Carlos M. Duarte

List of Publications by Citations

Source: https://exaly.com/author-pdf/2975834/carlos-m-duarte-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

919 papers 66,073 citations

113 h-index

227 g-index

995 ext. papers

80,976 ext. citations

6.1 avg, IF

8.18 L-index

#	Paper	IF	Citations
919	Accelerating loss of seagrasses across the globe threatens coastal ecosystems. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 12377-81	11.5	2255
918	Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget. <i>Ecosystems</i> , 2007 , 10, 172-185	3.9	2235
917	A Global Crisis for Seagrass Ecosystems. <i>BioScience</i> , 2006 , 56, 987	5.7	1793
916	A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. <i>Frontiers in Ecology and the Environment</i> , 2011 , 9, 552-560	5.5	1631
915	Plastic debris in the open ocean. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 10239-44	11.5	1509
914	Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. <i>Global Change Biology</i> , 2013 , 19, 1884-96	11.4	1351
913	Global imprint of climate change on marine life. <i>Nature Climate Change</i> , 2013 , 3, 919-925	21.4	1141
912	The global abundance and size distribution of lakes, ponds, and impoundments. <i>Limnology and Oceanography</i> , 2006 , 51, 2388-2397	4.8	1118
911	Thresholds of hypoxia for marine biodiversity. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 15452-7	11.5	1036
910	Seagrass ecosystems as a globally significant carbon stock. <i>Nature Geoscience</i> , 2012 , 5, 505-509	18.3	962
909	The role of coastal plant communities for climate change mitigation and adaptation. <i>Nature Climate Change</i> , 2013 , 3, 961-968	21.4	888
908	The pace of shifting climate in marine and terrestrial ecosystems. <i>Science</i> , 2011 , 334, 652-5	33.3	852
907	Major role of marine vegetation on the oceanic carbon cycle. <i>Biogeosciences</i> , 2005 , 2, 1-8	4.6	735
906	The future of seagrass meadows. <i>Environmental Conservation</i> , 2002 , 29, 192-206	3.3	683
905	Seagrass Ecology 2000 ,		675
904	Submerged aquatic vegetation in relation to different nutrient regimes. <i>Ophelia</i> , 1995 , 41, 87-112		667
903	Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C:N:P content. <i>Oecologia</i> , 1993 , 94, 457-471	2.9	652

902	Seagrass depth limits. <i>Aquatic Botany</i> , 1991 , 40, 363-377	1.8	574
901	The fate of marine autotrophic production. Limnology and Oceanography, 1996, 41, 1758-1766	4.8	527
900	Ecological thresholds and regime shifts: approaches to identification. <i>Trends in Ecology and Evolution</i> , 2009 , 24, 49-57	10.9	511
899	Footprints of climate change in the Arctic marine ecosystem. <i>Global Change Biology</i> , 2011 , 17, 1235-124	1911.4	496
898	Standardizing methods to address clonality in population studies. <i>Molecular Ecology</i> , 2007 , 16, 5115-39	5.7	482
897	Seagrass biomass and production: a reassessment. <i>Aquatic Botany</i> , 1999 , 65, 159-174	1.8	476
896	Is Ocean Acidification an Open-Ocean Syndrome? Understanding Anthropogenic Impacts on Seawater pH. <i>Estuaries and Coasts</i> , 2013 , 36, 221-236	2.8	458
895	Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. <i>Limnology and Oceanography</i> , 2000 , 45, 591-600	4.8	444
894	Return to Neverland: Shifting Baselines Affect Eutrophication Restoration Targets. <i>Estuaries and Coasts</i> , 2009 , 32, 29-36	2.8	423
893	Plastic accumulation in the Mediterranean sea. <i>PLoS ONE</i> , 2015 , 10, e0121762	3.7	412
893 892	Plastic accumulation in the Mediterranean sea. <i>PLoS ONE</i> , 2015 , 10, e0121762 Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. <i>Nature</i> , 2016 , 537, 689-693	3·7 50·4	412
	Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. <i>Nature</i> ,		400
892	Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. <i>Nature</i> , 2016 , 537, 689-693	50.4	400
892 891	Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. <i>Nature</i> , 2016 , 537, 689-693 Respiration in the open ocean. <i>Nature</i> , 2002 , 420, 379-84 Large mesopelagic fishes biomass and trophic efficiency in the open ocean. <i>Nature Communications</i> ,	50.4	400
892 891 890	Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. <i>Nature</i> , 2016 , 537, 689-693 Respiration in the open ocean. <i>Nature</i> , 2002 , 420, 379-84 Large mesopelagic fishes biomass and trophic efficiency in the open ocean. <i>Nature Communications</i> , 2014 , 5, 3271 Seagrass sediments as a global carbon sink: Isotopic constraints. <i>Global Biogeochemical Cycles</i> , 2010	50.4 50.4 17.4 5.9	400 398 363
892 891 890 889	Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. <i>Nature</i> , 2016 , 537, 689-693 Respiration in the open ocean. <i>Nature</i> , 2002 , 420, 379-84 Large mesopelagic fishes biomass and trophic efficiency in the open ocean. <i>Nature Communications</i> , 2014 , 5, 3271 Seagrass sediments as a global carbon sink: Isotopic constraints. <i>Global Biogeochemical Cycles</i> , 2010 , 24, n/a-n/a	50.4 50.4 17.4 5.9	400 398 363 347
892 891 890 889	Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. <i>Nature</i> , 2016 , 537, 689-693 Respiration in the open ocean. <i>Nature</i> , 2002 , 420, 379-84 Large mesopelagic fishes biomass and trophic efficiency in the open ocean. <i>Nature Communications</i> , 2014 , 5, 3271 Seagrass sediments as a global carbon sink: Isotopic constraints. <i>Global Biogeochemical Cycles</i> , 2010 , 24, n/a-n/a Geographical limits to species-range shifts are suggested by climate velocity. <i>Nature</i> , 2014 , 507, 492-5 Vulnerability of marine biodiversity to ocean acidification: A meta-analysis. <i>Estuarine</i> , <i>Coastal and</i>	50.4 50.4 17.4 5.9 50.4	400 398 363 347 343

