carbon with Deforestation in Mangroves of Madagascar. Ecosystems, 2021, 24, 1-19.	1.6	39
31	High summer temperatures amplify functional differences between coral―and algaeâ€dominated reef communities. Ecology, 2021, 102, e03226.	1.5	15
32	Total alkalinity production in a mangrove ecosystem reveals an overlooked Blue Carbon component. Limnology and Oceanography Letters, 2021, 6, 61-67.	1.6	31
33	Optimising sample sizes for animal distribution analysis using tracking data. Methods in Ecology and Evolution, 2021, 12, 288-297.	2.2	16
34	Centuryâ€long records reveal shifting challenges to seagrass recovery. Global Change Biology, 2021, 27, 563-575.	4.2	31
35	Plankton Community Metabolism in Western Australia: Estuarine, Coastal and Oceanic Surface Waters. Frontiers in Marine Science, 2021, 7, .	1.2	3
36	Hostâ€association as major driver of microbiome structure and composition in Red Sea seagrass ecosystems. Environmental Microbiology, 2021, 23, 2021-2034.	1.8	9

#	Article	IF	CITATIONS
37	The Potential for Ocean-Based Climate Action: Negative Emissions Technologies and Beyond. Frontiers in Climate, $2021, 2, .$	1.3	54
38	Stocks and losses of soil organic carbon from Chinese vegetated coastal habitats. Global Change Biology, 2021, 27, 202-214.	4.2	51
39	Temperature transcends partner specificity in the symbiosis establishment of a cnidarian. ISME Journal, 2021, 15, 141-153.	4.4	20
40	Susan Lynn Williams: the Life of an Exceptional Scholar, Leader, and Friend (1951–2018). Estuaries and Coasts, 2021, 44, 304-311.	1.0	1
41	Areal Extent, Species Composition, and Spatial Distribution of Coastal Saltmarshes in China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 7085-7094.	2.3	24
42	High Summer Temperatures Amplify Functional Differences Between Coral―and Algaeâ€Dominated Reef Communities. Bulletin of the Ecological Society of America, 2021, 102, e01822.	0.2	0
43	Impacts of hypoxic events surpass those of future ocean warming and acidification. Nature Ecology and Evolution, 2021, 5, 311-321.	3.4	116
44	The global network of ports supporting high seas fishing. Science Advances, 2021, 7, .	4.7	11
45	The soundscape of the Anthropocene ocean. Science, 2021, 371, .	6.0	376
46	Enhanced Viral Activity in the Surface Microlayer of the Arctic and Antarctic Oceans. Microorganisms, 2021, 9, 317.	1.6	13
47	HMD-ARG: hierarchical multi-task deep learning for annotating antibiotic resistance genes. Microbiome, 2021, 9, 40.	4.9	48
48	Phylogeographic Analysis Suggests a Recent Population Bottleneck in the Rare Red Sea Tridacna squamosina. Frontiers in Marine Science, 2021, 8, .	1.2	0
49	Flexible Hall sensor made of laser-scribed graphene. Npj Flexible Electronics, 2021, 5, .	5.1	14
50	Climateâ€driven impacts of exotic species on marine ecosystems. Global Ecology and Biogeography, 2021, 30, 1043-1055.	2.7	16
51	Flexibility in Red Sea Tridacna maxima â€Symbiodiniaceae associations supports environmental niche adaptation. Ecology and Evolution, 2021, 11, 3393-3406.	0.8	7
52	Reimagining aquaculture in the Global South. Science, 2021, 372, 247-248.	6.0	3
53	Half of global methane emissions come from highly variable aquatic ecosystem sources. Nature Geoscience, 2021, 14, 225-230.	5.4	388
54	ENSO feedback drives variations in dieback at a marginal mangrove site. Scientific Reports, 2021, 11, 8130.	1.6	12

#	Article	IF	CITATIONS
55	The Limits to Models in Ecology. , 2021, , 437-452.		O
56	Giant clam inspired high-speed photo-conversion for ultraviolet optical wireless communication. Optical Materials Express, 2021, $11,1515$.	1.6	2
57	Seagrass (<i>Halophila stipulacea</i>) invasion enhances carbon sequestration in the Mediterranean Sea. Global Change Biology, 2021, 27, 2592-2607.	4.2	22
58	A standardisation framework for bioâ€logging data to advance ecological research and conservation. Methods in Ecology and Evolution, 2021, 12, 996-1007.	2.2	39
59	Enabling a large-scale assessment of litter along Saudi Arabian red sea shores by combining drones and machine learning. Environmental Pollution, 2021, 277, 116730.	3.7	42
60	Diversity and Sources of Airborne Eukaryotic Communities (AEC) in the Global Dust Belt over the Red Sea. Earth Systems and Environment, 2021, 5, 459-471.	3.0	9
61	Global Plastic Pollution Observation System to Aid Policy. Environmental Science & Emp; Technology, 2021, 55, 7770-7775.	4.6	59
62	Rise and fall of the global conversation and shifting sentiments during the COVID-19 pandemic. Humanities and Social Sciences Communications, 2021, 8, .	1.3	12
63	Deep ocean metagenomes provide insight into the metabolic architecture of bathypelagic microbial communities. Communications Biology, 2021, 4, 604.	2.0	107
64	A bibliometric assessment of progress in marine spatial planning. Marine Policy, 2021, 127, 104329.	1.5	26
65	Global COVID-19 lockdown highlights humans as both threats and custodians of the environment. Biological Conservation, 2021, 263, 109175.	1.9	96
66	An inshore–offshore sorting system revealed from global classification of ocean litter. Nature Sustainability, 2021, 4, 484-493.	11.5	178
67	Habitat-forming species trap microplastics into coastal sediment sinks. Science of the Total Environment, 2021, 772, 145520.	3.9	41
68	KAUST Metagenomic Analysis Platform (KMAP), enabling access to massive analytics of re-annotated metagenomic data. Scientific Reports, 2021, 11, 11511.	1.6	4
69	Anthropogenic litter density and composition data acquired flying commercial drones on sandy beaches along the Saudi Arabian RedÁSea. Data in Brief, 2021, 36, 107056.	0.5	2
70	Nutrient and temperature constraints on primary production and net phytoplankton growth in a tropical ecosystem. Limnology and Oceanography, 2021, 66, 2923-2935.	1.6	12
71	Factors Determining Seagrass Blue Carbon Across Bioregions and Geomorphologies. Global Biogeochemical Cycles, 2021, 35, e2021GB006935.	1.9	34
72	Seaweed farms provide refugia from ocean acidification. Science of the Total Environment, 2021, 776, 145192.	3.9	61

#	Article	IF	CITATIONS
73	Recovery of assessed global fish stocks remains uncertain. Proceedings of the National Academy of Sciences of the United States of America, $2021,118,.$	3.3	24
74	Satellite Tracking Reveals Nesting Patterns, Site Fidelity, and Potential Impacts of Warming on Major Green Turtle Rookeries in the Red Sea. Frontiers in Marine Science, 2021, 8, .	1.2	18
75	The Internal Microenvironment of the Symbiotic Jellyfish Cassiopea sp. From the Red Sea. Frontiers in Marine Science, 2021, 8, .	1.2	4
76	Nutrient pollution enhances productivity and framework dissolution in algae- but not in coral-dominated reef communities. Marine Pollution Bulletin, 2021, 168, 112444.	2.3	7
77	First Application of 360-Degree Camera Technology to Marine Predator Bio-Logging. Frontiers in Marine Science, 2021, 8, .	1.2	4
78	Reply to: Caution over the use of ecological big data for conservation. Nature, 2021, 595, E20-E28.	13.7	4
79	Reply to: Shark mortality cannot be assessed by fishery overlap alone. Nature, 2021, 595, E8-E16.	13.7	7
80	Effects of Ecological Restoration Using Non-Native Mangrove Kandelia obovata to Replace Invasive Spartina alterniflora on Intertidal Macrobenthos Community in Maoyan Island (Zhejiang, China). Journal of Marine Science and Engineering, 2021, 9, 788.	1.2	11
81	Assessment of Red Sea temperatures in CMIP5 models for present and future climate. PLoS ONE, 2021, 16, e0255505.	1.1	5
82	Dead-reckoning animal movements in R: a reappraisal using Gundog.Tracks. Animal Biotelemetry, 2021, 9, .	0.8	19
83	Detection of SARS-CoV-2 variants requires urgent global coordination. International Journal of Infectious Diseases, 2021, 109, 50-53.	1.5	4
84	The conservation and ecological impacts of the COVID-19 pandemic. Biological Conservation, 2021, 260, 109204.	1.9	9
85	A prevalent neglect of environmental control in mammalian cell culture calls for best practices. Nature Biomedical Engineering, 2021, 5, 787-792.	11.6	24
86	A prediction and imputation method for marine animal movement data. PeerJ Computer Science, 2021, 7, e656.	2.7	3
87	Testing angular velocity as a new metric for metabolic demands of slow-moving marine fauna: a case study with Giant spider conchs Lambis truncata. Animal Biotelemetry, 2021, 9, .	0.8	1
88	Distribution and temporal trends in the abundance of nesting sea turtles in the Red Sea. Biological Conservation, 2021, 261, 109235.	1.9	16
89	Comprehensive analytical approaches reveal speciesâ€specific search strategies in sympatric apex predatory sharks. Ecography, 2021, 44, 1544-1556.	2.1	2
90	Integrating environmental variability to broaden the research on coral responses to future ocean conditions. Global Change Biology, 2021, 27, 5532-5546.	4.2	23

#	Article	IF	CITATIONS
91	Sustainable and Eco-Friendly Coral Restoration through 3D Printing and Fabrication. ACS Sustainable Chemistry and Engineering, 2021, 9, 12634-12645.	3.2	25
92	The Simrad EK60 echosounder dataset from the Malaspina circumnavigation. Scientific Data, 2021, 8, 259.	2.4	2
93	Investing in Blue Natural Capital to Secure a Future for the Red Sea Ecosystems. Frontiers in Marine Science, 2021, 7, .	1.2	19
94	Impact of Marine Heatwaves on Seagrass Ecosystems. Ecological Studies, 2021, , 345-364.	0.4	12
95	Spatial Connectivity and Drivers of Shark Habitat Use Within a Large Marine Protected Area in the Caribbean, The Bahamas Shark Sanctuary. Frontiers in Marine Science, 2021, 7, .	1.2	21
96	Drivers of the Abundance of Tridacna spp. Giant Clams in the Red Sea. Frontiers in Marine Science, 2021, 7, .	1.2	3
97	Trophic Structure of Neuston Across Tropical and Subtropical Oceanic Provinces Assessed With Stable Isotopes. Frontiers in Marine Science, 2021, 7, .	1.2	6
98	A high-quality genome assembly and annotation of the gray mangrove, <i>Avicennia marina</i> Cenes, Genomes, Genetics, 2021, 11, .	0.8	16
99	Animal lifestyle affects acceptable mass limits for attached tags. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20212005.	1.2	11
100	Predicted regime shift in the seagrass ecosystem of the Gulf of Arguin driven by climate change. Global Ecology and Conservation, 2021, 32, e01890.	1.0	8
101	How often should dead-reckoned animal movement paths be corrected for drift?. Animal Biotelemetry, 2021, 9, 43.	0.8	12
102	Changes of the Macrobenthos Community with Non-native Mangrove Rehabilitation (Kandelia) Tj ETQq0 0 0 rgBT Science Journal, 2021, 56, 395-405.	Overlock 0.6	10 Tf 50 30 10
103	Ten new insights in climate science 2021: a horizon scan. Global Sustainability, 2021, 4, .	1.6	26
104	WTO must ban harmful fisheries subsidies. Science, 2021, 374, 544-544.	6.0	45
105	Blue carbon as a natural climate solution. Nature Reviews Earth & Environment, 2021, 2, 826-839.	12.2	261
106	Variable response of Red Sea coral communities to recent disturbance events along a latitudinal gradient. Marine Biology, 2021, 168, 1.	0.7	27
107	Warming Threatens to Propel the Expansion of the Exotic Seagrass Halophila stipulacea. Frontiers in Marine Science, 2021, 8, .	1.2	13
108	Estimates for energy expenditure in freeâ€living animals using acceleration proxies: A reappraisal. Journal of Animal Ecology, 2020, 89, 161-172.	1.3	148

#	Article	IF	CITATIONS
109	Marked changes in diversity and relative activity of picoeukaryotes with depth in the world ocean. ISME Journal, 2020, 14, 437-449.	4.4	80
110	Defining CO ₂ and O ₂ syndromes of marine biomes in the Anthropocene. Global Change Biology, 2020, 26, 355-363.	4.2	15
111	Ocean warming compresses the three-dimensional habitat of marine life. Nature Ecology and Evolution, 2020, 4, 109-114.	3.4	58
112	Performance of extraction methods for extracellular DNA from sediments across marine habitats. Environmental DNA, 2020, 2, 91-98.	3.1	8
113	High temperature and crab density reduce atmospheric nitrogen fixation in Red Sea mangrove sediments. Estuarine, Coastal and Shelf Science, 2020, 232, 106487.	0.9	10
114	Ecological effects of nonâ€native species in marine ecosystems relate to coâ€occurring anthropogenic pressures. Global Change Biology, 2020, 26, 1248-1258.	4.2	20
115	Anthropogenic-induced acceleration of elemental burial rates in blue carbon repositories of the Arabian Gulf. Science of the Total Environment, 2020, 719, 135177.	3.9	18
116	Towards a unifying pan-arctic perspective: A conceptual modelling toolkit. Progress in Oceanography, 2020, 189, 102455.	1.5	30
117	Introducing the Mangrove Microbiome Initiative: Identifying Microbial Research Priorities and Approaches To Better Understand, Protect, and Rehabilitate Mangrove Ecosystems. MSystems, 2020, 5, .	1.7	40
118	Diversity and distribution of marine heterotrophic bacteria from a large culture collection. BMC Microbiology, 2020, 20, 207.	1.3	27
119	Genomic Blueprint of Glycine Betaine Metabolism in Coral Metaorganisms and Their Contribution to Reef Nitrogen Budgets. IScience, 2020, 23, 101120.	1.9	30
120	Hypothesis: Potentially Systemic Impacts of Elevated CO2 on the Human Proteome and Health. Frontiers in Public Health, 2020, 8, 543322.	1.3	22
121	Large deep-sea zooplankton biomass mirrors primary production in the global ocean. Nature Communications, 2020, 11, 6048.	5.8	58
122	The restoration imperative to achieve a sustainable ocean economy nobody foretold in 1871. One Earth, 2020, 3, 669-671.	3.6	3
123	Posidonia oceanica as a Source of Chromophoric Dissolved Organic Matter for the Oligotrophic NW Mediterranean Coast. Journal of Marine Science and Engineering, 2020, 8, 911.	1.2	1
124	Aeolian Prokaryotic Communities of the Global Dust Belt Over the Red Sea. Frontiers in Microbiology, 2020, 11, 538476.	1.5	6
125	Public Perceptions of Mangrove Forests Matter for Their Conservation. Frontiers in Marine Science, 2020, 7, .	1.2	32
126	Functional Pangenome Analysis Shows Key Features of E Protein Are Preserved in SARS and SARS-CoV-2. Frontiers in Cellular and Infection Microbiology, 2020, 10, 405.	1.8	40

#	Article	IF	CITATIONS
127	Operationalizing Ocean Health: Toward Integrated Research on Ocean Health and Recovery to Achieve Ocean Sustainability. One Earth, 2020, 2, 557-565.	3.6	40
128	Stunted Mangrove Trees in the Oligotrophic Central Red Sea Relate to Nitrogen Limitation. Frontiers in Marine Science, 2020, 7, .	1.2	16
129	Comparative infection modeling and control of COVID-19 transmission patterns in China, South Korea, Italy and Iran. Science of the Total Environment, 2020, 747, 141447.	3.9	42
130	Sequencing effort dictates gene discovery in marine microbial metagenomes. Environmental Microbiology, 2020, 22, 4589-4603.	1.8	13
131	Exponential increase of plastic burial in mangrove sediments as a major plastic sink. Science Advances, 2020, 6, .	4.7	155
132	Environmental <scp>DNA</scp> identifies marine macrophyte contributions to Blue Carbon sediments. Limnology and Oceanography, 2020, 65, 3139-3149.	1.6	35
133	No Evidence for Temperature-Dependence of the COVID-19 Epidemic. Frontiers in Public Health, 2020, 8, 436.	1.3	60
134	Beyond Reef Restoration: Next-Generation Techniques for Coral Gardening, Landscaping, and Outreach. Frontiers in Marine Science, 2020, 7, .	1.2	19
135	A new direction for differentiating animal activity based on measuring angular velocity about the yaw axis. Ecology and Evolution, 2020, 10, 7872-7886.	0.8	17
136	Variability in Water-Column Respiration and Its Dependence on Organic Carbon Sources in the Canary Current Upwelling Region. Frontiers in Earth Science, 2020, 8, .	0.8	8
137	Gelatinous Zooplanktonâ€Mediated Carbon Flows in the Global Oceans: A Dataâ€Driven Modeling Study. Global Biogeochemical Cycles, 2020, 34, e2020GB006704.	1.9	66
138	Perceptions of Marine Environmental Issues by Saudi Citizens. Frontiers in Marine Science, 2020, 7, .	1.2	7
139	Imprint of Climate Change on Pan-Arctic Marine Vegetation. Frontiers in Marine Science, 2020, 7, .	1.2	63
140	Stimulated Raman microspectroscopy as a new method to classify microfibers from environmental samples. Environmental Pollution, 2020, 267, 115640.	3.7	36
141	Source Apportionment and Elemental Composition of Atmospheric Total Suspended Particulates (TSP) Over the Red Sea Coast of Saudi Arabia. Earth Systems and Environment, 2020, 4, 777-788.	3.0	20
142	Cellular network Marine Sensor Buoy. , 2020, , .		5
143	The ocean genome and future prospects for conservation and equity. Nature Sustainability, 2020, 3, 588-596.	11.5	38
144	Differential thermal tolerance between algae and corals may trigger the proliferation of algae in coral reefs. Global Change Biology, 2020, 26, 4316-4327.	4.2	42

#	Article	IF	CITATIONS
145	The Colors of the Ocean Plastics. Environmental Science & Environmental Scienc	4.6	136
146	Giant clams in shallow reefs: UV-resistance mechanisms of Tridacninae in the Red Sea. Coral Reefs, 2020, 39, 1345-1360.	0.9	8
147	COVID-19 lockdown allows researchers to quantify the effects of human activity on wildlife. Nature Ecology and Evolution, 2020, 4, 1156-1159.	3.4	413
148	Mass, nutrients and dissolved organic carbon (DOC) lateral transports off northwest Africa during fall 2002 and spring 2003. Ocean Science, 2020, 16, 483-511.	1.3	8
149	A framework for experimental scenarios of global change in marine systems using coral reefs as a case study. Royal Society Open Science, 2020, 7, 191118.	1.1	7
150	Warming enhances carbon dioxide and methane fluxes from Red Sea seagrass (<i>Halophila stipulacea</i>) sediments. Biogeosciences, 2020, 17, 1717-1730.	1.3	15
151	COVID-19 pandemic and associated lockdown as a "Global Human Confinement Experiment―to investigate biodiversity conservation. Biological Conservation, 2020, 248, 108665.	1.9	180
152	Prokaryotic Capability to Use Organic Substrates Across the Global Tropical and Subtropical Ocean. Frontiers in Microbiology, 2020, 11, 918.	1.5	8
153	Picocyanobacteria Community and Cyanophage Infection Responses to Nutrient Enrichment in a Mesocosms Experiment in Oligotrophic Waters. Frontiers in Microbiology, 2020, 11, 1153.	1.5	15
154	Robustness to extinction and plasticity derived from mutualistic bipartite ecological networks. Scientific Reports, 2020, 10, 9783.	1.6	16
155	Laserâ€Printed, Flexible Graphene Pressure Sensors. Global Challenges, 2020, 4, 2000001.	1.8	34
156	Tropical seagrass <i> Halophila stipulacea </i> shifts thermal tolerance during Mediterranean invasion. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20193001.	1.2	29
157	Passive and Active Removal of Marine Microplastics by a Mushroom Coral (Danafungia scruposa). Frontiers in Marine Science, 2020, 7, .	1.2	58
158	An "orientation sphere―visualization for examining animal head movements. Ecology and Evolution, 2020, 10, 4291-4302.	0.8	9
159	Anomalies in the carbonate system of Red Sea coastal habitats. Biogeosciences, 2020, 17, 423-439.	1.3	5
160	Rebuilding marine life. Nature, 2020, 580, 39-51.	13.7	560
161	UN Decade on Ecosystem Restoration 2021–2030—What Chance for Success in Restoring Coastal Ecosystems?. Frontiers in Marine Science, 2020, 7, .	1.2	181
162	Iridocytes Mediate Photonic Cooperation Between Giant Clams (Tridacninae) and Their Photosynthetic Symbionts. Frontiers in Marine Science, 2020, 7, .	1.2	24

#	Article	IF	CITATIONS
163	Superhydrophobicity and size reduction enabled Halobates (Insecta: Heteroptera, Gerridae) to colonize the open ocean. Scientific Reports, 2020, 10, 7785.	1.6	22
164	Seagrass losses since midâ€20th century fuelled CO ₂ emissions from soil carbon stocks. Global Change Biology, 2020, 26, 4772-4784.	4.2	48
165	Unfamiliar partnerships limit cnidarian holobiont acclimation to warming. Global Change Biology, 2020, 26, 5539-5553.	4.2	20
166	Additive impacts of deoxygenation and acidification threaten marine biota. Global Change Biology, 2020, 26, 5602-5612.	4.2	28
167	Translational Molecular Ecology in practice: Linking DNA-based methods to actionable marine environmental management. Science of the Total Environment, 2020, 744, 140780.	3.9	24
168	Drivers of the Low Metabolic Rates of Seagrass Meadows in the Red Sea. Frontiers in Marine Science, 2020, 7, .	1.2	16
169	Reply to: Indiscriminate data aggregation in ecological meta-analysis underestimates impacts of invasive species. Nature Ecology and Evolution, 2020, 4, 315-317.	3.4	1
170	A metagenomic assessment of microbial eukaryotic diversity in the global ocean. Molecular Ecology Resources, 2020, 20, 718-731.	2.2	70
171	Role of vegetated coastal ecosystems as nitrogen and phosphorous filters and sinks in the coasts of Saudi Arabia. Environmental Research Letters, 2020, 15, 034058.	2.2	21
172	Microplastics in fishes of commercial and ecological importance from the Western Arabian Gulf. Marine Pollution Bulletin, 2020, 152, 110920.	2.3	58
173	Contribution of Seagrass Blue Carbon Toward Carbon Neutral Policies in a Touristic and Environmentally-Friendly Island. Frontiers in Marine Science, 2020, 7, .	1.2	51
174	Arctic (Svalbard islands) active and exported diatom stocks and cell health status. Biogeosciences, 2020, 17, 35-45.	1.3	7
175	Dense Mytilus Beds Along Freshwater-Influenced Greenland Shores: Resistance to Corrosive Waters Under High Food Supply. Estuaries and Coasts, 2020, 43, 387-395.	1.0	5
176	Behavioral Biomarkers for Animal Health: A Case Study Using Animal-Attached Technology on Loggerhead Turtles. Frontiers in Ecology and Evolution, 2020, 7, .	1.1	6
177	Discovery of Afifi, the shallowest and southernmost brine pool reported in the Red Sea. Scientific Reports, 2020, 10, 910.	1.6	16
178	Research Priorities for Achieving Healthy Marine Ecosystems and Human Communities in a Changing Climate. Frontiers in Marine Science, 2020, 7, .	1.2	39
179	Reconciling Tourism Development and Conservation Outcomes Through Marine Spatial Planning for a Saudi Giga-Project in the Red Sea (The Red Sea Project, Vision 2030). Frontiers in Marine Science, 2020, 7,	1.2	28
180	Major imprint of surface plankton on deep ocean prokaryotic structure and activity. Molecular Ecology, 2020, 29, 1820-1838.	2.0	39

#	Article	IF	Citations
181	Impact of seagrass establishment, industrialization and coastal infrastructure on seagrass biogeochemical sinks. Marine Environmental Research, 2020, 160, 104990.	1.1	23
182	A DNA miniâ€barcode for marine macrophytes. Molecular Ecology Resources, 2020, 20, 920-935.	2.2	25
183	Disentangling the mechanisms shaping the surface ocean microbiota. Microbiome, 2020, 8, 55.	4.9	154
184	Temporal evolution of temperatures in the Red Sea and the Gulf of Aden based on inÂsitu observations (1958–2017). Ocean Science, 2020, 16, 149-166.	1.3	12
185	Accumulation of 13C-labelled phenanthrene in phytoplankton and transfer to corals resolved using cavity ring-down spectroscopy. Ecotoxicology and Environmental Safety, 2020, 196, 110511.	2.9	13
186	Golden carbon of Sargassum forests revealed as an opportunity for climate change mitigation. Science of the Total Environment, 2020, 729, 138745.	3.9	68
187	Opportunities for blue carbon strategies in China. Ocean and Coastal Management, 2020, 194, 105241.	2.0	60
188	Assessing the age- and gender-dependence of the severity and case fatality rates of COVID-19 disease in Spain. Wellcome Open Research, 2020, 5, 117.	0.9	16
189	Impact of UV radiation on plankton net community production: responses in Western Australian estuarine and coastal waters. Marine Ecology - Progress Series, 2020, 651, 45-56.	0.9	7
190	The Small Giant Clam, Tridacna maxima Exhibits Minimal Population Genetic Structure in the Red Sea and Genetic Differentiation From the Gulf of Aden. Frontiers in Marine Science, 2020, 7, .	1.2	8
191	Towards informed metrics for examining the role of humanâ€induced animal responses in tag studies on wild animals. Integrative Zoology, 2019, 14, 17-29.	1.3	17
192	Remote sensing mapping of macroalgal farms by modifying thresholds in the classification tree. Geocarto International, 2019, 34, 1098-1108.	1.7	10
193	Global spatial risk assessment of sharks under the footprint of fisheries. Nature, 2019, 572, 461-466.	13.7	254
194	Flexible and Multi-Functional Graphene Sensor Platform. , 2019, , .		2
195	Wearable multifunctional printed graphene sensors. Npj Flexible Electronics, 2019, 3, .	5.1	84
196	Important contribution of macroalgae to oceanic carbon sequestration. Nature Geoscience, 2019, 12, 748-754.	5.4	141
197	Seasonality of marine plastic abundance in central Red Sea pelagic waters. Science of the Total Environment, 2019, 688, 536-541.	3.9	24
198	Decreasing carbonate load of seagrass leaves with increasing latitude. Aquatic Botany, 2019, 159, 103147.	0.8	3

#	Article	IF	CITATIONS
199	Increasing temperature within thermal limits compensates negative ultravioletâ€B radiation effects in terrestrial and aquatic organisms. Global Ecology and Biogeography, 2019, 28, 1695-1711.	2.7	16
200	Animal-Borne Telemetry: An Integral Component of the Ocean Observing Toolkit. Frontiers in Marine Science, $2019, 6, .$	1.2	127
201	Recent trend reversal for declining European seagrass meadows. Nature Communications, 2019, 10, 3356.	5 . 8	227
202	Deep Learning Resolves Representative Movement Patterns in a Marine Predator Species. Applied Sciences (Switzerland), 2019, 9, 2935.	1.3	6
203	Light-dependent calcification in Red Sea giant clam & Dispersion of the Company o	1.3	41
204	Continuous photoperiod of the Artic summer stimulates the photosynthetic response of some marine macrophytes. Aquatic Botany, 2019, 158, 103126.	0.8	1
205	Characterization of the CO ₂ System in a Coral Reef, a Seagrass Meadow, and a Mangrove Forest in the Central Red Sea. Journal of Geophysical Research: Oceans, 2019, 124, 7513-7528.	1.0	24
206	Flexible tag design for semi-continuous wireless data acquisition from marine animals. Flexible and Printed Electronics, 2019, 4, 035006.	1.5	7
207	Warming Amplifies the Frequency of Harmful Algal Blooms with Eutrophication in Chinese Coastal Waters. Environmental Science &	4.6	82
208	Resource (Light and Nitrogen) and Density-Dependence of Seaweed Growth. Frontiers in Marine Science, 2019, 6, .	1,2	19
209	Zooplankton Abundance and Diversity in the Tropical and Subtropical Ocean. Diversity, 2019, 11, 203.	0.7	22
210	Tissue-Specific Microbiomes of the Red Sea Giant Clam Tridacna maxima Highlight Differential Abundance of Endozoicomonadaceae. Frontiers in Microbiology, 2019, 10, 2661.	1.5	13
211	Relationship Between Carbon- and Oxygen-Based Primary Productivity in the Arctic Ocean, Svalbard Archipelago. Frontiers in Marine Science, 2019, 6, .	1.2	10
212	Night-Time Temperature Reprieves Enhance the Thermal Tolerance of a Symbiotic Cnidarian. Frontiers in Marine Science, 2019, 6, .	1.2	17
213	Combining Semantic Tools for Automatic Evaluation of Alternative Texts., 2019,,.		4
214	Airborne Prokaryote and Virus Abundance Over the Red Sea. Frontiers in Microbiology, 2019, 10, 1112.	1.5	21
215	Oxygen supersaturation protects coastal marine fauna from ocean warming. Science Advances, 2019, 5, eaax1814.	4.7	49
216	The future of Blue Carbon science. Nature Communications, 2019, 10, 3998.	5.8	406

#	Article	IF	CITATIONS
217	Rates and drivers of Red Sea plankton community metabolism. Biogeosciences, 2019, 16, 2983-2995.	1.3	13
218	Australian vegetated coastal ecosystems as global hotspots for climate change mitigation. Nature Communications, 2019, 10, 4313.	5.8	150
219	Can Fish and Cell Phones Teach Us about Our Health?. ACS Sensors, 2019, 4, 2566-2570.	4.0	2
220	Functional metagenomic analysis of dust-associated microbiomes above the Red Sea. Scientific Reports, 2019, 9, 13741.	1.6	27
221	Adhesion to coral surface as a potential sink for marine microplastics. Environmental Pollution, 2019, 255, 113281.	3.7	95
222	Overhauling Ocean Spatial Planning to Improve Marine Megafauna Conservation. Frontiers in Marine Science, $2019, 6, .$	1.2	65
223	Flexible, four-electrode conductivity cell for biologging applications. Results in Materials, 2019, 1, 100009.	0.9	9
224	Mangrove forests as traps for marine litter. Environmental Pollution, 2019, 247, 499-508.	3.7	222
225	Higher contribution of globally rare bacterial taxa reflects environmental transitions across the surface ocean. Molecular Ecology, 2019, 28, 1930-1945.	2.0	41
226	Noninvasive Featherlight Wearable Compliant "Marine Skin†Standalone Multisensory System for Deepâ€Sea Environmental Monitoring. Small, 2019, 15, e1804385.	5.2	49
227	Use of cavity ringâ€down spectrometry to quantify 13 Câ€primary productivity in oligotrophic waters. Limnology and Oceanography: Methods, 2019, 17, 137-144.	1.0	8
228	Patterns and Drivers of UV Absorbing Chromophoric Dissolved Organic Matter in the Euphotic Layer of the Open Ocean. Frontiers in Marine Science, 2019, 6, .	1.2	15
229	Integrating within-species variation in thermal physiology into climate change ecology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180550.	1.8	118
230	Deep Penetration of Kelps Offshore Along the West Coast of Greenland. Frontiers in Marine Science, 2019, 6, .	1.2	22
231	Seagrass Posidonia oceanica diel pH fluctuations reduce the mortality of epiphytic forams under experimental ocean acidification. Marine Pollution Bulletin, 2019, 146, 247-254.	2.3	14
232	Carbon and Nitrogen Concentrations, Stocks, and Isotopic Compositions in Red Sea Seagrass and Mangrove Sediments. Frontiers in Marine Science, 2019, 6, .	1.2	28
233	Toward a Coordinated Global Observing System for Seagrasses and Marine Macroalgae. Frontiers in Marine Science, 2019, 6, .	1.2	123
234	Microplastic removal by Red Sea giant clam (Tridacna maxima). Environmental Pollution, 2019, 252, 1257-1266.	3.7	75

#	Article	IF	CITATIONS
235	Silicic acid limitation drives bloom termination and potential carbon sequestration in an Arctic bloom. Scientific Reports, 2019, 9, 8149.	1.6	43
236	Fingerprinting Blue Carbon: Rationale and Tools to Determine the Source of Organic Carbon in Marine Depositional Environments. Frontiers in Marine Science, 2019, 6, .	1.2	75
237	The importance of sample size in marine megafauna tagging studies. Ecological Applications, 2019, 29, e01947.	1.8	86
238	The Red Sea: Environmental Gradients Shape a Natural Laboratory in a Nascent Ocean. Coral Reefs of the World, 2019, , 1-10.	0.3	32
239	Are the ecological effects of the "worst―marine invasive species linked with scientific and media attention?. PLoS ONE, 2019, 14, e0215691.	1.1	5
240	Warming effect on nitrogen fixation in Mediterranean macrophyte sediments. Biogeosciences, 2019, 16, 167-175.	1.3	10
241	Drivers of pH Variability in Coastal Ecosystems. Environmental Science & Envir	4.6	113
242	Accelerated burial of petroleum hydrocarbons in Arabian Gulf blue carbon repositories. Science of the Total Environment, 2019, 669, 205-212.	3.9	25
243	Role of carbonate burial in Blue Carbon budgets. Nature Communications, 2019, 10, 1106.	5.8	105
244	Warming and CO2 Enhance Arctic Heterotrophic Microbial Activity. Frontiers in Microbiology, 2019, 10, 494.	1.5	30
245	Dimensions of Blue Carbon and emerging perspectives. Biology Letters, 2019, 15, 20180781.	1.0	261
246	Translating Marine Animal Tracking Data into Conservation Policy and Management. Trends in Ecology and Evolution, 2019, 34, 459-473.	4.2	256
247	Global ecological impacts of marine exotic species. Nature Ecology and Evolution, 2019, 3, 787-800.	3.4	128
248	Multi-model remote sensing assessment of primary production in the subtropical gyres. Journal of Marine Systems, 2019, 196, 97-106.	0.9	13
249	Distribution and Characteristics of Halobates germanus Population in the Red Sea. Frontiers in Marine Science, 2019, 6, .	1.2	3
250	Gelatinous Zooplankton in the Surface Layers of the Coastal Central Red Sea. Frontiers in Marine Science, 2019, 6, .	1.2	8
251	Thuwalallenes A–E and Thuwalenynes A–C: New C15 Acetogenins with Anti-Inflammatory Activity from a Saudi Arabian Red Sea Laurencia sp Marine Drugs, 2019, 17, 644.	2.2	9
252	Collaborative Database to Track Mass Mortality Events in the Mediterranean Sea. Frontiers in Marine Science, 2019, 6, .	1.2	104