884	Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century. <i>Global Biogeochemical Cycles</i> , 2008 , 22, n/a-n/a	5.9	306
883	Sediment Retention by a Mediterranean Posidonia oceanica Meadow: The Balance between Deposition and Resuspension. <i>Estuarine, Coastal and Shelf Science</i> , 2001 , 52, 505-514	2.9	305
882	The Arctic Ocean as a dead end for floating plastics in the North Atlantic branch of the Thermohaline Circulation. <i>Science Advances</i> , 2017 , 3, e1600582	14.3	298
881	Microbial oceanography of the dark ocean's pelagic realm. Limnology and Oceanography, 2009, 54, 1501	-4 <i>5</i> 829	293
880	Key Questions in Marine Megafauna Movement Ecology. <i>Trends in Ecology and Evolution</i> , 2016 , 31, 463-	475 .9	292
879	Seagrass community metabolism: Assessing the carbon sink capacity of seagrass meadows. <i>Global Biogeochemical Cycles</i> , 2010 , 24, n/a-n/a	5.9	289
878	Recurrent jellyfish blooms are a consequence of global oscillations. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 1000-5	11.5	286
877	Marine reserves can mitigate and promote adaptation to climate change. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 6167-6175	11.5	282
876	Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality. <i>Global Change Biology</i> , 2009 , 16, 2366-2375	11.4	278
875	The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. <i>Nature</i> , 2016 , 530, 331-5	50.4	276
874	Global patterns in mangrove soil carbon stocks and losses. <i>Nature Climate Change</i> , 2017 , 7, 523-528	21.4	276
873	Rebuilding marine life. <i>Nature</i> , 2020 , 580, 39-51	50.4	262
872	Nutrient concentration of aquatic plants: Patterns across species. <i>Limnology and Oceanography</i> , 1992 , 37, 882-889	4.8	260
871	Rhizome elongation and seagrass clonal growth. <i>Marine Ecology - Progress Series</i> , 1998 , 174, 269-280	2.6	258
870	Prevalence of Heterotrophy and Atmospheric CO2 Emissions from Aquatic Ecosystems. <i>Ecosystems</i> , 2005 , 8, 862-870	3.9	240
869	Biomass distribution in marine planktonic communities. <i>Limnology and Oceanography</i> , 1997 , 42, 1353-13	3638	232
868	Trophic Transfers from Seagrass Meadows Subsidize Diverse Marine and Terrestrial Consumers. <i>Ecosystems</i> , 2008 , 11, 1198-1210	3.9	232
867	Will the Oceans Help Feed Humanity?. <i>BioScience</i> , 2009 , 59, 967-976	5.7	227

(2008-2020)