#	Article	IF	CITATIONS
253	Scaling of species distribution explains the vast potential marine prokaryote diversity. Scientific Reports, 2019, 9, 18710.	1.6	8
254	Seagrass Distribution, Composition and Abundance Along the Saudi Arabian Coast of Red Sea. Springer Oceanography, 2019, , 367-385.	0.2	16
255	Projected Changes in Photosynthetic Picoplankton in a Warmer Subtropical Ocean. Frontiers in Marine Science, 2019, 5, .	1.2	45
256	Global challenges for seagrass conservation. Ambio, 2019, 48, 801-815.	2.8	215
257	Trace metal partitioning in the top meter of the ocean. Science of the Total Environment, 2019, 652, 907-914.	3.9	18
258	Gene pool and connectivity patterns of <i>Pinna nobilis</i> in the Balearic Islands (Spain, Western) Tj ETQq0 0 0 Marine and Freshwater Ecosystems, 2019, 29, 175-188.	0.9 rgBT	erlock 10 Tf 5 9
259	Seagrass sedimentary deposits as security vaults and time capsules of the human past. Ambio, 2019, 48, 325-335.	2.8	17
260	Implanted Nanosensors in Marine Organisms for Physiological Biologging: Design, Feasibility, and Species Variability. ACS Sensors, 2019, 4, 32-43.	4.0	36
261	Thermal dependence of seagrass ecosystem metabolism in the Red Sea. Marine Ecology - Progress Series, 2019, 614, 79-90.	0.9	23
262	Habitat characteristics provide insights of carbon storage in seagrass meadows. Marine Pollution Bulletin, 2018, 134, 106-117.	2.3	145
263	Convergence of marine megafauna movement patterns in coastal and open oceans. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3072-3077.	3.3	103
264	Genetic and oceanographic tools reveal high population connectivity and diversity in the endangered pen shell Pinna nobilis. Scientific Reports, 2018, 8, 4770.	1.6	31
265	Accumulation of Carbonates Contributes to Coastal Vegetated Ecosystems Keeping Pace With Sea Level Rise in an Arid Region (Arabian Peninsula). Journal of Geophysical Research G: Biogeosciences, 2018, 123, 1498-1510.	1.3	48
266	Greenland Tidal Pools as Hot Spots for Ecosystem Metabolism and Calcification. Estuaries and Coasts, 2018, 41, 1314-1321.	1.0	9
267	Large-scale ocean connectivity and planktonic body size. Nature Communications, 2018, 9, 142.	5.8	102
268	Use of unmanned aerial vehicles for efficient beach litter monitoring. Marine Pollution Bulletin, 2018, 131, 662-673.	2.3	135
269	Microplastic in the gastrointestinal tract of fishes along the Saudi Arabian Red Sea coast. Marine Pollution Bulletin, 2018, 131, 407-415.	2.3	185
270	Compliant lightweight non-invasive standalone "Marine Skin―tagging system. Npj Flexible Electronics, 2018, 2, .	5.1	50

#	Article	IF	CITATIONS
271	A marine heatwave drives massive losses from the world's largest seagrass carbon stocks. Nature Climate Change, 2018, 8, 338-344.	8.1	318
272	Rare symbionts may contribute to the resilience of coral–algal assemblages. ISME Journal, 2018, 12, 161-172.	4.4	174
273	Spatial complexities in aboveground carbon stocks of a semi-arid mangrove community: A remote sensing height-biomass-carbon approach. Estuarine, Coastal and Shelf Science, 2018, 200, 194-201.	0.9	57
274	Variable metabolic responses of Skagerrak invertebrates to low O ₂ and high CO ₂ scenarios. Biogeosciences, 2018, 15, 3717-3729.	1.3	6
275	High denitrification and anaerobic ammonium oxidation contributes to net nitrogen loss in a seagrass ecosystem in the central Red Sea. Biogeosciences, 2018, 15, 7333-7346.	1.3	19
276	Stable Isotope (Î 13 C, Î 15 N, Î 18 O, Î D) Composition and Nutrient Concentration of Red Sea Primary Producers. Frontiers in Marine Science, 2018, 5, .	1,2	41
277	Sensor for Real-Time Animal Condition and Movement Monitoring. , 2018, , .		О
278	Reviews and syntheses: ²¹⁰ Pb-derived sediment and carbon accumulation rates in vegetated coastal ecosystems – setting the record straight. Biogeosciences, 2018, 15, 6791-6818.	1.3	121
279	Carbon dioxide and methane fluxes at the air–sea interface of Red Sea mangroves. Biogeosciences, 2018, 15, 5365-5375.	1.3	17
280	Biogenic silica production and diatom dynamics in the Svalbard region during spring. Biogeosciences, 2018, 15, 6503-6517.	1.3	31
281	Perspectives on a Global Observing System to Assess Ocean Health. Frontiers in Marine Science, 2018, 5, .	1.2	35
282	Intervention Options to Accelerate Ecosystem Recovery From Coastal Eutrophication. Frontiers in Marine Science, $2018, 5, .$	1,2	44
283	Remobilization of Heavy Metals by Mangrove Leaves. Frontiers in Marine Science, 2018, 5, .	1.2	32
284	Claims That Anthropogenic Stressors Facilitate Jellyfish Blooms Have Been Amplified Beyond the Available Evidence: A Systematic Review. Frontiers in Marine Science, 2018, 5, .	1,2	49
285	Predator Avoidance in the European Seabass After Recovery From Short-Term Hypoxia and Different CO2 Conditions. Frontiers in Marine Science, 2018, 5, .	1.2	3
286	Optimal soil carbon sampling designs to achieve cost-effectiveness: a case study in blue carbon ecosystems. Biology Letters, 2018, 14, 20180416.	1.0	14
287	Losses of salt marsh in China: Trends, threats and management. Estuarine, Coastal and Shelf Science, 2018, 214, 98-109.	0.9	103
288	Carbon stocks and accumulation rates in Red Sea seagrass meadows. Scientific Reports, 2018, 8, 15037.	1.6	41

#	Article	IF	Citations
289	Flexible and Biofouling Independent Salinity Sensor. Advanced Materials Interfaces, 2018, 5, 1801110.	1.9	29
290	Expanding Greenland seagrass meadows contribute new sediment carbon sinks. Scientific Reports, 2018, 8, 14024.	1.6	25
291	Ocean Solutions to Address Climate Change and Its Effects on Marine Ecosystems. Frontiers in Marine Science, 2018, 5, .	1.2	248
292	Sinking particles promote vertical connectivity in the ocean microbiome. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6799-E6807.	3.3	185
293	Tunable, Flexible Composite Magnets for Marine Monitoring Applications. Advanced Engineering Materials, 2018, 20, 1800229.	1.6	17
294	Sequestration of macroalgal carbon: the elephant in the Blue Carbon room. Biology Letters, 2018, 14, 20180236.	1.0	222
295	Reply to †Increased food supply mitigates ocean acidification effects on calcification but exacerbates effects on growth'. Scientific Reports, 2018, 8, 9799.	1.6	2
296	Marine forests of the Mediterranean-Atlantic Cystoseira tamariscifolia complex show a southern Iberian genetic hotspot and no reproductive isolation in parapatry. Scientific Reports, 2018, 8, 10427.	1.6	25
297	Give the machine a hand: A Boolean timeâ€based decisionâ€tree template for rapidly finding animal behaviours in multisensor data. Methods in Ecology and Evolution, 2018, 9, 2206-2215.	2.2	27
298	New Tools to Identify the Location of Seagrass Meadows: Marine Grazers as Habitat Indicators. Frontiers in Marine Science, $2018, 5, .$	1.2	28
299	How Big Data Fast Tracked Human Mobility Research and the Lessons for Animal Movement Ecology. Frontiers in Marine Science, 2018, 5, .	1.2	44
300	Iron Deficiency in Seagrasses and Macroalgae in the Red Sea Is Unrelated to Latitude and Physiological Performance. Frontiers in Marine Science, 2018, 5, .	1.2	30
301	Sonification of Animal Tracks as an Alternative Representation of Multi-Dimensional Data: A Northern Elephant Seal Example. Frontiers in Marine Science, 2018, 5, .	1.2	3
302	Climate Change Impacts on Seagrass Meadows and Macroalgal Forests: An Integrative Perspective on Acclimation and Adaptation Potential. Frontiers in Marine Science, 2018, 5, .	1.2	149
303	Leaf Nutrient Resorption and Export Fluxes of Avicennia marina in the Central Red Sea Area. Frontiers in Marine Science, 2018, 5, .	1.2	8
304	Dramatic loss of seagrass habitat under projected climate change in the Mediterranean Sea. Global Change Biology, 2018, 24, 4919-4928.	4.2	140
305	Episodic Arctic CO2 Limitation in the West Svalbard Shelf. Frontiers in Marine Science, 2018, 5, .	1.2	25
306	Concentration and isotopic composition of dissolved Pb in surface waters of the modern global ocean. Geochimica Et Cosmochimica Acta, 2018, 235, 41-54.	1.6	16

#	Article	IF	CITATIONS
307	Organic carbon sequestration and storage in vegetated coastal habitats along the western coast of the Arabian Gulf. Environmental Research Letters, 2018, 13, 074007.	2.2	48
308	Annual plankton community metabolism in estuarine and coastal waters in Perth (Western Australia). PeerJ, 2018, 6, e5081.	0.9	7
309	Entangled fates of holobiont genomes during invasion: nested bacterial and host diversities in <i>Caulerpa taxifolia</i> . Molecular Ecology, 2017, 26, 2379-2391.	2.0	42
310	The Ecology of Human Mobility. Trends in Ecology and Evolution, 2017, 32, 198-210.	4.2	44
311	Light availability and temperature, not increased CO 2, will structure future meadows of Posidonia oceanica. Aquatic Botany, 2017, 139, 32-36.	0.8	22
312	Temperature regulation of marine heterotrophic prokaryotes increases latitudinally as a breach between bottomâ€up and topâ€down controls. Global Change Biology, 2017, 23, 3956-3964.	4.2	48
313	Nutrient removal from Chinese coastal waters by large-scale seaweed aquaculture. Scientific Reports, 2017, 7, 46613.	1.6	131
314	The Arctic Ocean as a dead end for floating plastics in the North Atlantic branch of the Thermohaline Circulation. Science Advances, 2017, 3, e1600582.	4.7	417
315	Is Climate Change Shifting the Poleward Limit of Mangroves?. Estuaries and Coasts, 2017, 40, 1215-1226.	1.0	17
316	Assessing the risk of carbon dioxide emissions from blue carbon ecosystems. Frontiers in Ecology and the Environment, 2017, 15, 257-265.	1.9	145
317	Temperature dependence of plankton community metabolism in the subtropical and tropical oceans. Global Biogeochemical Cycles, 2017, 31, 1141-1154.	1.9	12
318	Imbalanced nutrient recycling in a warmer ocean driven by differential response of extracellular enzymatic activities. Global Change Biology, 2017, 23, 4084-4093.	4.2	17
319	Effect of environmental factors (wave exposure and depth) and anthropogenic pressure in the C sink capacity of <i>Posidonia oceanica</i> meadows. Limnology and Oceanography, 2017, 62, 1436-1450.	1.6	66
320	Autochthonous and allochthonous contributions of organic carbon to microbial food webs in Svalbard fjords. Limnology and Oceanography, 2017, 62, 1307-1323.	1.6	28
321	Carbon sequestration by Australian tidal marshes. Scientific Reports, 2017, 7, 44071.	1.6	112
322	Dynamics of carbon sources supporting burial in seagrass sediments under increasing anthropogenic pressure. Limnology and Oceanography, 2017, 62, 1451-1465.	1.6	39
323	Current state of seagrass ecosystem services: Research and policy integration. Ocean and Coastal Management, 2017, 149, 107-115.	2.0	73
324	Decadal trends in Red Sea maximum surface temperature. Scientific Reports, 2017, 7, 8144.	1.6	151

#	Article	IF	CITATIONS
325	Low Carbon sink capacity of Red Sea mangroves. Scientific Reports, 2017, 7, 9700.	1.6	87
326	Unveiling the role and life strategies of viruses from the surface to the dark ocean. Science Advances, 2017, 3, e1602565.	4.7	113
327	Big data analyses reveal patterns and drivers of the movements of southern elephant seals. Scientific Reports, 2017, 7, 112.	1.6	33
328	Continuous daylight in the high-Arctic summer supports high plankton respiration rates compared to those supported in the dark. Scientific Reports, 2017, 7, 1247.	1.6	11
329	Palaeoclimatic conditions in the Mediterranean explain genetic diversity of Posidonia oceanica seagrass meadows. Scientific Reports, 2017, 7, 2732.	1.6	29
330	Long-range transport of airborne microbes over the global tropical and subtropical ocean. Nature Communications, 2017, 8, 201.	5. 8	127
331	Addressing calcium carbonate cycling in blue carbon accounting. Limnology and Oceanography Letters, 2017, 2, 195-201.	1.6	100
332	Global patterns in mangrove soil carbon stocks and losses. Nature Climate Change, 2017, 7, 523-528.	8.1	412
333	Zooplankton excretion metabolites stimulate Southern Ocean phytoplankton growth. Polar Biology, 2017, 40, 2035-2045.	0.5	10
334	pH gradients in the diffusive boundary layer of subarctic macrophytes. Polar Biology, 2017, 40, 2343-2348.	0.5	12
335	Marine reserves can mitigate and promote adaptation to climate change. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6167-6175.	3.3	450
336	A population genetics toolbox for the threatened canopy-forming brown seaweeds Cystoseira tamariscifolia and C. amentacea (Fucales, Sargassaceae). Journal of Applied Phycology, 2017, 29, 627-629.	1.5	4
337	Effects of UVB radiation on net community production in the upper global ocean. Global Ecology and Biogeography, 2017, 26, 54-64.	2.7	17
338	Reviews and syntheses: Hidden forests, the role of vegetated coastal habitats in the ocean carbon budget. Biogeosciences, 2017, 14, 301-310.	1.3	195
339	Commentary: Evaluating the Role of Seagrass in Cenozoic CO2 Variations. Frontiers in Environmental Science, 2017, 5, .	1.5	2
340	Export from Seagrass Meadows Contributes to Marine Carbon Sequestration. Frontiers in Marine Science, 2017, 4, .	1.2	195
341	Contrasting Responses of Marine and Freshwater Photosynthetic Organisms to UVB Radiation: A Meta-Analysis. Frontiers in Marine Science, 2017, 4, .	1.2	12
342	Can Seaweed Farming Play a Role in Climate Change Mitigation and Adaptation?. Frontiers in Marine Science, 2017, 4, .	1.2	350

#	Article	lF	CITATIONS
343	Ten Thousand Voices on Marine Climate Change in Europe: Different Perceptions among Demographic Groups and Nationalities. Frontiers in Marine Science, 2017, 4, .	1.2	40
344	Low Abundance of Plastic Fragments in the Surface Waters of the Red Sea. Frontiers in Marine Science, $2017, 4, .$	1.2	43
345	Methane Production by Seagrass Ecosystems in the Red Sea. Frontiers in Marine Science, 2017, 4, .	1.2	39
346	Oligotrophication and Metabolic Slowing-Down of a NW Mediterranean Coastal Ecosystem. Frontiers in Marine Science, 2017, 4, .	1.2	17
347	Viruses and Protists Induced-mortality of Prokaryotes around the Antarctic Peninsula during the Austral Summer. Frontiers in Microbiology, 2017, 8, 241.	1.5	44
348	Light penetration structures the deep acoustic scattering layers in the global ocean. Science Advances, 2017, 3, e1602468.	4.7	79
349	Fairy circle landscapes under the sea. Science Advances, 2017, 3, e1603262.	4.7	60
350	Seagrass as major source of transparent exopolymer particles in the oligotrophic Mediterranean coast. Biogeosciences, 2017, 14, 5069-5075.	1.3	8
351	chapter 6 Ubiquitous Healthy Diatoms in the Deep Sea Confirm Deep Carbon Injection by the Biological Pump. , 2017, , 123-148.		0
352	Can mud (silt and clay) concentration be used to predict soil organic carbon content within seagrass ecosystems?. Biogeosciences, 2016, 13, 4915-4926.	1.3	92
353	Key biogeochemical factors affecting soil carbon storage in <i>Posidonia</i> meadows. Biogeosciences, 2016, 13, 4581-4594.	1.3	74
354	Temperature dependence of the relationship between & amp;lt;i>p <l>pCO₂ and dissolved organic carbon in lakes. Biogeosciences, 2016, 13, 865-871.</l>	1.3	17
355	Evidences of Impacts of Climate Change on Mediterranean Biota. Frontiers in Marine Science, 2016, 3, .	1.2	2
356	Nutrient Limitation in Central Red Sea Mangroves. Frontiers in Marine Science, 2016, 3, .	1.2	59
357	Ecological and methodological drivers of species' distribution and phenology responses to climate change. Global Change Biology, 2016, 22, 1548-1560.	4.2	162
358	Global analysis of seagrass restoration: the importance of largeâ€scale planting. Journal of Applied Ecology, 2016, 53, 567-578.	1.9	348
359	Seagrass sediments reveal the longâ€ŧerm deterioration of an estuarine ecosystem. Global Change Biology, 2016, 22, 1523-1531.	4.2	35
360	Biomineralization changes with food supply confer juvenile scallops (<i>Argopecten purpuratus</i> presistance to ocean acidification. Global Change Biology, 2016, 22, 2025-2037.	4.2	57