866	COVID-19 lockdown allows researchers to quantify the effects of human activity on wildlife. <i>Nature Ecology and Evolution</i> , 2020 , 4, 1156-1159	12.3	225	
865	Marine biodiversity and ecosystem services: an elusive link. <i>Journal of Experimental Marine Biology and Ecology</i> , 2000 , 250, 117-131	2.1	223	
864	An approach to measurement of particle flux and sediment retention within seagrass (Posidonia oceanica) meadows. <i>Aquatic Botany</i> , 1999 , 65, 255-268	1.8	218	•
863	Global analysis of seagrass restoration: the importance of large-scale planting. <i>Journal of Applied Ecology</i> , 2016 , 53, 567-578	5.8	218	
862	Mediterranean seagrass vulnerable to regional climate warming. <i>Nature Climate Change</i> , 2012 , 2, 821-8	24 1.4	206	
861	Associations of concern: declining seagrasses and threatened dependent species. <i>Frontiers in Ecology and the Environment</i> , 2009 , 7, 242-246	5.5	205	
860	Questioning the Rise of Gelatinous Zooplankton in the World's Oceans. <i>BioScience</i> , 2012 , 62, 160-169	5.7	203	
859	The CO2 balance of unproductive aquatic ecosystems. <i>Science</i> , 1998 , 281, 234-6	33.3	197	
858	Global abundance and size distribution of streams and rivers. <i>Inland Waters</i> , 2012 , 2, 229-236	2.4	195	
857	Ecology. Rapid domestication of marine species. <i>Science</i> , 2007 , 316, 382-3	33.3	194	
856	Is global ocean sprawl a cause of jellyfish blooms?. <i>Frontiers in Ecology and the Environment</i> , 2013 , 11, 91-97	5.5	189	
855	Growth and population dynamics of Posidonia oceanica on the Spanish Mediterranean coast:elucidating seagrass decline. <i>Marine Ecology - Progress Series</i> , 1996 , 137, 203-213	2.6	186	
854	Are seagrass growth and survival constrained by the reducing conditions of the sediment?. <i>Aquatic Botany</i> , 1999 , 65, 175-197	1.8	182	
853	Atmospheric deposition of organic and black carbon to the global oceans. <i>Atmospheric Environment</i> , 2008 , 42, 7931-7939	5.3	180	
852	Annual Zooplankton Succession in Coastal NW Mediterranean Waters: The Importance of the Smaller Size Fractions. <i>Journal of Plankton Research</i> , 2001 , 23, 319-331	2.2	180	
851	Ecosystem thresholds with hypoxia. <i>Hydrobiologia</i> , 2009 , 629, 21-29	2.4	175	
850	A marine heatwave drives massive losses from the world largest seagrass carbon stocks. <i>Nature Climate Change</i> , 2018 , 8, 338-344	21.4	174	
849	Experimental assessment and modeling evaluation of the effects of the seagrass Posidonia oceanica on flow and particle trapping. <i>Marine Ecology - Progress Series</i> , 2008 , 356, 163-173	2.6	174	

848	Can Seaweed Farming Play a Role in Climate Change Mitigation and Adaptation?. <i>Frontiers in Marine Science</i> , 2017 , 4,	4.5	171
847	Assessing the capacity of seagrass meadows for carbon burial: Current limitations and future strategies. <i>Ocean and Coastal Management</i> , 2013 , 83, 32-38	3.9	170
846	The future of Blue Carbon science. <i>Nature Communications</i> , 2019 , 10, 3998	17.4	165
845	Light availability in the coastal ocean: impact on the distribution of benthic photosynthetic organisms and their contribution to primary production. <i>Biogeosciences</i> , 2006 , 3, 489-513	4.6	164
844	To produce many small or few large eggs: a size-independent reproductive tactic of fish. <i>Oecologia</i> , 1989 , 80, 401-404	2.9	163
843	Unifying Nutrientthlorophyll Relationships in Lakes. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 1989 , 46, 1176-1182	2.4	159
842	Ocean chemistry. Dilution limits dissolved organic carbon utilization in the deep ocean. <i>Science</i> , 2015 , 348, 331-3	33.3	156
841	Littoral slope as a predictor of the maximum biomass of submerged macrophyte communities1,1. Limnology and Oceanography, 1986 , 31, 1072-1080	4.8	155
840	Photosynthetic activity buffers ocean acidification in seagrass meadows. <i>Biogeosciences</i> , 2014 , 11, 333	-3 4. 6	151
839	Carbon and nutrient deposition in a Mediterranean seagrass (Posidonia oceanica) meadow. <i>Limnology and Oceanography</i> , 2002 , 47, 23-32	4.8	151
838	Temperature effects on oxygen thresholds for hypoxia in marine benthic organisms. <i>Global Change Biology</i> , 2011 , 17, 1788-1797	11.4	150
837	Genetic structure at range edge: low diversity and high inbreeding in Southeast Asian mangrove (Avicennia marina) populations. <i>Molecular Ecology</i> , 2006 , 15, 3515-25	5.7	147
836	The impact of sediment burial and erosion on seagrasses: A review. <i>Estuarine, Coastal and Shelf Science</i> , 2008 , 79, 354-366	2.9	146
835	Oxygen dynamics in the rhizosphere of Cymodocea rotundata. <i>Marine Ecology - Progress Series</i> , 1998 , 169, 283-288	2.6	141
834	Impact of seagrass loss and subsequent revegetation on carbon sequestration and stocks. <i>Journal of Ecology</i> , 2015 , 103, 296-302	6	138
833	Implications of extreme life span in clonal organisms: millenary clones in meadows of the threatened seagrass Posidonia oceanica. <i>PLoS ONE</i> , 2012 , 7, e30454	3.7	137
832	Beyond climate change attribution in conservation and ecological research. <i>Ecology Letters</i> , 2013 , 16 Suppl 1, 58-71	10	137
831	Assessing genetic diversity in clonal organisms: low diversity or low resolution? Combining power and cost efficiency in selecting markers. <i>Journal of Heredity</i> , 2005 , 96, 434-40	2.4	137