#	Article	IF	Citations
361	Flawed citation practices facilitate the unsubstantiated perception of a global trend toward increased jellyfish blooms. Global Ecology and Biogeography, 2016, 25, 1039-1049.	2.7	54
362	Phenology and Growth dynamics of Avicennia marina in the Central Red Sea. Scientific Reports, 2016, 6, 37785.	1.6	45
363	Seagrass (Posidonia oceanica) seedlings in a high-CO2 world: from physiology to herbivory. Scientific Reports, 2016, 6, 38017.	1.6	35
364	Long photoperiods sustain high pH in Arctic kelp forests. Science Advances, 2016, 2, e1501938.	4.7	63
365	A quantitative assessment of Arctic shipping in 2010–2014. Scientific Reports, 2016, 6, 30682.	1.6	140
366	Food supply confers calcifiers resistance to ocean acidification. Scientific Reports, 2016, 6, 19374.	1.6	112
367	High atmosphere–ocean exchange of semivolatile aromatic hydrocarbons. Nature Geoscience, 2016, 9, 438-442.	5.4	116
368	Ontogenetic Changes in Vulnerability of the Prawn Fenneropenaeus indicus to UV-B Radiation Help Explain Ontogenetic Habitat Shifts. Estuaries and Coasts, 2016, 39, 839-845.	1.0	0
369	CDOM Sources and Photobleaching Control Quantum Yields for Oceanic DMS Photolysis. Environmental Science & Environmental Scien	4.6	22
370	Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature, 2016, 537, 689-693.	13.7	629
371	Substantial role of macroalgae in marine carbon sequestration. Nature Geoscience, 2016, 9, 737-742.	5.4	623
372	Development technologies impact in web accessibility. , 2016, , .		9
373	The exposure of the Great Barrier Reef to ocean acidification. Nature Communications, 2016, 7, 10732.	5.8	58
374	Impact of mooring activities on carbon stocks in seagrass meadows. Scientific Reports, 2016, 6, 23193.	1.6	84
375	Large-Scale Prediction of Seagrass Distribution Integrating Landscape Metrics and Environmental Factors: The Case of Cymodocea nodosa (Mediterranean–Atlantic). Estuaries and Coasts, 2016, 39, 123-137.	1.0	51
376	The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature, 2016, 530, 331-335.	13.7	460
377	Decadal stability of Red Sea mangroves. Estuarine, Coastal and Shelf Science, 2016, 169, 164-172.	0.9	73
378	Nitrogen-fixing bacteria in Mediterranean seagrass (Posidonia oceanica) roots. Aquatic Botany, 2016, 131, 57-60.	0.8	53

#	Article	IF	CITATIONS
379	Key Questions in Marine Megafauna Movement Ecology. Trends in Ecology and Evolution, 2016, 31, 463-475.	4.2	397
380	Response of seagrass indicators to shifts in environmental stressors: A global review and management synthesis. Ecological Indicators, 2016, 63, 310-323.	2.6	120
381	Reconstruction of centennial-scale fluxes of chemical elements in the Australian coastal environment using seagrass archives. Science of the Total Environment, 2016, 541, 883-894.	3.9	31
382	Large variability of bathypelagic microbial eukaryotic communities across the world's oceans. ISME Journal, 2016, 10, 945-958.	4.4	171
383	Global diversity and biogeography of deep-sea pelagic prokaryotes. ISME Journal, 2016, 10, 596-608.	4.4	191
384	Plasticity and trade-offs in physiological traits of intertidal mussels subjected to freshwater-induced environmental variation. Marine Ecology - Progress Series, 2016, 553, 93-109.	0.9	22
385	Seafaring in the 21St Century: The Malaspina 2010 Circumnavigation Expedition. Limnology and Oceanography Bulletin, 2015, 24, 11-14.	0.2	178
386	Dissolved organic carbon pools and export from the coastal ocean. Global Biogeochemical Cycles, 2015, 29, 1725-1738.	1.9	93
387	Particleâ€association lifestyle is a phylogenetically conserved trait in bathypelagic prokaryotes. Molecular Ecology, 2015, 24, 5692-5706.	2.0	113
388	Surface distribution of dissolved trace metals in the oligotrophic ocean and their influence on phytoplankton biomass and productivity. Global Biogeochemical Cycles, 2015, 29, 1763-1781.	1.9	44
389	Experimental assessment of cumulative temperature and UV-B radiation effects on Mediterranean plankton metabolism. Frontiers in Marine Science, 2015, 2, .	1.2	17
390	Synergistic effects of hypoxia and increasing CO2 on benthic invertebrates of the central Chilean coast. Frontiers in Marine Science, 2015, 2, .	1.2	31
391	Footprints of climate change on Mediterranean Sea biota. Frontiers in Marine Science, 2015, 2, .	1.2	145
392	Plastic Accumulation in the Mediterranean Sea. PLoS ONE, 2015, 10, e0121762.	1.1	553
393	Sensitivity and Acclimation of Three Canopy-Forming Seaweeds to UVB Radiation and Warming. PLoS ONE, 2015, 10, e0143031.	1.1	36
394	Macroalgae contribute to nested mosaics of pH variability in a subarctic fjord. Biogeosciences, 2015, 12, 4895-4911.	1.3	59
395	Seagrass meadows as a globally significant carbonate reservoir. Biogeosciences, 2015, 12, 4993-5003.	1.3	104
396	Global abundance of planktonic heterotrophic protists in the deep ocean. ISME Journal, 2015, 9, 782-792.	4.4	101

#	Article	IF	CITATIONS
397	Functional differences in the allometry of the water, carbon and nitrogen content of gelatinous organisms. Journal of Plankton Research, 2015, 37, 989-1000.	0.8	17
398	Resistance of juveniles of the Mediterranean pen shell, (Pinna nobilis) to hypoxia and interaction with warming. Estuarine, Coastal and Shelf Science, 2015, 165, 199-203.	0.9	10
399	Shifts in shell mineralogy and metabolism of Concholepas concholepas juveniles along the Chilean coast. Marine and Freshwater Research, 2015, 66, 1147.	0.7	25
400	Response to Comment on "Dilution limits dissolved organic carbon utilization in the deep oceanâ€∙ Science, 2015, 350, 1483-1483.	6.0	11
401	Reconsidering Ocean Calamities. BioScience, 2015, 65, 130-139.	2.2	55
402	Genetic diversity and biogeographical patterns of Caulerpa prolifera across the Mediterranean and Mediterranean/Atlantic transition zone. Marine Biology, 2015, 162, 557-569.	0.7	9
403	Impact of seagrass loss and subsequent revegetation on carbon sequestration and stocks. Journal of Ecology, 2015, 103, 296-302.	1.9	199
404	Experimental Assessment of Temperature Thresholds for Arctic Phytoplankton Communities. Estuaries and Coasts, 2015, 38, 873-885.	1.0	26
405	Extreme pH Conditions at a Natural CO2 Vent System (Italy) Affect Growth, and Survival of Juvenile Pen Shells (Pinna nobilis). Estuaries and Coasts, 2015, 38, 1986-1999.	1.0	18
406	Juvenile Pen Shells (Pinna nobilis) Tolerate Acidification but Are Vulnerable to Warming. Estuaries and Coasts, 2015, 38, 1976-1985.	1.0	10
407	A transcriptome resource for Antarctic krill (Euphausia superba Dana) exposed to short-term stress. Marine Genomics, 2015, 23, 45-47.	0.4	8
408	The Pen Shell, Pinna nobilis. Advances in Marine Biology, 2015, 71, 109-160.	0.7	59
409	Ocean Calamities: Delineating the Boundaries between Scientific Evidence and Belief. BioScience, 2015, 65, 746-747.	2.2	2
410	Metatranscriptomes reveal functional variation in diatom communities from the Antarctic Peninsula. ISME Journal, 2015, 9, 2275-2289.	4.4	55
411	In Memoriam, Scott M. Nixon (1943–2012). Estuaries and Coasts, 2015, 38, 1123-1125.	1.0	0
412	Dilution limits dissolved organic carbon utilization in the deep ocean. Science, 2015, 348, 331-333.	6.0	230
413	Strengthening confidence in climate change impact science. Global Ecology and Biogeography, 2015, 24, 64-76.	2.7	45
414	Ubiquitous healthy diatoms in the deep sea confirm deep carbon injection by the biological pump. Nature Communications, 2015, 6, 7608.	5.8	177

#	Article	IF	Citations
415	Temperature dependence of CO2-enhanced primary production in the European Arctic Ocean. Nature Climate Change, 2015, 5, 1079-1082.	8.1	65
416	Paradigms in the Recovery of Estuarine and Coastal Ecosystems. Estuaries and Coasts, 2015, 38, 1202-1212.	1.0	154
417	Strong Sensitivity of Red Sea Zooplankton to UV-B Radiation. Estuaries and Coasts, 2015, 38, 846-853.	1.0	13
418	Biological mechanisms supporting adaptation to ocean acidification in coastal ecosystems. Estuarine, Coastal and Shelf Science, 2015, 152, A1-A8.	0.9	105
419	Contrasting Sensitivity of Marine Biota to UV-B Radiation Between Southern and Northern Hemispheres. Estuaries and Coasts, 2015, 38, 1126-1133.	1.0	15
420	Warming Reduces Pathogen Pressure on a Climate-Vulnerable Seagrass Species. Estuaries and Coasts, 2015, 38, 659-667.	1.0	25
421	Out of Thin Air: Microbial Utilization of Atmospheric Gaseous Organics in the Surface Ocean. Frontiers in Microbiology, 2015, 6, 1566.	1.5	2
422	Highly polymorphic microsatellite markers for the Mediterranean endemic fan mussel Pinna nobilis. Mediterranean Marine Science, 2015, 16, 31.	0.6	13
423	Combined effect of warming and infection by Labyrinthula sp. on the Mediterranean seagrass Cymodocea nodosa. Marine Ecology - Progress Series, 2015, 532, 101-109.	0.9	14
424	Global change in marine ecosystems: implications for semi-enclosed Arabian seas. , 2015, , .		0
425	Multiple stressors for oceanic primary production., 2015,,.		0
426	Photosynthetic activity buffers ocean acidification in seagrass meadows. Biogeosciences, 2014, 11, 333-346.	1.3	218
427	UV sensitivity of planktonic net community production in ocean surface waters. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 929-936.	1.3	21
428	High Mortality of Red Sea Zooplankton under Ambient Solar Radiation. PLoS ONE, 2014, 9, e108778.	1.1	16
429	Temperature dependence of planktonic metabolism in the subtropical North Atlantic Ocean. Biogeosciences, 2014, 11, 4529-4540.	1.3	16
430	Comparing marine primary production estimates through different methods and development of conversion equations. Frontiers in Marine Science, 2014, 1 , .	1.2	63
431	Size-dependence of volatile and semi-volatile organic carbon content in phytoplankton cells. Frontiers in Marine Science, $2014, 1, \dots$	1.2	6
432	Dissolved organic carbon fluxes by seagrass meadows and macroalgal beds. Frontiers in Marine Science, 2014, 1 , .	1.2	41

#	Article	IF	Citations
433	Interactive effect of temperature and CO $<$ sub $>$ 2 $<$ /sub $>$ increase in Arctic phytoplankton. Frontiers in Marine Science, 2014, 1, .	1.2	44
434	Global change and the future ocean: a grand challenge for marine sciences. Frontiers in Marine Science, 2014, $1, \dots$	1.2	108
435	Annual benthic metabolism and organic carbon fluxes in a semi-enclosed Mediterranean bay dominated by the macroalgae Caulerpa prolifera. Frontiers in Marine Science, 2014, 1 , .	1.2	7
436	Expansion of vegetated coastal ecosystems in the future Arctic. Frontiers in Marine Science, 2014, 1, .	1.2	135
437	Spatial gradients in trace metal concentrations in the surface microlayer of the Mediterranean Sea. Frontiers in Marine Science, 2014, 1 , .	1.2	27
438	Ocean–atmosphere exchange of organic carbon and CO ₂ surrounding the Antarctic Peninsula. Biogeosciences, 2014, 11, 2755-2770.	1.3	20
439	Resolving the abundance and air-sea fluxes of airborne microorganisms in the North Atlantic Ocean. Frontiers in Microbiology, 2014, 5, 557.	1.5	76
440	Linking human wellâ€being and jellyfish: ecosystem services, impacts, and societal responses. Frontiers in Ecology and the Environment, 2014, 12, 515-523.	1.9	108
441	Plastic debris in the open ocean. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10239-10244.	3.3	2,157
442	The movement ecology of seagrasses. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140878.	1.2	124
443	Geographical limits to species-range shifts are suggested by climate velocity. Nature, 2014, 507, 492-495.	13.7	436
444	Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nature Communications, 2014, 5, 3271.	5.8	561
445	Bacterial production and losses to predators along an open ocean productivity gradient in the Subtropical North East Atlantic Ocean. Journal of Plankton Research, 2014, 36, 198-213.	0.8	22
446	Characterization of polymorphic microsatellite loci in the Antarctic krill Euphausia superba. BMC Research Notes, 2014, 7, 73.	0.6	5
447	Gelatinous zooplankton biomass in the global oceans: geographic variation and environmental drivers. Global Ecology and Biogeography, 2014, 23, 701-714.	2.7	116
448	Biomares, a LIFE project to restore and manage the biodiversity of Prof. Luiz Saldanha Marine Park. Journal of Coastal Conservation, 2014, 18, 643-655.	0.7	14
449	Public awareness, concerns, and priorities about anthropogenic impacts on marine environments. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15042-15047.	3.3	181
450	Mediterranean seagrass (Posidonia oceanica) loss between 1842 and 2009. Biological Conservation, 2014, 176, 183-190.	1.9	166

#	Article	IF	Citations
451	Ultraviolet radiation enhances Arctic net plankton community production. Geophysical Research Letters, 2014, 41, 5960-5967.	1.5	12
452	Investigation of Arctic and Antarctic spatial and depth patterns of sea water in CTD profiles using chemometric data analysis. Polar Science, 2014, 8, 242-254.	0.5	4
453	Red ochre and shells: clues to human evolution. Trends in Ecology and Evolution, 2014, 29, 560-565.	4.2	33
454	Disentangling the Influence of Mutation and Migration in Clonal Seagrasses Using the Genetic Diversity Spectrum for Microsatellites. Journal of Heredity, 2014, 105, 532-541.	1.0	28
455	Global unbalance in seaweed production, research effort and biotechnology markets. Biotechnology Advances, 2014, 32, 1028-1036.	6.0	47
456	Changes in the C, N, and P cycles by the predicted salps-krill shift in the southern ocean. Frontiers in Marine Science, 2014, 1 , .	1.2	22
457	Seasonal dynamics of autotrophic and heterotrophic plankton metabolism and P _{CO2} in a subarctic Greenland fjord. Limnology and Oceanography, 2014, 59, 1764-1778.	1.6	23
458	Consequences of UV-enhanced community respiration for plankton metabolic balance. Limnology and Oceanography, 2014, 59, 223-232.	1.6	22
459	Krill Excretion Boosts Microbial Activity in the Southern Ocean. PLoS ONE, 2014, 9, e89391.	1.1	36
460	Impact of elevated <scp>UVB</scp> radiation on marine biota: a metaâ€analysis. Global Ecology and Biogeography, 2013, 22, 131-144.	2.7	85
461	Global imprint of climate change on marine life. Nature Climate Change, 2013, 3, 919-925.	8.1	1,602
462	Rapid growth of seaweed biotechnology provides opportunities for developing nations. Nature Biotechnology, 2013, 31, 591-592.	9.4	27
463	Variability in the abundance of Trichodesmium and nitrogen fixation activities in the subtropical NE Atlantic. Journal of Plankton Research, 2013, 35, 1126-1140.	0.8	14
464	Chip-On-Valve Concept: An Integrated Platform for Multisyringe Flow Injection Analysis: Application to Nitrite and Nitrate Determination in Seawater. Analytical Letters, 2013, 46, 2345-2358.	1.0	10
465	Entangled effects of allelic and clonal (genotypic) richness in the resistance and resilience of experimental populations of the seagrass Zostera noltii to diatom invasion. BMC Ecology, 2013, 13, 39.	3.0	43
466	Polar marine biology science in Portugal and Spain: Recent advances and future perspectives. Journal of Sea Research, 2013, 83, 9-29.	0.6	15
467	The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change, 2013, 3, 961-968.	8.1	1,369
468	Assessing the capacity of seagrass meadows for carbon burial: Current limitations and future strategies. Ocean and Coastal Management, 2013, 83, 32-38.	2.0	264

#	Article	IF	Citations
469	Is Ocean Acidification an Open-Ocean Syndrome? Understanding Anthropogenic Impacts on Seawater pH. Estuaries and Coasts, 2013, 36, 221-236.	1.0	561
470	The Oligotrophic Ocean Is Heterotrophic. Annual Review of Marine Science, 2013, 5, 551-569.	5.1	129
471	Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Global Change Biology, 2013, 19, 1884-1896.	4.2	1,772
472	Topological properties of polar food webs. Marine Ecology - Progress Series, 2013, 474, 15-26.	0.9	34
473	Recurrent jellyfish blooms are a consequence of global oscillations. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1000-1005.	3.3	378
474	Diversity of European seagrass indicators: patterns within and across regions. Hydrobiologia, 2013, 704, 265-278.	1.0	110
475	Boat anchoring impacts coastal populations of the pen shell, the largest bivalve in the Mediterranean. Biological Conservation, 2013, 160, 105-113.	1.9	40
476	Beyond climate change attribution in conservation and ecological research. Ecology Letters, 2013, 16, 58-71.	3.0	167
477	Is global ocean sprawl a cause of jellyfish blooms?. Frontiers in Ecology and the Environment, 2013, 11, 91-97.	1.9	231
478	Experimental Evaluation of the Response of Coastal Mediterranean Planktonic and Benthic Metabolism to Warming. Estuaries and Coasts, 2013, 36, 697-707.	1.0	13
479	Climate warming and Mediterranean seagrass. Nature Climate Change, 2013, 3, 3-4.	8.1	10
480	Global warming enhances sulphide stress in a key seagrass species (NW Mediterranean). Global Change Biology, 2013, 19, 3629-3639.	4.2	39
481	Assessing the <scp>CO</scp> ₂ capture potential of seagrass restoration projects. Journal of Applied Ecology, 2013, 50, 1341-1349.	1.9	68
482	Prevalence of strong vertical CO ₂ and O ₂ variability in the top meters of the ocean. Global Biogeochemical Cycles, 2013, 27, 941-949.	1.9	15
483	Global patterns in oceanic planktonic metabolism. Limnology and Oceanography, 2013, 58, 977-986.	1.6	31
484	Phytoplankton lysis predicts dissolved organic carbon release in marine plankton communities. Biogeosciences, 2013, 10, 1259-1264.	1.3	60
485	Seasonal patterns in Arctic planktonic metabolism (Fram Strait – Svalbard region). Biogeosciences, 2013, 10, 1451-1469.	1.3	33
486	Forcing of dissolved organic carbon release by phytoplankton by anticyclonic mesoscale eddies in the subtropical NE Atlantic Ocean. Biogeosciences, 2013, 10, 2129-2143.	1.3	25