(2007-2018)

830	Ocean Solutions to Address Climate Change and Its Effects on Marine Ecosystems. <i>Frontiers in Marine Science</i> , 2018 , 5,	4.5	136
829	Translating Marine Animal Tracking Data into Conservation Policy and Management. <i>Trends in Ecology and Evolution</i> , 2019 , 34, 459-473	10.9	132
828	Global spatial risk assessment of sharks under the footprint of fisheries. <i>Nature</i> , 2019 , 572, 461-466	50.4	128
827	Vicariance patterns in the Mediterranean Sea: eastWest cleavage and low dispersal in the endemic seagrass Posidonia oceanica. <i>Journal of Biogeography</i> , 2007 , 34, 963-976	4.1	128
826	Paradigms in the Recovery of Estuarine and Coastal Ecosystems. <i>Estuaries and Coasts</i> , 2015 , 38, 1202-12	2128	126
825	Restarting the conversation: challenges at the interface between ecology and society. <i>Frontiers in Ecology and the Environment</i> , 2010 , 8, 284-291	5.5	125
824	Bacterioplankton community structure: Protists control net production and the proportion of active bacteria in a coastal marine community. <i>Limnology and Oceanography</i> , 1996 , 41, 1169-1179	4.8	125
823	Carbon and nitrogen translocation between seagrass ramets. <i>Marine Ecology - Progress Series</i> , 2002 , 226, 287-300	2.6	125
822	Mangrove forests as traps for marine litter. <i>Environmental Pollution</i> , 2019 , 247, 499-508	9.3	124
821	Dimensions of Blue Carbon and emerging perspectives. <i>Biology Letters</i> , 2019 , 15, 20180781	3.6	123
820	Maritime aerosol network as a component of AERONET If irst results and comparison with global aerosol models and satellite retrievals. <i>Atmospheric Measurement Techniques</i> , 2011 , 4, 583-597	4	121
819	Effects of fish farm waste on Posidonia oceanica meadows: synthesis and provision of monitoring and management tools. <i>Marine Pollution Bulletin</i> , 2008 , 56, 1618-29	6.7	121
818	Network analysis identifies weak and strong links in a metapopulation system. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 18824-9	11.5	121
817	Reviews and syntheses: Hidden forests, the role of vegetated coastal habitats in the ocean carbon budget. <i>Biogeosciences</i> , 2017 , 14, 301-310	4.6	12 0
816	Growth patterns of Western Mediterranean seagrasses:species-specific responses to seasonal forcing. <i>Marine Ecology - Progress Series</i> , 1996 , 133, 203-215	2.6	120
815	Public awareness, concerns, and priorities about anthropogenic impacts on marine environments. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 15042-7	11.5	119
814	Changes in Community Structure and Biomass of Seagrass Communities along Gradients of Siltation in SE Asia. <i>Estuarine, Coastal and Shelf Science</i> , 1998 , 46, 757-768	2.9	119
813	Allometric scaling of plant life history. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 15777-80	11.5	119

812	Recent trend reversal for declining European seagrass meadows. <i>Nature Communications</i> , 2019 , 10, 335	56 17.4	118
811	Ubiquitous healthy diatoms in the deep sea confirm deep carbon injection by the biological pump. <i>Nature Communications</i> , 2015 , 6, 7608	17.4	116
810	Mediterranean seagrass (Posidonia oceanica) loss between 1842 and 2009. <i>Biological Conservation</i> , 2014 , 176, 183-190	6.2	115
809	Coupling of Seagrass (Cymodocea Nodosa) Patch Dynamics to Subaqueous dune Migration. <i>Journal of Ecology</i> , 1995 , 83, 381	6	113
808	Ecological and methodological drivers of species' distribution and phenology responses to climate change. <i>Global Change Biology</i> , 2016 , 22, 1548-60	11.4	113
807	The soundscape of the Anthropocene ocean. <i>Science</i> , 2021 , 371,	33.3	113
806	Global diversity and biogeography of deep-sea pelagic prokaryotes. ISME Journal, 2016, 10, 596-608	11.9	112
805	Depth-acclimation of photosynthesis, morphology and demography of Posidonia oceanica and Cymodocea nodosa in the Spanish Mediterranean Sea. <i>Marine Ecology - Progress Series</i> , 2002 , 236, 89-97	7 2.6	112
804	Consequences of Mediterranean warming events in seagrass (Posidonia oceanica) flowering records. <i>Global Change Biology</i> , 2007 , 13, 224-235	11.4	111
803	Experimental evidence of reduced particle resuspension within a seagrass (Posidonia oceanica L.) meadow. <i>Journal of Experimental Marine Biology and Ecology</i> , 2000 , 243, 45-53	2.1	111
802	COVID-19 pandemic and associated lockdown as a "Global Human Confinement Experiment" to investigate biodiversity conservation. <i>Biological Conservation</i> , 2020 , 248, 108665	6.2	110
801	Within-population spatial genetic structure, neighbourhood size and clonal subrange in the seagrass Cymodocea nodosa. <i>Molecular Ecology</i> , 2005 , 14, 2669-81	5.7	107
800	Meadow maintenance, growth and productivity of a mixed Philippine seagrass bed. <i>Marine Ecology - Progress Series</i> , 1995 , 124, 215-225	2.6	107
799	Response of a mixed Philippine seagrass meadow to experimental burial. <i>Marine Ecology - Progress Series</i> , 1997 , 147, 285-294	2.6	107
798	Growth and abundance of Synechococcus sp. in a Mediterranean Bay:seasonality and relationship with temperature. <i>Marine Ecology - Progress Series</i> , 1998 , 170, 45-53	2.6	107
797	Microplastic in the gastrointestinal tract of fishes along the Saudi Arabian Red Sea coast. <i>Marine Pollution Bulletin</i> , 2018 , 131, 407-415	6.7	106
796	Quantitative approaches in climate change ecology. <i>Global Change Biology</i> , 2011 , 17, 3697-3713	11.4	106
795	Sedimentation of organic matter from fish farms in oligotrophic Mediterranean assessed through bulk and stable isotope (113C and 115N) analyses. <i>Aquaculture</i> , 2007 , 262, 268-280	4.4	106

794	Active versus inactive bacteria:size-dependence in a coastal marine plankton community. <i>Marine Ecology - Progress Series</i> , 1995 , 128, 91-97	2.6	106
793	Root production and belowground seagrass biomass. <i>Marine Ecology - Progress Series</i> , 1998 , 171, 97-108	32.6	105
792	Global challenges for seagrass conservation. <i>Ambio</i> , 2019 , 48, 801-815	6.5	104
791	Large variability of bathypelagic microbial eukaryotic communities across the world's oceans. <i>ISME Journal</i> , 2016 , 10, 945-58	11.9	103
790	Temperature dependence of planktonic metabolism in the ocean. <i>Global Biogeochemical Cycles</i> , 2012 , 26, n/a-n/a	5.9	103
789	Growth plasticity in Cymodocea nodosa stands: the importance of nutrient supply. <i>Aquatic Botany</i> , 1994 , 47, 249-264	1.8	103
788	Patterns in Biomass and Cover of Aquatic Macrophytes in Lakes. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 1986 , 43, 1900-1908	2.4	103
787	A quantitative assessment of Arctic shipping in 2010-2014. Scientific Reports, 2016, 6, 30682	4.9	103
786	Scaling Maximum Growth Rates Across Photosynthetic Organisms. Functional Ecology, 1996 , 10, 167	5.6	102
7 ⁸ 5	Sediment deposition and production in SE-Asia seagrass meadows. <i>Estuarine, Coastal and Shelf Science</i> , 2003 , 56, 909-919	2.9	102
784	Assessing the risk of carbon dioxide emissions from blue carbon ecosystems. <i>Frontiers in Ecology and the Environment</i> , 2017 , 15, 257-265	5.5	100
783	The oligotrophic ocean is heterotrophic. <i>Annual Review of Marine Science</i> , 2013 , 5, 551-69	15.4	99
782	Connecting the dots: responses of coastal ecosystems to changing nutrient concentrations. <i>Environmental Science & Environmental Science & Environment</i>	10.3	99
781	Decadal trends in Red Sea maximum surface temperature. <i>Scientific Reports</i> , 2017 , 7, 8144	4.9	98
780	Organic carbon sources to SE Asian coastal sediments. <i>Estuarine, Coastal and Shelf Science</i> , 2004 , 60, 59-68	2.9	98
779	Footprints of climate change on Mediterranean Sea biota. Frontiers in Marine Science, 2015, 2,	4.5	97
778	Evidence of direct particle trapping by a tropical seagrass meadow. <i>Estuaries and Coasts</i> , 2002 , 25, 1205	-1209	97
777	Some aspects of the analysis of size spectra in aquatic ecology. <i>Limnology and Oceanography</i> , 1997 , 42, 184-192	4.8	96