#	Article	IF	CITATIONS
487	Corrigendum to "Seasonal patterns in Arctic planktonic metabolism (Fram Strait – Svalbard) Tj ETQc	1 _{1.3} 0.7843	314 rgBT /○
488	Experimentally determined temperature thresholds for Arctic plankton community metabolism. Biogeosciences, 2013, 10, 357-370.	1.3	45
489	Effects of temperature on the metabolic stoichiometry of Arctic zooplankton. Biogeosciences, 2013, 10, 689-697.	1.3	34
490	Geographical gradients of dissolved Vitamin B12 in the Mediterranean Sea. Frontiers in Microbiology, 2013, 4, 126.	1.5	21
491	Effects of Ocean Acidification and Warming on Sperm Activity and Early Life Stages of the Mediterranean Mussel (Mytilus galloprovincialis). Water (Switzerland), 2013, 5, 1890-1915.	1.2	42
492	Invasion Is a Community Affair: Clandestine Followers in the Bacterial Community Associated to Green Algae, Caulerpa racemosa, Track the Invasion Source. PLoS ONE, 2013, 8, e68429.	1.1	63
493	Jellyfish Body Plans Provide Allometric Advantages beyond Low Carbon Content. PLoS ONE, 2013, 8, e72683.	1.1	74
494	Experimental evaluation of the warming effect on viral, bacterial and protistan communities in two contrasting Arctic systems. Aquatic Microbial Ecology, 2013, 70, 17-32.	0.9	53
495	Multipumping flow systems devoid of computer control for process and environmental monitoring. International Journal of Environmental Analytical Chemistry, 2012, 92, 344-354.	1.8	4
496	Climate change and marine life. Biology Letters, 2012, 8, 907-909.	1.0	60
497	Invasive Species Unchecked by Climateâ€"Response. Science, 2012, 335, 538-539.	6.0	3
498	Temperature dependence of planktonic metabolism in the ocean. Global Biogeochemical Cycles, 2012, 26, .	1.9	141
499	Krill excretion and its effect on primary production. Marine Ecology - Progress Series, 2012, 459, 29-38.	0.9	21
500	Determination of ppb-level phenol index using in-syringe dispersive liquid-liquid microextraction and liquid waveguide capillary cell spectrophotometry. Mikrochimica Acta, 2012, 179, 91-98.	2.5	24
501	Fully-Automated Fluorimetric Determination of Aluminum in Seawater by In-Syringe Dispersive Liquid–Liquid Microextraction Using Lumogallion. Analytical Chemistry, 2012, 84, 9462-9469.	3.2	49
502	Automatic determination of copper by in-syringe dispersive liquidâ€"liquid microextraction of its bathocuproine-complex using long path-length spectrophotometric detection. Talanta, 2012, 99, 349-356.	2.9	67
503	Biogeography Revisited with Network Theory: Retracing the History of Hydrothermal Vent Communities. Systematic Biology, 2012, 61, 127.	2.7	93
504	Meristematic activity of Mediterranean seagrass (Posidonia oceanica) shoots. Aquatic Botany, 2012, 101, 28-33.	0.8	1

#	Article	IF	Citations
505	Mediterranean seagrass vulnerable to regional climate warming. Nature Climate Change, 2012, 2, 821-824.	8.1	282
506	Warming enhances sulphide stress of Mediterranean seagrass (Posidonia oceanica). Estuarine, Coastal and Shelf Science, 2012, 113, 240-247.	0.9	19
507	Temperature Dependence of Oxygen Dynamics and Community Metabolism in a Shallow Mediterranean Macroalgal Meadow (Caulerpa prolifera). Estuaries and Coasts, 2012, 35, 1182-1192.	1.0	32
508	Mediterranean Seagrass Growth and Demography Responses to Experimental Warming. Estuaries and Coasts, 2012, 35, 1205-1213.	1.0	67
509	Questioning the Rise of Gelatinous Zooplankton in the World's Oceans. BioScience, 2012, 62, 160-169.	2.2	257
510	Abrupt climate change in the Arctic. Nature Climate Change, 2012, 2, 60-62.	8.1	117
511	Implications of Extreme Life Span in Clonal Organisms: Millenary Clones in Meadows of the Threatened Seagrass Posidonia oceanica. PLoS ONE, 2012, 7, e30454.	1.1	195
512	Endophytic bacterial community of a Mediterranean marine angiosperm (Posidonia oceanica). Frontiers in Microbiology, 2012, 3, 342.	1.5	53
513	Coupled CO ₂ and O ₂ -driven compromises to marine life in summer along the Chilean sector of the Humboldt Current System. Biogeosciences, 2012, 9, 1183-1194.	1.3	25
514	Experimental assessment of the effect of UVB radiation on plankton community metabolism along the Southeastern Pacific off Chile. Biogeosciences, 2012, 9, 1267-1276.	1.3	12
515	Seagrass ecosystems as a globally significant carbon stock. Nature Geoscience, 2012, 5, 505-509.	5.4	1,406
516	SELECTIVE ELIMINATION OF CHLOROPLASTIDIAL DNA FOR METAGENOMICS OF BACTERIA ASSOCIATED WITH THE GREEN ALGA <i>CAULERPA TAXIFOLIA</i> (BRYOPSIDOPHYCEAE) ¹ . Journal of Phycology, 2012, 48, 483-490.	1.0	19
517	Uncertainty analysis along the ecological quality status of water bodies: The response of the Posidonia oceanica multivariate index (POMI) in three Mediterranean regions. Marine Pollution Bulletin, 2012, 64, 926-931.	2.3	10
518	Trace metals in deep ocean waters: A review. Journal of Marine Systems, 2012, 100-101, 26-33.	0.9	30
519	Tipping Elements in the Arctic Marine Ecosystem. Ambio, 2012, 41, 44-55.	2.8	91
520	Synergistic control of CO2 emissions by fish and nutrients in a humic tropical lake. Oecologia, 2012, 168, 839-847.	0.9	15
521	Thresholds of irradiance for seagrass Posidonia oceanica meadow metabolism. Marine Ecology - Progress Series, 2012, 466, 69-79.	0.9	23
522	Global abundance and size distribution of streams and rivers. Inland Waters, 2012, 2, 229-236.	1.1	257

#	Article	IF	Citations
523	Meridional and zonal changes in water properties along the continental slope off central and northern Chile. Ciencias Marinas, 2012, 38, 307-332.	0.4	25
524	Air-sea CO ₂ fluxes along the coast of Chile: From CO ₂ outgassing in central northern upwelling waters to CO ₂ uptake in southern Patagonian fjords. Journal of Geophysical Research, 2011, 116, .	3.3	98
525	Marinomonas alcarazii sp. nov., M. rhizomae sp. nov., M. foliarum sp. nov., M. posidonica sp. nov. and M. aquiplantarum sp. nov., isolated from the microbiota of the seagrass Posidonia oceanica. International Journal of Systematic and Evolutionary Microbiology, 2011, 61, 2191-2196.	0.8	43
526	Physical Ecosystem Engineers and the Functioning of Estuaries and Coasts., 2011,, 53-81.		75
527	Decoupled effects (positive to negative) of nutrient enrichment on ecosystem services., 2011, 21, 991-1009.		88
528	Distribution and contribution of major phytoplankton groups to carbon cycling across contrasting conditions of the subtropical northeast Atlantic Ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 2011, 58, 1115-1129.	0.6	16
529	A miniature and field-applicable multipumping flow analyzer for ammonium monitoring in seawater with fluorescence detection. Talanta, 2011, 85, 380-385.	2.9	39
530	Marine Biodiversity and Gene Patents. Science, 2011, 331, 1521-1522.	6.0	65
531	A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO ₂ . Frontiers in Ecology and the Environment, 2011, 9, 552-560.	1.9	2,354
532	The Pace of Shifting Climate in Marine and Terrestrial Ecosystems. Science, 2011, 334, 652-655.	6.0	1,062
533	Connecting the Dots: Responses of Coastal Ecosystems to Changing Nutrient Concentrations. Environmental Science & Environmenta	4.6	113
534	Ecosystem metabolism in a temporary Mediterranean marsh (Doñana National Park, SW Spain). Biogeosciences, 2011, 8, 963-971.	1.3	17
535	Antarctic krill as a source of dissolved organic carbon to the Antarctic ecosystem. Limnology and Oceanography, 2011, 56, 521-528.	1.6	23
536	Footprints of climate change in the Arctic marine ecosystem. Global Change Biology, 2011, 17, 1235-1249.	4.2	612
537	Temperature effects on oxygen thresholds for hypoxia in marine benthic organisms. Global Change Biology, 2011, 17, 1788-1797.	4.2	211
538	Quantitative approaches in climate change ecology. Global Change Biology, 2011, 17, 3697-3713.	4.2	121
539	Scaling properties of protein family phylogenies. BMC Evolutionary Biology, 2011, 11, 155.	3.2	11
540	Dinucleotide microsatellite markers in the genus Caulerpa. Journal of Applied Phycology, 2011, 23, 715-719.	1.5	6

#	Article	IF	CITATIONS
541	Seagrass Meadows Modify Drag Forces on the Shell of the Fan Mussel Pinna nobilis. Estuaries and Coasts, 2011, 34, 60-67.	1.0	29
542	Distribution and Pathogenicity of the Protist Labyrinthula sp. in western Mediterranean Seagrass Meadows. Estuaries and Coasts, 2011, 34, 1161-1168.	1.0	24
543	Ecosystem impacts of hypoxia: thresholds of hypoxia and pathways to recovery. Environmental Research Letters, 2011, 6, 025003.	2.2	106
544	Overstretching attribution. Nature Climate Change, 2011, 1, 2-4.	8.1	137
545	Maritime aerosol network as a component of AERONET $\hat{a}\in$ first results and comparison with global aerosol models and satellite retrievals. Atmospheric Measurement Techniques, 2011, 4, 583-597.	1.2	152
546	Low water column nitrogen fixation in the Mediterranean Sea: basin-wide experimental evidence. Aquatic Microbial Ecology, 2011, 64, 135-147.	0.9	5
547	Evolutionary history of the seagrass genus Posidonia. Marine Ecology - Progress Series, 2011, 421, 117-130.	0.9	40
548	Mediterranean warming triggers seagrass (<i>Posidonia oceanica</i>) shoot mortality. Global Change Biology, 2010, 16, 2366-2375.	4.2	424
549	Airâ€water exchange and vertical profiles of organic carbon in a subarctic fjord. Limnology and Oceanography, 2010, 55, 1733-1740.	1.6	23
550	Effect of viruses and protists on bacteria in eddies of the Canary Current region (subtropical) Tj ETQq0 0 0 rgBT /	Overlock 1	10 Tf 50 382 ⁻
551	Effects of seagrasses and algae of the Caulerpa family on hydrodynamics and particle-trapping rates. Marine Biology, 2010, 157, 473-481.	0.7	92
552	Significance of Bacterial Activity for the Distribution and Dynamics of Transparent Exopolymer Particles in the Mediterranean Sea. Microbial Ecology, 2010, 59, 808-818.	1.4	57
553	Experimental evaluation of planktonic respiration response to warming in the European Arctic Sector. Polar Biology, 2010, 33, 1661-1671.	0.5	57
554	The role of arctic zooplankton in biogeochemical cycles: respiration and excretion of ammonia and phosphate during summer. Polar Biology, 2010, 33, 1719-1731.	0.5	70
555	Plankton metabolism in the Greenland Sea during the polar summer of 2007. Polar Biology, 2010, 33, 1651-1660.	0.5	23
556	Effect of ice melting on bacterial carbon fluxes channelled by viruses and protists in the Arctic Ocean. Polar Biology, 2010, 33, 1695-1707.	0.5	60
557	Changes in Arctic marine bacterial carbon metabolism in response to increasing temperature. Polar Biology, 2010, 33, 1673-1682.	0.5	56
558	The impact of ice melting on bacterioplankton in the Arctic Ocean. Polar Biology, 2010, 33, 1683-1694.	0.5	85

#	Article	IF	Citations
559	Impacts of climate warming on polar marine and freshwater ecosystems. Polar Biology, 2010, 33, 1595-1598.	0.5	14
560	Sequential injection analysis for automation of the Winkler methodology, with real-time SIMPLEX optimization and shipboard application. Analytica Chimica Acta, 2010, 658, 147-155.	2.6	12
561	Distribution and photoreactivity of chromophoric dissolved organic matter in the Antarctic Peninsula (Southern Ocean). Marine Chemistry, 2010, 118, 129-139.	0.9	46
562	Long-Term CO2 Variability in Two Shallow Tropical Lakes Experiencing Episodic Eutrophication and Acidification Events. Ecosystems, 2010, 13, 382-392.	1.6	34
563	Submarine Groundwater Discharge to the Coastal Environment of a Mediterranean Island (Majorca,) Tj ${\sf ETQq1}$	1 0.784314 1.6	rgBT /Overlo
564	Comparative Analysis of Stabilityâ€"Genetic Diversity in Seagrass (Posidonia oceanica) Meadows Yields Unexpected Results. Estuaries and Coasts, 2010, 33, 878-889.	1.0	51
565	Effects of Seagrass Rhizospheres on Sediment Redox Conditions in SE Asian Coastal Ecosystems. Estuaries and Coasts, 2010, 33, 107-117.	1.0	16
566	Observations of chromophoric dissolved and detrital organic matter distribution using remote sensing in the Southern Ocean: Validation, dynamics and regulation. Journal of Marine Systems, 2010, 82, 295-303.	0.9	17
567	Stir bar sorptive extraction-thermal desorption-gas chromatography–mass spectrometry: An effective tool for determining persistent organic pollutants and nonylphenol in coastal waters in compliance with existing Directives. Marine Pollution Bulletin, 2010, 60, 103-112.	2.3	79
568	Vulnerability of marine biodiversity to ocean acidification: A meta-analysis. Estuarine, Coastal and Shelf Science, 2010, 86, 157-164.	0.9	391
569	Ocean acidification: Separating evidence from judgment – A reply to Dupont et al Estuarine, Coastal and Shelf Science, 2010, 89, 186-190.	0.9	30
570	Response functions for SIMPLEX optimization of flow-injection analysis and related techniques. TrAC - Trends in Analytical Chemistry, 2010, 29, 1224-1235.	5.8	12
571	Genetic structure in the Mediterranean seagrass <i>Posidonia oceanica</i> : disentangling past vicariance events from contemporary patterns of gene flow. Molecular Ecology, 2010, 19, 557-568.	2.0	101
572	Rainfall leads to increased <l>pCO₂ in Brazilian coastal lakes. Biogeosciences, 2010, 7, 1607-1614.</l>	1.3	48
573	Rapid accretion of dissolved organic carbon in the springs of Florida: the most organic-poor natural waters. Biogeosciences, 2010, 7, 4051-4057.	1.3	17
574	What lies underneath: Conserving the oceans' genetic resources. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18318-18324.	3.3	119
575	Taxonomic study of Marinomonas strains isolated from the seagrass Posidonia oceanica, with descriptions of Marinomonas balearica sp. nov. and Marinomonas pollencensis sp. nov International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 93-98.	0.8	68
576	Sulfide exposure accelerates hypoxiaâ€driven mortalit. Limnology and Oceanography, 2010, 55, 1075-1082.	1.6	113

#	Article	IF	CITATIONS
577	Longâ€term records of trace metal content of western Mediterranean seagrass (<i>Posidonia) Tj ETQq1 1 0.78 2010, 115, .</i>	34314 rgBT 3.3	/Overlock 10 27
578	Seagrass community metabolism: Assessing the carbon sink capacity of seagrass meadows. Global Biogeochemical Cycles, 2010, 24, .	1.9	412
579	Seagrass sediments as a global carbon sink: Isotopic constraints. Global Biogeochemical Cycles, 2010, 24, .	1.9	495
580	Improving Pressure Robustness, Reliability, and Versatility of Solenoid-Pump Flow Systems Using a Miniature Economic Control Unit Including Two Simple Pressure Pulse Mathematical Models. Analytical Chemistry, 2010, 82, 6983-6990.	3.2	9
581	Impacts of metals and nutrients released from melting multiyear Arctic sea ice. Journal of Geophysical Research, 2010, 115, .	3.3	71
582	Compensation irradiance for planktonic community metabolism in the ocean. Global Biogeochemical Cycles, 2010, 24, .	1.9	21
583	Restarting the conversation: challenges at the interface between ecology and society. Frontiers in Ecology and the Environment, 2010, 8, 284-291.	1.9	152
584	Temperature and phosphorus regulating carbon flux through bacteria in a coastal marine system. Aquatic Microbial Ecology, 2010, 58, 141-151.	0.9	36
585	Phyto- and bacterioplankton abundance and viability and their relationship with phosphorus across the Mediterranean Sea. Aquatic Microbial Ecology, 2010, 60, 175-191.	0.9	34
586	Effect of viruses and protists on bacteria in eddies of the Canary Current region (subtropical) Tj ETQq0 0 0 rgB	T /Overlock 1.6	10 Tf 50 382
587	Rejoinder to: Influence of river discharge in the tropical and subtropical North Atlantic Ocean. Limnology and Oceanography, 2009, 54, 648-652.	1.6	O
588	Effects of ultraviolet B radiation on (not so) transparent exopolymer particles. Biogeosciences, 2009, 6, 3071-3080.	1.3	62
589	Patterns in planktonic metabolism in the Mediterranean Sea. Biogeosciences, 2009, 6, 3081-3089.	1.3	29
590	Evidence for surface organic matter modulation of air-sea CO ₂ gas exchange. Biogeosciences, 2009, 6, 1105-1114.	1.3	34
591	MESSAGE FROM THE PRESIDENT: MEMENTO FROM THE CÔTE D'AZUR. Limnology and Oceanography Bulletin, 2009, 18, 8-9.	0.2	O
592	MESSAGE FROM THE PRESIDENT: ASLO MOVES AHEAD!. Limnology and Oceanography Bulletin, 2009, 18,		
	70-71.	0.2	0
593		1.6	58

#	Article	IF	Citations
595	Will the Oceans Help Feed Humanity?. BioScience, 2009, 59, 967-976.	2.2	305
596	Ecosystem thresholds with hypoxia. , 2009, , 21-29.		19
597	Mesopelagic prokaryotic bulk and single-cell heterotrophic activity and community composition in the NW Africa–Canary Islands coastal-transition zone. Progress in Oceanography, 2009, 83, 189-196.	1.5	53
598	Ecosystem thresholds with hypoxia. Hydrobiologia, 2009, 629, 21-29.	1.0	214
599	Coastal eutrophication research: a new awareness. Hydrobiologia, 2009, 629, 263-269.	1.0	63
600	Return to Neverland: Shifting Baselines Affect Eutrophication Restoration Targets. Estuaries and Coasts, 2009, 32, 29-36.	1.0	523
601	Bacterial Community Dynamics in a Seagrass (Posidonia oceanica) Meadow Sediment. Estuaries and Coasts, 2009, 32, 276-286.	1.0	43
602	Deterioration of Sediment Quality in Seagrass Meadows (Posidonia oceanica) Invaded by Macroalgae (Caulerpa sp.). Estuaries and Coasts, 2009, 32, 456-466.	1.0	73
603	Impact of submarine hydrothermal vents on the metal composition of krill and its excretion products. Marine Chemistry, 2009, 113, 129-136.	0.9	11
604	Uncoupled distributions of transparent exopolymer particles (TEP) and dissolved carbohydrates in the Southern Ocean. Marine Chemistry, 2009, 115, 59-65.	0.9	54
605	Ultra-trace determination of Persistent Organic Pollutants in Arctic ice using stir bar sorptive extraction and gas chromatography coupled to mass spectrometry. Journal of Chromatography A, 2009, 1216, 8581-8589.	1.8	29
606	Ecological thresholds and regime shifts: approaches to identification. Trends in Ecology and Evolution, 2009, 24, 49-57.	4.2	623
607	Associations of concern: declining seagrasses and threatened dependent species. Frontiers in Ecology and the Environment, 2009, 7, 242-246.	1.9	254
608	Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12377-12381.	3.3	2,971
609	Response of coastal Antarctic phytoplankton to solar radiation and ammonium manipulation: An in situ mesocosm experiment. Journal of Geophysical Research, 2009, 114, .	3.3	9
610	Microbial oceanography of the dark ocean's pelagic realm. Limnology and Oceanography, 2009, 54, 1501-1529.	1.6	437
611	Seasonal dynamics of <i>Posidonia oceanica</i> in Magalluf Bay (Mallorca, Spain): Temperature effects on seagrass mortality. Limnology and Oceanography, 2009, 54, 2170-2182.	1.6	59
612	Biogeneration of chromophoric dissolved organic matter by bacteria and krill in the Southern Ocean. Limnology and Oceanography, 2009, 54, 1941-1950.	1.6	88

#	Article	IF	CITATIONS
613	Bacterial activity and diffusive nutrient supply in the oligotrophic Central Atlantic Ocean. Aquatic Microbial Ecology, 2009, 56, 1-12.	0.9	37
614	Dissolved organic matter release in a Posidonia oceanica meadow. Marine Ecology - Progress Series, 2009, 374, 75-84.	0.9	80
615	Genetic recolonization of mangrove: genetic diversity still increasing in the Mekong Delta 30 years after Agent Orange. Marine Ecology - Progress Series, 2009, 390, 129-135.	0.9	18
616	Degradative potential of marine bacterial isolates from the aquatic plant <i>Posidonia oceanica</i> , 2009, , .		0
617	Coastal eutrophication research: a new awareness., 2009,, 263-269.		1
618	The Charisma of Coastal Ecosystems: Addressing the Imbalance. Estuaries and Coasts, 2008, 31, 233-238.	1.0	408
619	Estuaries and Coasts as an Outlet for Research in Coastal Ecosystems: A Bibliometric Study. Estuaries and Coasts, 2008, 31, 469-476.	1.0	6
620	Trophic Transfers from Seagrass Meadows Subsidize Diverse Marine and Terrestrial Consumers. Ecosystems, 2008, 11, 1198-1210.	1.6	304
621	Data variability and uncertainty limits the capacity to identify and predict critical changes in coastal systems $\hat{a}\in$ A review of key concepts. Ocean and Coastal Management, 2008, 51, 671-688.	2.0	6
622	Genetic differentiation and secondary contact zone in the seagrass ⟨i⟩Cymodocea nodosa⟨/i⟩ across the Mediterranean–Atlantic transition region. Journal of Biogeography, 2008, 35, 1279-1294.	1.4	105
623	Atmospheric deposition of organic and black carbon to the global oceans. Atmospheric Environment, 2008, 42, 7931-7939.	1.9	215
624	Sedimentary iron inputs stimulate seagrass (Posidonia oceanica) population growth in carbonate sediments. Estuarine, Coastal and Shelf Science, 2008, 76, 710-713.	0.9	16
625	The impact of sediment burial and erosion on seagrasses: A review. Estuarine, Coastal and Shelf Science, 2008, 79, 354-366.	0.9	180
626	Microbial plankton abundance and heterotrophic activity across the Central Atlantic Ocean. Progress in Oceanography, 2008, 79, 83-94.	1.5	25
627	Benthic input rates predict seagrass (Posidonia oceanica) fish farm-induced decline. Marine Pollution Bulletin, 2008, 56, 1332-1342.	2.3	60
628	Effects of fish farm waste on Posidonia oceanica meadows: Synthesis and provision of monitoring and management tools. Marine Pollution Bulletin, 2008, 56, 1618-1629.	2.3	142
629	Allocation of effort and imbalances in biodiversity research. Journal of Experimental Marine Biology and Ecology, 2008, 360, 15-20.	0.7	36
630	Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century. Global Biogeochemical Cycles, 2008, 22, .	1.9	399

#	Article	IF	CITATIONS
631	CO ₂ emissions from saline lakes: A global estimate of a surprisingly large flux. Journal of Geophysical Research, 2008, 113, .	3.3	137
632	Patch dynamics of the Mediterranean seagrass Posidonia oceanica: Implications for recolonisation process. Aquatic Botany, 2008, 89, 397-403.	0.8	42
633	Status and Future Perspectives of Marine Aquaculture. , 2008, , 293-319.		10
634	Network analysis identifies weak and strong links in a metapopulation system. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18824-18829.	3.3	152
635	Thresholds of hypoxia for marine biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15452-15457.	3.3	1,395
636	Seagrass ecosystems: their global status and prospects. , 2008, , 281-294.		44
637	MESSAGE FROM THE PRESIDENT: IS ASLO INTERNATIONAL ENOUGH?. Limnology and Oceanography Bulletin, 2008, 17, 105-106.	0.2	0
638	Universal Scaling in the Branching of the Tree of Life. PLoS ONE, 2008, 3, e2757.	1.1	30
639	Exploring the relationship between active bacterioplankton and phytoplankton in the Southern Ocean. Aquatic Microbial Ecology, 2008, 52, 99-106.	0.9	30
640	Experimental assessment and modeling evaluation of the effects of the seagrass Posidonia oceanica on flow and particle trapping. Marine Ecology - Progress Series, 2008, 356, 163-173.	0.9	221
641	Effects of sediment sulfides on seagrass Posidonia oceanica meristematic activity. Marine Ecology - Progress Series, 2008, 372, 1-6.	0.9	31
642	ECOLOGY: Rapid Domestication of Marine Species. Science, 2007, 316, 382-383.	6.0	242
643	Allometric scaling of plant life history. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15777-15780.	3.3	136
644	Evolutionary and Ecological Trees and Networks. AIP Conference Proceedings, 2007, , .	0.3	3
645	Largeâ€scale variability in surface bacterial carbon demand and growth efficiency in the subtropical northeast Atlantic Ocean. Limnology and Oceanography, 2007, 52, 533-546.	1.6	102
646	Marine ecology warms up to theory. Trends in Ecology and Evolution, 2007, 22, 331-333.	4.2	48
647	Sedimentation of organic matter from fish farms in oligotrophic Mediterranean assessed through bulk and stable isotope ($\hat{1}3C$ and $\hat{1}5N$) analyses. Aquaculture, 2007, 262, 268-280.	1.7	123
648	Biomass and leaf dynamics of Cymodocea nodosa in the Ria Formosa lagoon, South Portugal. Botanica Marina, 2007, 50, 1-7.	0.6	27

#	Article	IF	CITATIONS
649	ARTIFICIAL NEURAL NETWORK ANALYSIS OF FACTORS CONTROLLING ECOSYSTEM METABOLISM IN COASTAL SYSTEMS. , 2007, 17, S185-S196.		19
650	Spectrum of genetic diversity and networks of clonal organisms. Journal of the Royal Society Interface, 2007, 4, 1093-1102.	1.5	72
651	Direct and indirect metabolic CO ₂ release by humanity. Biogeosciences, 2007, 4, 215-217.	1.3	41
652	Consequences of Mediterranean warming events in seagrass (Posidonia oceanica) flowering records. Global Change Biology, 2007, 13, 224-235.	4.2	157
653	Standardizing methods to address clonality in population studies. Molecular Ecology, 2007, 16, 5115-5139.	2.0	568
654	Vicariance patterns in the Mediterranean Sea: east–west cleavage and low dispersal in the endemic seagrass Posidonia oceanica. Journal of Biogeography, 2007, 34, 963-976.	1.4	159
655	The relationship between seagrass (Posidonia oceanica) decline and sulfide porewater concentration in carbonate sediments. Estuarine, Coastal and Shelf Science, 2007, 73, 583-588.	0.9	93
656	Testing the predictive power of seagrass depth limit models. Estuaries and Coasts, 2007, 30, 652-656.	1.0	80
657	Spatial and temporal variation in the elemental and stable isotopic content of the seagrasses Posidonia oceanica and Cymodocea nodosa from the Illes Balears, Spain. Marine Biology, 2007, 151, 219-232.	0.7	58
658	Feed-backs between genetic structure and perturbation-driven decline in seagrass (Posidonia) Tj ETQq0 0 0 rgBT	/Oyerlock	10 Jf 50 382
659	Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget. Ecosystems, 2007, 10, 172-185.	1.6	2,836
660	Iron Additions Reduce Sulfide Intrusion and Reverse Seagrass (Posidonia oceanica) Decline in Carbonate Sediments. Ecosystems, 2007, 10, 745-756.	1.6	40
661	High Metabolic Rates in Beach Cast Communities. Ecosystems, 2007, 10, 1341-1350.	1.6	60
662	Dynamics of Seagrass Stability and Change. , 2007, , 271-294.		22
663	Sulfide invasion in the seagrass Posidonia oceanica at Mediterranean fish farms: assessment using stable sulfur isotopes. Marine Ecology - Progress Series, 2007, 345, 93-104.	0.9	50
664	Biodiversity Research Still Grounded. Science, 2006, 312, 1715-1715.	6.0	34
665	Aerosol inputs enhance new production in the subtropical northeast Atlantic. Journal of Geophysical Research, 2006, 111, .	3.3	81
666	B vitamins as regulators of phytoplankton dynamics. Eos, 2006, 87, 593.	0.1	71

#	Article	IF	CITATIONS
667	A Global Crisis for Seagrass Ecosystems. BioScience, 2006, 56, 987.	2.2	2,318
668	Light availability in the coastal ocean: impact on the distribution of benthic photosynthetic organisms and their contribution to primary production. Biogeosciences, 2006, 3, 489-513.	1.3	246
669	Effects of dust deposition and river discharges on trace metal composition of Trichodesmium spp. in the tropical and subtropical North Atlantic Ocean. Limnology and Oceanography, 2006, 51, 1755-1761.	1.6	49
670	The global abundance and size distribution of lakes, ponds, and impoundments. Limnology and Oceanography, 2006, 51, 2388-2397.	1.6	1,426
671	GENOMIC DNA ISOLATION FROM GREEN AND BROWN ALGAE (CAULERPALES AND FUCALES) FOR MICROSATELLITE LIBRARY CONSTRUCTION 1. Journal of Phycology, 2006, 42, 741-745.	1.0	60
672	Genetic structure at range edge: low diversity and high inbreeding in Southeast Asian mangrove (Avicennia marina) populations. Molecular Ecology, 2006, 15, 3515-3525.	2.0	173
673	Clone size distributions in networks of genetic similarity. Physica D: Nonlinear Phenomena, 2006, 224, 166-173.	1.3	5
674	Resource translocation within seagrass clones: allometric scaling to plant size and productivity. Oecologia, 2006, 150, 362-372.	0.9	45
675	Patterns of seagrass (Posidonia oceanica) flowering in the Western Mediterranean. Marine Biology, 2006, 148, 723-742.	0.7	76
676	Light regulation of benthic sulfate reduction rates mediated by seagrass (Thalassia testudinum) metabolism. Estuaries and Coasts, 2006, 29, 1255-1264.	1.0	18
677	Allometric laws and prediction in estuarine and coastal ecology. Estuaries and Coasts, 2006, 29, 340-344.	1.0	90
678	Modeling nonlinear seagrass clonal growth: Assessing the efficiency of space occupation across the seagrass flora. Estuaries and Coasts, 2006, 29, 72-80.	1.0	40
679	Organic carbon metabolism and carbonate dynamics in a Mediterranean seagrass (Posidonia oceanica), meadow. Estuaries and Coasts, 2006, 29, 417-426.	1.0	108
680	Seagrass (Posidonia oceanica) vertical growth as an early indicator of fish farm-derived stress. Estuarine, Coastal and Shelf Science, 2006, 67, 475-483.	0.9	74
681	Scientific management of Mediterranean coastal zone: A hybrid ocean forecasting system for oil spill and search and rescue operations. Marine Pollution Bulletin, 2006, 53, 361-368.	2.3	38
682	A comparative study of responses in plankton food web structure and function in contrasting European coastal waters exposed to experimental nutrient addition. Limnology and Oceanography, 2006, 51, 488-503.	1.6	46
683	Phytoplankton trapped within seagrass (<i>Posidonia oceanica</i>) sediments are a nitrogen source: An in situ isotope labeling experiment. Limnology and Oceanography, 2006, 51, 1648-1653.	1.6	42
684	Growth and grazing losses of prokaryotes in the central Atlantic Ocean. Journal of Plankton Research, 2006, 28, 879-879.	0.8	3

#	Article	IF	CITATIONS
685	Genetic diversity of a clonal angiosperm near its range limit: the case of Cymodocea nodosa at the Canary Islands. Marine Ecology - Progress Series, 2006, 309, 117-129.	0.9	53
686	Experimental test of bacteria-phytoplankton coupling in the Southern Ocean. Limnology and Oceanography, 2005, 50, 1844-1854.	1.6	85
687	Within-population spatial genetic structure, neighbourhood size and clonal subrange in the seagrass Cymodocea nodosa. Molecular Ecology, 2005, 14, 2669-2681.	2.0	123
688	Nonlinear processes in seagrass colonisation explained by simple clonal growth rules. Oikos, 2005, 108, 165-175.	1.2	82
689	Modelling formation of complex topography by the seagrass Posidonia oceanica. Estuarine, Coastal and Shelf Science, 2005, 65, 717-725.	0.9	55
690	Light-dependence of the metabolic balance of a highly productive Philippine seagrass community. Journal of Experimental Marine Biology and Ecology, 2005, 316, 55-67.	0.7	29
691	Submerged versus air-exposed intertidal macrophyte productivity: from physiological to community-level assessments. Journal of Experimental Marine Biology and Ecology, 2005, 317, 87-95.	0.7	60
692	Population age structure and rhizome growth of Cymodocea nodosa in the Ria Formosa (southern) Tj ETQq0 0 0	rgBT /Ov	erlock 10 Tf 5
693	Iron Additions Reduce Sulfate Reduction Rates and Improve Seagrass Growth on Organic-Enriched Carbonate Sediments. Ecosystems, 2005, 8, 721-730.	1.6	47
694	Prevalence of Heterotrophy and Atmospheric CO2 Emissions from Aquatic Ecosystems. Ecosystems, 2005, 8, 862-870.	1.6	307
695	The H.T. Odum synthesis essay, a new section in estuaries. Estuaries and Coasts, 2005, 28, 1-1.	1.7	3
696	Direct evidence of imbalanced seagrass (Posidonia oceanica) shoot population dynamics in the Spanish Mediterranean. Estuaries and Coasts, 2005, 28, 53-62.	1.7	85
697	Nutrient dynamics and ecosystem metabolism in the Bay of Blanes (NW Mediterranean). Biogeochemistry, 2005, 73, 303-323.	1.7	33
698	Whole-system metabolism and CO ₂ fluxes in a Mediterranean Bay dominated by seagrass beds (Palma Bay, NW Mediterranean). Biogeosciences, 2005, 2, 43-60.	1.3	91
699	Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences, 2005, 2, 1-8.	1.3	1,069
700	Growth and grazing losses of prokaryotes in the central Atlantic Ocean. Journal of Plankton Research, 2005, 27, 1055-1066.	0.8	14
701	Assessing Genetic Diversity in Clonal Organisms: Low Diversity or Low Resolution? Combining Power and Cost Efficiency in Selecting Markers. Journal of Heredity, 2005, 96, 434-440.	1.0	156
702	Microbial colonization in the seagrassPosidoniaspp. roots. Marine Biology Research, 2005, 1, 388-395.	0.3	14