776	Flow and particle distributions in a nearshore seagrass meadow before and after a storm. <i>Marine Ecology - Progress Series</i> , 2001 , 218, 95-106	2.6	96
775	What lies underneath: conserving the oceans' genetic resources. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 18318-24	11.5	95
774	Sulfide exposure accelerates hypoxia-driven mortalit. <i>Limnology and Oceanography</i> , 2010 , 55, 1075-1087	2 4.8	95
773	Comparative analyses in aquatic microbial ecology: how far do they go?. <i>FEMS Microbiology Ecology</i> , 2000 , 31, 99-106	4.3	95
772	Nutrient limitation of Philippine seagrasses (Cape Bolinao, NW Philippines):in situ experimental evidence. <i>Marine Ecology - Progress Series</i> , 1996 , 138, 233-243	2.6	95
771	Export from Seagrass Meadows Contributes to Marine Carbon Sequestration. <i>Frontiers in Marine Science</i> , 2017 , 4,	4.5	94
770	Patterns in leaf herbivory on seagrasses. <i>Aquatic Botany</i> , 1998 , 60, 67-82	1.8	94
7 69	Sulfur cycling and seagrass (Posidonia oceanica) status in carbonate sediments. <i>Biogeochemistry</i> , 2003 , 66, 223-239	3.8	94
768	Sequestration of macroalgal carbon: the elephant in the Blue Carbon room. <i>Biology Letters</i> , 2018 , 14,	3.6	93
767	Carbon cycling and bacterial carbon sources in pristine and impacted Mediterranean seagrass sediments. <i>Aquatic Microbial Ecology</i> , 2004 , 36, 227-237	1.1	93
766	Methods for the measurement of seagrass growth and production 2001 , 155-182		93
765	Food supply confers calcifiers resistance to ocean acidification. <i>Scientific Reports</i> , 2016 , 6, 19374	4.9	93
764	The movement ecology of seagrasses. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2014 , 281,	4.4	92
763	Dissolved organic carbon support of respiration in the dark ocean. <i>Science</i> , 2002 , 298, 1967	33.3	92
762	Diversity of European seagrass indicators: patterns within and across regions. <i>Hydrobiologia</i> , 2013 , 704, 265-278	2.4	90
761	Seagrass ecology at the turn of the millennium: challenges for the new century. <i>Aquatic Botany</i> , 1999 , 65, 7-20	1.8	90
760	Seafaring in the 21St Century: The Malaspina 2010 Circumnavigation Expedition. <i>Limnology and Oceanography Bulletin</i> , 2015 , 24, 11-14	0.9	89
759	CO2 emissions from saline lakes: A global estimate of a surprisingly large flux. <i>Journal of Geophysical Research</i> , 2008 , 113,		88

(2017-2002)

758	Impacts of milkfish (Chanos chanos) aquaculture on carbon and nutrient fluxes in the Bolinao area, Philippines. <i>Marine Pollution Bulletin</i> , 2002 , 44, 685-96	6.7	88
757	Genetic structure in the Mediterranean seagrass Posidonia oceanica: disentangling past vicariance events from contemporary patterns of gene flow. <i>Molecular Ecology</i> , 2010 , 19, 557-68	5.7	87
756	Genetic differentiation and secondary contact zone in the seagrass Cymodocea nodosa across the Mediterranean Atlantic transition region. <i>Journal of Biogeography</i> , 2008 , 35, 1279-1294	4.1	87
755	Patterns in the Submerged Macrophyte Biomass of Lakes and the Importance of the Scale of Analysis in the Interpretation. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 1990 , 47, 357-363	2.4	87
754	Use of unmanned aerial vehicles for efficient beach litter monitoring. <i>Marine Pollution Bulletin</i> , 2018 , 131, 662-673	6.7	86
753	Effectiveness of protection of seagrass (Posidonia oceanica) populations in Cabrera National Park (Spain). <i>Environmental Conservation</i> , 2002 , 29, 509-518	3.3	85
752	Phosphorus limitation of Cymodocea nodosa growth. <i>Marine Biology</i> , 1991 , 109, 129-133	2.5	85
751	Nutrient removal from Chinese coastal waters by large-scale seaweed aquaculture. <i>Scientific Reports</i> , 2017 , 7, 46613	4.9	84
750	Biological mechanisms supporting adaptation to ocean acidification in coastal ecosystems. <i>Estuarine, Coastal and Shelf Science</i> , 2015 , 152, A1-A8	2.9	84
749	Ecosystem impacts of hypoxia: thresholds of hypoxia and pathways to recovery. <i>Environmental Research Letters</i> , 2011 , 6, 025003	6.2	84
748	The Mediterranean climate as a template for Mediterranean marine ecosystems: the example of the northeast Spanish littoral. <i>Progress in Oceanography</i> , 1999 , 44, 245-270	3.8	84
747	UN Decade on Ecosystem Restoration 2021 2030 What Chance for Success in Restoring Coastal Ecosystems?. <i>Frontiers in Marine Science</i> , 2020 , 7,	4.5	83
746	Expansion of vegetated coastal ecosystems in the future Arctic. Frontiers in Marine Science, 2014, 1,	4.5	83
745	Organic carbon metabolism and carbonate dynamics in a Mediterranean seagrass (Posidonia oceanica), meadow. <i>Estuaries and Coasts</i> , 2006 , 29, 417-426	2.8	82
744	Age and growth of the fan mussel Pinna nobilis from south-east Spanish Mediterranean seagrass (Posidonia oceanica) meadows. <i>Marine Biology</i> , 1999 , 133, 205-212	2.5	82
743	Patterns in species richness, size, and latitudinal range of East Atlantic fishes. <i>Ecography</i> , 1994 , 17, 242	-24.8	81
742	Submerged macrophyte seed bank in a Mediterranean temporary marsh: abundance and relationship with established vegetation. <i>Oecologia</i> , 1993 , 94, 1-6	2.9	81
741	Carbon sequestration by Australian tidal marshes. <i>Scientific Reports</i> , 2017 , 7, 44071	4.9	80

740	The influence of herbivores on Posidonia oceanica epiphytes. <i>Aquatic Botany</i> , 1997 , 56, 93-104	1.8	80
739	Biogeochemical conditions in sediments enriched by organic matter from net-pen fish farms in the Bolinao area, Philippines. <i>Marine Pollution Bulletin</i> , 2003 , 46, 1470-9	6.7	80
738	Rare symbionts may contribute to the resilience of coral-algal assemblages. ISME Journal, 2018, 12, 161	-17.2)	80
737	Linking human well-being and jellyfish: ecosystem services, impacts, and societal responses. <i>Frontiers in Ecology and the Environment</i> , 2014 , 12, 515-523	5.5	79
736	High atmosphereBcean exchange of semivolatile aromatic hydrocarbons. <i>Nature Geoscience</i> , 2016 , 9, 438-442	18.3	79
735	Response of seagrass indicators to shifts in environmental stressors: A global review and management synthesis. <i>Ecological Indicators</i> , 2016 , 63, 310-323	5.8	78
734	Effects of seagrasses and algae of the Caulerpa family on hydrodynamics and particle-trapping rates. <i>Marine Biology</i> , 2010 , 157, 473-481	2.5	78
733	Spatial and temporal variations in nutrient limitation of seagrass Posidonia oceanica growth in the NW Mediterranean. <i>Marine Ecology - Progress Series</i> , 1997 , 146, 155-161	2.6	78
732	Half of global methane emissions come from highly variable aquatic ecosystem sources. <i>Nature Geoscience</i> , 2021 , 14, 225-230	18.3	77
731	Sinking particles promote vertical connectivity in the ocean microbiome. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E6799-E6807	11.5	77
730	Long-range transport of airborne microbes over the global tropical and subtropical ocean. <i>Nature Communications</i> , 2017 , 8, 201	17.4	76
729	Stir bar sorptive extraction-thermal desorption-gas chromatography-mass spectrometry: an effective tool for determining persistent organic pollutants and nonylphenol in coastal waters in compliance with existing Directives. <i>Marine Pollution Bulletin</i> , 2010 , 60, 103-12	6.7	76
728	Allometric laws and prediction in estuarine and coastal ecology. Estuaries and Coasts, 2006, 29, 340-344	2.8	76
727	Large-scale variability in surface bacterial carbon demand and growth efficiency in the subtropical northeast Atlantic Ocean. <i>Limnology and Oceanography</i> , 2007 , 52, 533-546	4.8	76
726	Broad-scale comparison of photosynthetic rates across phototrophic organisms. <i>Oecologia</i> , 1996 , 108, 197-206	2.9	76
7 2 5	The Dependence of Herbivory on Growth Rate in Natural Plant Communities. <i>Functional Ecology</i> , 1994 , 8, 518	5.6	76
724	Australian vegetated coastal ecosystems as global hotspots for climate change mitigation. <i>Nature Communications</i> , 2019 , 10, 4313	17.4	75
723	Seagrass meadows as a globally significant carbonate reservoir. <i>Biogeosciences</i> , 2015 , 12, 4993-5003	4.6	75