#	Article	IF	Citations
703	Threshold of gross primary production for planktonic metabolic balance in the Southern Ocean: An experimental test. Limnology and Oceanography, 2005, 50, 1334-1339.	1.6	19
704	Residence time and Posidonia oceanica in Cabrera Archipelago National Park, Spain. Continental Shelf Research, 2005, 25, 1339-1352.	0.9	49
705	Sources of organic matter in seagrass-colonized sediments: A stable isotope study of the silt and clay fraction from Posidonia oceanica meadows in the western Mediterranean. Organic Geochemistry, 2005, 36, 949-961.	0.9	51
706	Leaf production and shoot dynamics of Thalassia testudinum by a direct census method. Aquatic Botany, 2005, 81, 213-224.	0.8	6
707	Active mesopelagic prokaryotes support high respiration in the subtropical northeast Atlantic Ocean. Geophysical Research Letters, 2005, 32, .	1.5	65
708	Control of air-sea CO2disequilibria in the subtropical NE Atlantic by planktonic metabolism under the ocean skin. Geophysical Research Letters, 2005, 32, .	1.5	50
709	High atmosphere-ocean exchange of organic carbon in the NE subtropical Atlantic. Geophysical Research Letters, 2005, 32, .	1.5	60
710	Krill as a central node for iron cycling in the Southern Ocean. Geophysical Research Letters, 2005, 32,	1.5	61
711	Plant-microbe interactions in seagrass meadows. Coastal and Estuarine Studies, 2005, , 31-60.	0.4	43
712	Respiration in the mesopelagic and bathypelagic zones of the oceans. , 2005, , 181-205.		46
713	Respiration in coastal benthic communities. , 2005, , 206-224.		69
714	Clonality in seagrasses, emergent properties and seagrass landscapes. Marine Ecology - Progress Series, 2005, 290, 291-296.	0.9	68
715	Patterns of publication effort in coastal biogeochemistry: a bibliometric survey (1971 to 2003). Marine Ecology - Progress Series, 2005, 294, 9-22.	0.9	17
716	Net ecosystem metabolism in a micro-tidal estuary (Randers Fjord, Denmark): evaluation of methods. Marine Ecology - Progress Series, 2005, 301, 23-41.	0.9	86
717	THE PILGRIMAGE TO THE ASLO 2005 SUMMER MEETING, JUNE 19-24, 2005, IN SANTIAGO DE COMPOSTELA, SPAIN. Limnology and Oceanography Bulletin, 2004, 13, 40-41.	0.2	0
718	ASLO 2005 SUMMER CONFERENCE AND THE SPANISH IDIOSYNCRASY. Limnology and Oceanography Bulletin, 2004, 13, 62-65.	0.2	0
719	RAMÓN MARGALEF I LÓPEZ, 1919-2004. Limnology and Oceanography Bulletin, 2004, 13, 67-68.	0.2	1
720	Seasonal Dynamics of a Microtidal Pocket Beach with Posidonia oceanica Seabeds (Mallorca, Spain). Journal of Coastal Research, 2004, 204, 1155-1164.	0.1	40

#	Article	IF	CITATIONS
721	Controls on planktonic metabolism in the Bay of Blanes, northwestern Mediterranean littoral. Limnology and Oceanography, 2004, 49, 2162-2170.	1.6	55
722	Organic carbon sources to SE Asian coastal sediments. Estuarine, Coastal and Shelf Science, 2004, 60, 59-68.	0.9	117
723	The effect of nutrient additions on the partitioning of nutrients in an experimental coastal Mediterranean system. Biogeochemistry, 2004, 68, 153-167.	1.7	3
724	Recruitment, mortality and growth of mangrove (Rhizophora sp.) seedlings in Ulugan Bay, Palawan, Philippines. Trees - Structure and Function, 2004, 18, 589.	0.9	13
725	Ecosystem metabolism and carbon fluxes of a tidally-dominated coastal lagoon. Estuaries and Coasts, 2004, 27, 977-985.	1.7	56
726	Recolonization dynamics in a mixed seagrass meadow: The role of clonal versus sexual processes. Estuaries and Coasts, 2004, 27, 770-780.	1.7	84
727	Dimethyl sulfoxide (DMSO) reduction potential in Mediterranean seagrass (Posidonia oceanica) sediments. Journal of Sea Research, 2004, 51, 11-20.	0.6	16
728	Annual variation in leaf photosynthesis and leaf nutrient content of four Mediterranean seagrasses. Botanica Marina, 2004, 47, .	0.6	34
729	Community metabolism and carbon budget along a gradient of seagrass(<i>Cymodocea nodosa</i>) colonization. Limnology and Oceanography, 2004, 49, 1642-1651.	1.6	97
730	Carbon cycling and bacterial carbon sources in pristine and impacted Mediterranean seagrass sediments. Aquatic Microbial Ecology, 2004, 36, 227-237.	0.9	129
731	Plankton metabolism and dissolved organic carbon use in the Bay of Palma, NW Mediterranean Sea. Aquatic Microbial Ecology, 2004, 37, 47-54.	0.9	41
732	Effect of N:P ratios on response of Mediterranean picophytoplankton to experimental nutrient inputs. Aquatic Microbial Ecology, 2004, 34, 57-67.	0.9	24
733	Response of bacterial grazing rates to experimental manipulation of an Antarctic coastal nanoflagellate community. Aquatic Microbial Ecology, 2004, 36, 41-52.	0.9	29
734	Sulfur cycling and seagrass (Posidonia oceanica) status in carbonate sediments. Biogeochemistry, 2003, 66, 223-239.	1.7	128
735	The Response of Experimental Rocky Shore Communities to Nutrient Additions. Ecosystems, 2003, 6, 577-594.	1.6	58
736	High Organic Carbon Export Precludes Eutrophication Responses in Experimental Rocky Shore Communities. Ecosystems, 2003, 6, 144-153.	1.6	25
737	Abundance, biomass and growth rates of Synechococcus sp. in a tropical coastal ecosystem (Philippines, South China Sea). Estuarine, Coastal and Shelf Science, 2003, 56, 493-502.	0.9	45
738	Sediment deposition and production in SE-Asia seagrass meadows. Estuarine, Coastal and Shelf Science, 2003, 56, 909-919.	0.9	121

#	Article	IF	CITATIONS
739	Growth and population dynamics during early stages of the mangrove Kandelia candel in Halong Bay, North Viet Nam. Estuarine, Coastal and Shelf Science, 2003, 58, 435-444.	0.9	14
740	Biogeochemical conditions in sediments enriched by organic matter from net-pen fish farms in the Bolinao area, Philippines. Marine Pollution Bulletin, 2003, 46, 1470-1479.	2.3	97
741	Benthic primary producers––a neglected environmental problem in Mediterranean maricultures?. Marine Pollution Bulletin, 2003, 46, 1372-1376.	2.3	60
742	New microsatellite markers for the endemic Mediterranean seagrass Posidonia oceanica. Molecular Ecology Notes, 2003, 3, 253-255.	1.7	35
743	Isolation and characterization of microsatellite markers for the seagrassCymodocea nodosa. Molecular Ecology Notes, 2003, 3, 397-399.	1.7	14
744	Polymorphic microsatellite DNA markers in the mangrove tree Avicennia alba. Molecular Ecology Notes, 2003, 3, 544-546.	1.7	8
745	Respiration in the dark ocean. Geophysical Research Letters, 2003, 30, .	1.5	44
746	Seasonality and depth zonation of intertidal Halophila ovalis and Zostera japonica in Ha Long Bay (northern Vietnam). Aquatic Botany, 2003, 75, 147-157.	0.8	47
747	Scaling of ramet size and spacing in seagrasses: implications for stand development. Aquatic Botany, 2003, 77, 87-98.	0.8	25
748	Nutrient (N, P and Si) and carbon partitioning in the stratified NW Mediterranean. Journal of Sea Research, 2003, 49, 157-170.	0.6	28
749	14 C-UPTAKE BY PHYTOPLANKTON, NOW AND IN THE FUTURE. Limnology and Oceanography Bulletin, 2003, 12, 1-3.	0.2	6
750	REALIZING THE INTERNATIONAL DIMENSION OF ASLO. Limnology and Oceanography Bulletin, 2003, 12, 11-13.	0.2	0
751	Elucidating seagrass population dynamics: Theory, constraints, and practice. Limnology and Oceanography, 2003, 48, 2070-2074.	1.6	17
752	Alkaline phosphatase activities in the central Atlantic Ocean indicate large areas with phosphorus deficiency. Marine Ecology - Progress Series, 2003, 262, 43-53.	0.9	84
753	Dissolved Organic Carbon Support of Respiration in the Dark Ocean. Science, 2002, 298, 1967-1967.	6.0	120
754	Effectiveness of protection of seagrass (Posidonia oceanica) populations in Cabrera National Park (Spain). Environmental Conservation, 2002, 29, 509-518.	0.7	105
755	Carbon and nutrient deposition in a Mediterranean seagrass (<i>Posidonia oceanica</i>) meadow. Limnology and Oceanography, 2002, 47, 23-32.	1.6	217
756	The future of seagrass meadows. Environmental Conservation, 2002, 29, 192-206.	0.7	859

#	Article	IF	Citations
757	Biomass, production and rhizome growth near the northern limit of seagrass (Zostera marina) distribution. Aquatic Botany, 2002, 72, 183-189.	0.8	31
758	Distribution and nutrient limitation of surfgrass, Phyllospadix scouleri and Phyllospadix torreyi, along the Pacific coast of Baja California (México). Aquatic Botany, 2002, 74, 121-131.	0.8	17
759	Addressing uncertainties in the assessment of phytoplankton lysis rates in the sea. Limnology and Oceanography, 2002, 47, 921-924.	1.6	6
760	Experimental evaluation of the effects of siltation-derived changes in sediment conditions on the Philippine seagrass Cymodocea rotundata. Journal of Experimental Marine Biology and Ecology, 2002, 279, 73-87.	0.7	53
761	Impacts of milkfish (Chanos chanos) aquaculture on carbon and nutrient fluxes in the Bolinao area, Philippines. Marine Pollution Bulletin, 2002, 44, 685-696.	2.3	103
762	Evidence of direct particle trapping by a tropical seagrass meadow. Estuaries and Coasts, 2002, 25, 1205-1209.	1.7	123
763	Respiration in the open ocean. Nature, 2002, 420, 379-384.	13.7	495
764	Abundance of Antarctic picophytoplankton and their response to light and nutrient manipulation. Aquatic Microbial Ecology, 2002, 29, 161-172.	0.9	22
765	Carbon and nitrogen translocation between seagrass ramets. Marine Ecology - Progress Series, 2002, 226, 287-300.	0.9	159
766	Depth-acclimation of photosynthesis, morphology and demography of Posidonia oceanica and Cymodocea nodosa in the Spanish Mediterranean Sea. Marine Ecology - Progress Series, 2002, 236, 89-97.	0.9	150
767	Colonization success of common Thai mangrove species as a function of shelter from water movement. Marine Ecology - Progress Series, 2002, 237, 111-120.	0.9	46
768	Seagrasses. , 2001, , 540-550.		0
769	Comparative analysis of food webs based on flow networks: effects of nutrient supply on structure and function of coastal plankton communities. Continental Shelf Research, 2001, 21, 2043-2053.	0.9	22
770	Detrital stocks and dynamics of the seagrass Posidonia oceanica (L.) Delile in the Spanish Mediterranean. Aquatic Botany, 2001, 70, 295-309.	0.8	79
771	Food-web structure and elemental (C, N and P) fluxes in the eastern tropical North Atlantic. Deep-Sea Research Part II: Topical Studies in Oceanography, 2001, 48, 2295-2321.	0.6	60
772	Seagrasses. , 2001, , 255-268.		5
773	Diet and association of Pontonia pinnophylax occurring in Pinna nobilis: insights from stable isotope analysis. Journal of the Marine Biological Association of the United Kingdom, 2001, 81, 177-178.	0.4	30
774	INTERDISCIPLINARY CHALLENGES AND BOTTLENECKS IN THE AQUATIC SCIENCES. Limnology and Oceanography Bulletin, 2001, 10, 57-61.	0.2	4

#	Article	IF	CITATIONS
775	Evidence for a heterotrophic subtropical northeast Atlantic. Limnology and Oceanography, 2001, 46, 425-428.	1.6	94
776	Oxygen and carbon stable isotopic profiles of the fan mussel, Pinna nobilis, and reconstruction of sea surface temperatures in the Mediterranean. Marine Biology, 2001, 139, 1115-1124.	0.7	60
777	Sediment Retention by a Mediterranean Posidonia oceanica Meadow: The Balance between Deposition and Resuspension. Estuarine, Coastal and Shelf Science, 2001, 52, 505-514.	0.9	383
778	Temporal changes in the abundance, leaf growth and photosynthesis of three co-occurring Philippine seagrasses. Journal of Experimental Marine Biology and Ecology, 2001, 260, 217-239.	0.7	53
779	Methods for the measurement of seagrass abundance and depth distribution. , 2001, , 141-153.		42
780	Methods for the measurement of seagrass growth and production. , 2001, , 155-182.		134
781	Annual Zooplankton Succession in Coastal NW Mediterranean Waters: The Importance of the Smaller Size Fractions. Journal of Plankton Research, 2001, 23, 319-331.	0.8	239
782	Flow and particle distributions in a nearshore seagrass meadow before and after a storm. Marine Ecology - Progress Series, 2001, 218, 95-106.	0.9	124
783	Effects of seagrass Thalassia testudinum on sediment redox. Marine Ecology - Progress Series, 2001, 219, 149-158.	0.9	55
784	Retrospective estimates of net leaf production in Kandelia candel mangrove forests. Marine Ecology - Progress Series, 2001, 221, 117-124.	0.9	12
785	Growth and sediment space occupation by seagrass Cymodocea nodosa roots. Marine Ecology - Progress Series, 2001, 224, 291-298.	0.9	41
786	Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnology and Oceanography, 2000, 45, 591-600.	1.6	577
787	Strong seasonality in phytoplankton cell lysis in the NW Mediterranean littoral. Limnology and Oceanography, 2000, 45, 940-947.	1.6	65
788	Comparative analyses in aquatic microbial ecology: how far do they go?. FEMS Microbiology Ecology, 2000, 31, 99-106.	1.3	133
789	Experimental evidence of reduced particle resuspension within a seagrass (Posidonia oceanica L.) meadow. Journal of Experimental Marine Biology and Ecology, 2000, 243, 45-53.	0.7	134
790	Marine biodiversity and ecosystem services: an elusive link. Journal of Experimental Marine Biology and Ecology, 2000, 250, 117-131.	0.7	269
791	Taxonomy and distribution. , 2000, , 1-26.		3
792	Seagrasses in the human environment. , 2000, , 248-291.		3

#	Article	IF	CITATIONS
79 3	Seagrass architectural features. , 2000, , 27-64.		3
794	Population and community dynamics. , 2000, , 65-98.		3
795	Light, carbon and nutrients. , 2000, , 99-145.		3
796	Elemental dynamics in seagrass systems. , 2000, , 146-198.		1
797	Fauna associated with seagrass systems. , 2000, , 199-247.		10
798	Particulate light absorption and the prediction of phytoplankton biomass and planktonic metabolism in northeastern Spanish aquatic ecosystems. Canadian Journal of Fisheries and Aquatic Sciences, 2000, 57, 25-33.	0.7	4
799	Latitudinal variability in phosphate uptake in the Central Atlantic. Marine Ecology - Progress Series, 2000, 194, 283-294.	0.9	34
800	Response of a Mediterranean phytoplankton community to increased nutrient inputs:a mesocosm experiment. Marine Ecology - Progress Series, 2000, 195, 61-70.	0.9	64
801	An experimental test of the occurrence of competitive interactions among SE Asian seagrasses. Marine Ecology - Progress Series, 2000, 197, 231-240.	0.9	32
802	Experimental induction of a large phytoplankton bloom in Antarctic coastal waters. Marine Ecology - Progress Series, 2000, 206, 73-85.	0.9	20
803	Effect of nutrient supply on the biomass structure of planktonic communities: an experimental test on a Mediterranean coastal community. Marine Ecology - Progress Series, 2000, 206, 87-95.	0.9	76
804	Response of Mediterranean Synechococcus growth and loss rates to experimental nutrient inputs. Marine Ecology - Progress Series, 2000, 206, 97-106.	0.9	47
805	Nutrient accumulation at different supply rates in experimental Mediterranean planktonic communities. Marine Ecology - Progress Series, 2000, 207, 1-11.	0.9	13
806	Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean. Limnology and Oceanography, 1999, 44, 106-115.	1.6	96
807	Winners and losers in Framework programme. Nature, 1999, 400, 14-14.	13.7	4
808	Age and growth of the fan mussel Pinna nobilis from south-east Spanish Mediterranean seagrass () Tj ETQq0 0 0	rgBT/Ove	rlock 10 Tf 50
809	Coastal Eutrophication Research in Europe: Progress and Imbalances. Marine Pollution Bulletin, 1999, 38, 851-854.	2.3	43
810	The Mediterranean climate as a template for Mediterranean marine ecosystems: the example of the northeast Spanish littoral. Progress in Oceanography, 1999, 44, 245-270.	1.5	108

#	Article	IF	Citations
811	Phytoplankton chlorophyll a distribution and water column stability in the central Atlantic Ocean. Oceanologica Acta: European Journal of Oceanology - Revue Europeene De Oceanologie, 1999, 22, 193-203.	0.7	58
812	The determination of the age and growth of SE Asian mangrove seedlings from internodal counts. Mangroves and Salt Marshes, 1999, 3, 251-257.	0.6	40
813	Hydrodynamics and particle transport associated with a submarine canyon off Blanes (Spain), NW Mediterranean Sea. Continental Shelf Research, 1999, 19, 1249-1263.	0.9	44
814	Nutrient and mass allocation of South-east Asian seagrasses. Aquatic Botany, 1999, 63, 203-217.	0.8	27
815	Seagrass ecology at the turn of the millennium: challenges for the new century. Aquatic Botany, 1999, 65, 7-20.	0.8	96
816	Nutrient limitation of the tropical seagrass Enhalus acoroides (L.) Royle in Cape Bolinao, NW Philippines. Aquatic Botany, 1999, 65, 123-139.	0.8	37
817	Seagrass biomass and production: a reassessment. Aquatic Botany, 1999, 65, 159-174.	0.8	621
818	Are seagrass growth and survival constrained by the reducing conditions of the sediment?. Aquatic Botany, 1999, 65, 175-197.	0.8	213
819	An approach to measurement of particle flux and sediment retention within seagrass (Posidonia) Tj ETQq $1\ 1\ 0.784$	1314 rgBT	lOyerlock 1 273
820	Epiphyte Accrual on Posidonia oceanica (L.) Delile Leaves: Implications for Light Absorption. Botanica Marina, 1999, 42, .	0.6	70
821	Nitrate uptake and diffusive nitrate supply in the Central Atlantic. Limnology and Oceanography, 1999, 44, 116-126.	1.6	63
822	The microcosm of particles within seagrass Posidonia oceanica canopies. Marine Ecology - Progress Series, 1999, 181, 289-295.	0.9	27
823	Changes in Community Structure and Biomass of Seagrass Communities along Gradients of Siltation in SE Asia. Estuarine, Coastal and Shelf Science, 1998, 46, 757-768.	0.9	156
824	Mangrove Colonization: Mangrove Progression Over the Growing Pak Phanang (SE Thailand) Mud Flat. Estuarine, Coastal and Shelf Science, 1998, 47, 51-61.	0.9	55
825	Leaf growth response to simulated herbivory: a comparison among seagrass species. Journal of Experimental Marine Biology and Ecology, 1998, 220, 67-81.	0.7	53
826	The effect of nutrient additions on bacterial activity in seagrass (Posidonia oceanica) sediments. Journal of Experimental Marine Biology and Ecology, 1998, 224, 155-166.	0.7	74
827	POPULATION STRUCTURE, DYNAMICS, AND PRODUCTION OF THE MEDITERRANEAN MACROALGA CODIUM BURSA (CHLOROPHYCEAE). Journal of Phycology, 1998, 34, 918-924.	1.0	5
828	Patterns in leaf herbivory on seagrasses. Aquatic Botany, 1998, 60, 67-82.	0.8	125

#	Article	IF	CITATIONS
829	The CO2 Balance of Unproductive Aquatic Ecosystems. , 1998, 281, 234-236.		302
830	Partitioning particulate light absorption: A budget for a Mediterranean bay. Limnology and Oceanography, 1998, 43, 236-244.	1.6	26
831	Root production and belowground seagrass biomass. Marine Ecology - Progress Series, 1998, 171, 97-108.	0.9	129
832	Oxygen dynamics in the rhizosphere of Cymodocea rotundata. Marine Ecology - Progress Series, 1998, 169, 283-288.	0.9	183
833	Growth and abundance of Synechococcus sp. in a Mediterranean Bay:seasonality and relationship with temperature. Marine Ecology - Progress Series, 1998, 170, 45-53.	0.9	145
834	Larval abundance, recruitment and early mortality in Paracentrotus lividus (Echinoidea). Interannual variability and plankton-benthos coupling. Marine Ecology - Progress Series, 1998, 172, 239-251.	0.9	90
835	Bathymetric distribution, biomass and growth dynamics of intertidal Phyllospadix scouleri and Phyllospadix torreyi in Baja California (Mexico). Marine Ecology - Progress Series, 1998, 173, 13-23.	0.9	28
836	Species composition and plant performance of mixed seagrass beds along a siltation gradient at Cape Bolinao, The Philippines. Marine Ecology - Progress Series, 1998, 174, 247-256.	0.9	71
837	Rhizome elongation and seagrass clonal growth. Marine Ecology - Progress Series, 1998, 174, 269-280.	0.9	324
838	Relationship between sediment conditions and mangrove Rhizophora apiculata seedling growth and nutrient status. Marine Ecology - Progress Series, 1998, 175, 277-283.	0.9	45
839	Role of experimental approaches in marine microbial ecology. Aquatic Microbial Ecology, 1997, 13, 101-111.	0.9	31
840	Flowering Frequency of Philippine Seagrasses. Botanica Marina, 1997, 40, .	0.6	36
841	Some aspects of the analysis of size spectra in aquatic ecology. Limnology and Oceanography, 1997, 42, 184-192.	1.6	132
842	Biomass distribution in marine planktonic communities. Limnology and Oceanography, 1997, 42, 1353-1363.	1.6	341
843	Interannual changes in seagrass (<i>Posidonia oceanica</i>) growth and environmental change in the Spanish Mediterranean littoral zone. Limnology and Oceanography, 1997, 42, 800-810.	1.6	86
844	Weak density-dependence and short-term perturbations as determinants of phytoplankton temporal dynamics. Ecoscience, 1997, 4, 120-120.	0.6	0
845	The influence of herbivores on Posidonia oceanica epiphytes. Aquatic Botany, 1997, 56, 93-104.	0.8	99
846	The Effect of Increased Sediment Accretion on the Survival and Growth of Rhizophora apiculata Seedlings. Estuarine, Coastal and Shelf Science, 1997, 45, 697-701.	0.9	56

#	Article	IF	CITATIONS
847	Dynamics of ciliate abundance, biomass and community composition in an oligotrophic coastal environment (NW Mediterranean). Aquatic Microbial Ecology, 1997, 12, 71-83.	0.9	72
848	Spatial and temporal variations in nutrient limitation of seagrass Posidonia oceanica growth in the NW Mediterranean. Marine Ecology - Progress Series, 1997, 146, 155-161.	0.9	101
849	Response of a mixed Philippine seagrass meadow to experimental burial. Marine Ecology - Progress Series, 1997, 147, 285-294.	0.9	140
850	Experimental evidence for apical dominance in the seagrass Cymodocea nodosa. Marine Ecology - Progress Series, 1997, 148, 263-268.	0.9	36
851	Magnitude and fate of the production of four co-occurring Western Mediterranean seagrass species. Marine Ecology - Progress Series, 1997, 155, 29-44.	0.9	92
852	Is the apical growth of Cymodocea nodosa dependent on clonal integration?. Marine Ecology - Progress Series, 1997, 158, 103-110.	0.9	40
853	Dynamics of a landscape mosaic:size and age distributions, growth and demography of seagrass Cymodocea nodosa patches. Marine Ecology - Progress Series, 1997, 158, 131-138.	0.9	77
854	Rate of changes in organic matter and nutrient stocks during seagrass Cymodocea nodosa colonization and stand development. Marine Ecology - Progress Series, 1997, 159, 29-36.	0.9	40
855	Nutrient constraints on establishment from seed and on vegetative expansion of the Mediterranean seagrass Cymodocea nodosa. Aquatic Botany, 1996, 54, 279-286.	0.8	42
856	Growth and population dynamics of Thalassodendron ciliatum in a Kenyan back-reef lagoon. Aquatic Botany, 1996, 55, 1-11.	0.8	29
857	Broad-scale comparison of photosynthetic rates across phototrophic organisms. Oecologia, 1996, 108, 197-206.	0.9	91
858	The fate of marine autotrophic production. Limnology and Oceanography, 1996, 41, 1758-1766.	1.6	726
859	Growth and population dynamics of Posidonia oceanica on the Spanish Mediterranean coast:elucidating seagrass decline. Marine Ecology - Progress Series, 1996, 137, 203-213.	0.9	222
860	Weak density-dependence and short-term perturbations as determinants of phytoplankton temporal dynamics. Ecoscience, 1996, 3, 451-460.	0.6	5
861	Herbivory on the seagrass Cymodocea nodosa (Ucria) Ascherson in contrasting Spanish Mediterranean habitats. Journal of Experimental Marine Biology and Ecology, 1996, 204, 103-111.	0.7	38
862	Bacterioplankton community structure: Protists control net production and the proportion of active bacteria in a coastal marine community. Limnology and Oceanography, 1996, 41, 1169-1179.	1.6	213
863	Scaling Maximum Growth Rates Across Photosynthetic Organisms. Functional Ecology, 1996, 10, 167.	1.7	129
864	Microplankton respiration and net community metabolism on the NW Mediterranean coast. Aquatic Microbial Ecology, 1996, 10, 165-172.	0.9	24

#	Article	IF	CITATIONS
865	Herbivory on Posidonia oceanica:magnitude and variability in the Spanish Mediterranean. Marine Ecology - Progress Series, 1996, 130, 147-155.	0.9	74
866	Loss-controlled phytoplankton production in nutrient-poor littoral waters of the NW Mediterranean:in situ experimental evidence. Marine Ecology - Progress Series, 1996, 130, 213-219.	0.9	23
867	Growth patterns of Western Mediterranean seagrasses:species-specific responses to seasonal forcing. Marine Ecology - Progress Series, 1996, 133, 203-215.	0.9	147
868	Nutrient limitation of Philippine seagrasses (Cape Bolinao, NW Philippines):in situ experimental evidence. Marine Ecology - Progress Series, 1996, 138, 233-243.	0.9	135
869	Bacterial activity in NW Mediterranean seagrass (Posidonia oceanica) sediments. Journal of Experimental Marine Biology and Ecology, 1995, 187, 39-49.	0.7	53
870	Evidence of iron deficiency in seagrasses growing above carbonate sediments. Limnology and Oceanography, 1995, 40, 1153-1158.	1.6	84
871	Coupling of Seagrass (Cymodocea Nodosa) Patch Dynamics to Subaqueous dune Migration. Journal of Ecology, 1995, 83, 381.	1.9	140
872	Submerged aquatic vegetation in relation to different nutrient regimes. Ophelia, 1995, 41, 87-112.	0.3	808
873	Plant Growth-Rate Dependence of Detrital Carbon Storage in Ecosystems. Science, 1995, 268, 1606-1608.	6.0	93
874	Comparative functional plant ecology: rationale and potentials. Trends in Ecology and Evolution, 1995, 10, 418-421.	4.2	42
875	Seasonal growth of Codium bursa, a slow-growing Mediterranean macroalga:in situ experimental evidence of nutrient limitation. Marine Ecology - Progress Series, 1995, 123, 185-191.	0.9	18
876	Meadow maintenance, growth and productivity of a mixed Philippine seagrass bed. Marine Ecology - Progress Series, 1995, 124, 215-225.	0.9	139
877	Active versus inactive bacteria:size-dependence in a coastal marine plankton community. Marine Ecology - Progress Series, 1995, 128, 91-97.	0.9	178
878	Light Harvesting Among Photosynthetic Organisms. Functional Ecology, 1994, 8, 273.	1.7	86
879	The Dependence of Herbivory on Growth Rate in Natural Plant Communities. Functional Ecology, 1994, 8, 518.	1.7	113
880	Light absorption by marine macrophytes. Oecologia, 1994, 98, 121-129.	0.9	76
881	Estimating leaf age of the seagrass Posidonia oceanica (L.) Delile using the plastochrone interval index. Aquatic Botany, 1994, 49, 59-65.	0.8	25
882	Vertical growth of Thalassia testudinum: seasonal and interannual variability. Aquatic Botany, 1994, 47, 1-11.	0.8	46

#	Article	IF	CITATIONS
883	Growth plasticity in Cymodocea nodosa stands: the importance of nutrient supply. Aquatic Botany, 1994, 47, 249-264.	0.8	121
884	Herbivory and Resulting Plant Damage. Oikos, 1994, 69, 545.	1.2	38
885	Patterns in species richness, size, and latitudinal range of East Atlantic fishes. Ecography, 1994, 17, 242-248.	2.1	92
886	Migration of largeâ€scale subaqueous bedforms measured with seagrasses (<i>Cymodocea nodosa</i>) as tracers. Limnology and Oceanography, 1994, 39, 126-133.	1.6	65
887	Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C:N:P content. Oecologia, 1993, 94, 457-471.	0.9	800
888	Submerged macrophyte seed bank in a Mediterranean temporary marsh: abundance and relationship with established vegetation. Oecologia, 1993, 94, 1-6.	0.9	93
889	Patterns in phytoplankton community structure in Florida lakes. Limnology and Oceanography, 1992, 37, 155-161.	1.6	42
890	Nutrient concentration of aquatic plants: Patterns across species. Limnology and Oceanography, 1992, 37, 882-889.	1.6	346
891	Selfâ€regulation, bottomâ€up, and topâ€down control of phytoplankton communities: A reply to the comment by Kamenir. Limnology and Oceanography, 1992, 37, 683-687.	1.6	6
892	Size-Dependent Density of the Demersal Fish off Namibia: Patterns within and among Species. Canadian Journal of Fisheries and Aquatic Sciences, 1992, 49, 1990-1993.	0.7	5
893	The relationship between mesoscale phytoplankton heterogeneity and hydrographic variability. Deep-sea Research Part A, Oceanographic Research Papers, 1992, 39, 45-54.	1.6	7
894	Flowering of Thalassia testudinum banks ex König in the Mexican Caribbean: age-dependence and interannual variability. Aquatic Botany, 1992, 43, 249-255.	0.8	60
895	Uncertainty of detecting sea change. Nature, 1992, 356, 190-190.	13.7	61
896	Biomass partitioning in Florida phytoplankton communities. Journal of Plankton Research, 1991, 13, 239-245.	0.8	16
897	Seagrass depth limits. Aquatic Botany, 1991, 40, 363-377.	0.8	711
898	Architectural and life history constraints to submersed macrophyte community structure: a simulation study. Aquatic Botany, 1991, 42, 15-29.	0.8	23
899	Phosphorus limitation of Cymodocea nodosa growth. Marine Biology, 1991, 109, 129-133.	0.7	113
900	Variance and the Description of Nature. , 1991, , 301-318.		19

#	Article	IF	CITATIONS
901	Size-Dependent Spatial Distribution of Hake (Merluccius capensis and Merluccius paradoxus) in Namibian Waters. Canadian Journal of Fisheries and Aquatic Sciences, 1991, 48, 2095-2099.	0.7	30
902	On the Relevance of Comparative Ecology to the Larger Field of Ecology. , 1991, , 46-63.		6
903	Size plasticity of freshwater phytoplankton: Implications for community structure. Limnology and Oceanography, 1990, 35, 1846-1851.	1.6	18
904	MACROPHYTE STANDING CROP AND PRIMARY PRODUCTWITY IN SOME FLORIDA SPRINGâ€RUNS 1. Journal of the American Water Resources Association, 1990, 26, 927-934.	1.0	12
905	Biomass density and the relationship between submerged macrophyte biomass and plant growth form. Hydrobiologia, 1990, 196, 17-23.	1.0	52
906	Phytoplankton abundance in Florida lakes: Evidence for the frequent lack of nutrient limitation. Limnology and Oceanography, 1990, 35, 181-187.	1.6	30
907	Patterns in the Submerged Macrophyte Biomass of Lakes and the Importance of the Scale of Analysis in the Interpretation. Canadian Journal of Fisheries and Aquatic Sciences, 1990, 47, 357-363.	0.7	99
908	Counting error and the quantitative analysis of phytoplankton communities. Journal of Plankton Research, 1990, 12, 295-304.	0.8	23
909	Time lags in algal growth: generality, causes and consequences. Journal of Plankton Research, 1990, 12, 873-883.	0.8	36
910	Bacteria–Organic Matter Relationship in Sediments: A Case of Spurious Correlation. Canadian Journal of Fisheries and Aquatic Sciences, 1989, 46, 904-908.	0.7	33
911	Factors Influencing the Abundance of Blue-Green Algae in Florida Lakes. Canadian Journal of Fisheries and Aquatic Sciences, 1989, 46, 1232-1237.	0.7	56
912	To produce many small or few large eggs: a size-independent reproductive tactic of fish. Oecologia, 1989, 80, 401-404.	0.9	192
913	Succession patterns of phytoplankton blooms: directionality and influence of algal cell size. Marine Biology, 1989, 102, 43-48.	0.7	14
914	Unifying Nutrient–Chlorophyll Relationships in Lakes. Canadian Journal of Fisheries and Aquatic Sciences, 1989, 46, 1176-1182.	0.7	181
915	The spatial and temporal structure of hydrographic and phytoplankton biomass heterogeneity along the Catalan coast (NW Mediterranean). Journal of Marine Research, 1989, 47, 813-827.	0.3	23
916	Influence of Lake Morphometry on the Response of Submerged Macrophytes to Sediment Fertilization. Canadian Journal of Fisheries and Aquatic Sciences, 1988, 45, 216-221.	0.7	35
917	Patterns in Biomass and Cover of Aquatic Macrophytes in Lakes: Test with Florida Lakes. Canadian Journal of Fisheries and Aquatic Sciences, 1988, 45, 1976-1982.	0.7	8
918	Submerged macrophytes and sediment bacteria in the littoral zone of Lake Memphremagog (Canada). Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 1988, 23, 271-281.	0.1	3

#	Article	IF	CITATIONS
919	Algal cell size and the maximum density and biomass of phytoplankton1. Limnology and Oceanography, 1987, 32, 983-986.	1.6	63
920	Use of Echosounder Tracings to Estimate the Aboveground Biomass of Submerged Plants in Lakes. Canadian Journal of Fisheries and Aquatic Sciences, 1987, 44, 732-735.	0.7	39
921	Latitudinal influences on the Depths of Maximum Colonization and Maximum Biomass of Submerged Angiosperms in Lakes. Canadian Journal of Fisheries and Aquatic Sciences, 1987, 44, 1759-1764.	0.7	46
922	Weight-density relationships in submerged macrophytes. Oecologia, 1987, 72, 612-617.	0.9	43
923	An upper limit to the abundance of aquatic organisms. Oecologia, 1987, 74, 272-276.	0.9	46
924	Littoral slope as a predictor of the maximum biomass of submerged macrophyte communities 1,1. Limnology and Oceanography, 1986, 31, 1072-1080.	1.6	190
925	Patterns in Biomass and Cover of Aquatic Macrophytes in Lakes. Canadian Journal of Fisheries and Aquatic Sciences, 1986, 43, 1900-1908.	0.7	120
926	The Sparkling Tan: How Giant Clams Avoid Sunburns. Frontiers for Young Minds, 0, 9, .	0.8	0
927	Microplastics: Small Particles, Big Threat. Frontiers for Young Minds, 0, 9, .	0.8	1
928	State of Play in Marine Soundscape Assessments. Frontiers in Marine Science, 0, 9, .	1.2	8