722	The relationship between seagrass (Posidonia oceanica) decline and sulfide porewater concentration in carbonate sediments. <i>Estuarine, Coastal and Shelf Science</i> , 2007 , 73, 583-588	2.9	75	
721	Plant growth-rate dependence of detrital carbon storage in ecosystems. <i>Science</i> , 1995 , 268, 1606-8	33.3	75	
720	Direct evidence of imbalanced seagrass (Posidonia oceanica) shoot population dynamics in the Spanish Mediterranean. <i>Estuaries and Coasts</i> , 2005 , 28, 53-62		74	
719	Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean. Limnology and Oceanography, 1999 , 44, 106-115	4.8	74	
718	Magnitude and fate of the production of four co-occurring Western Mediterranean seagrass species. <i>Marine Ecology - Progress Series</i> , 1997 , 155, 29-44	2.6	74	
717	Biogeography revisited with network theory: retracing the history of hydrothermal vent communities. <i>Systematic Biology</i> , 2012 , 61, 127-37	8.4	72	
716	Biogeneration of chromophoric dissolved organic matter by bacteria and krill in the Southern Ocean. <i>Limnology and Oceanography</i> , 2009 , 54, 1941-1950	4.8	72	
715	Detrital stocks and dynamics of the seagrass Posidonia oceanica (L.) Delile in the Spanish Mediterranean. <i>Aquatic Botany</i> , 2001 , 70, 295-309	1.8	72	
714	Air-sea CO2 fluxes along the coast of Chile: From CO2 outgassing in central northern upwelling waters to CO2 uptake in southern Patagonian fjords. <i>Journal of Geophysical Research</i> , 2011 , 116,		71	
713	Interannual changes in seagrass (Posidonia oceanica) growth and environmental change in the Spanish Mediterranean littoral zone. <i>Limnology and Oceanography</i> , 1997 , 42, 800-810	4.8	71	
712	Community metabolism and carbon budget along a gradient of seagrass (Cymodocea nodosa) colonization. <i>Limnology and Oceanography</i> , 2004 , 49, 1642-1651	4.8	71	
711	Larval abundance, recruitment and early mortality in Paracentrotus lividus (Echinoidea). Interannual variability and plankton-benthos coupling. <i>Marine Ecology - Progress Series</i> , 1998 , 172, 239-251	2.6	71	
710	Exponential increase of plastic burial in mangrove sediments as a major plastic sink. <i>Science Advances</i> , 2020 , 6,	14.3	71	
709	Climate Change Impacts on Seagrass Meadows and Macroalgal Forests: An Integrative Perspective on Acclimation and Adaptation Potential. <i>Frontiers in Marine Science</i> , 2018 , 5,	4.5	70	
708	Gelatinous zooplankton biomass in the global oceans: geographic variation and environmental drivers. <i>Global Ecology and Biogeography</i> , 2014 , 23, 701-714	6.1	70	
707	Tipping elements in the Arctic marine ecosystem. <i>Ambio</i> , 2012 , 41, 44-55	6.5	70	
706	Decoupled effects (positive to negative) of nutrient enrichment on ecosystem services 2011 , 21, 991-10	009	70	
705	Global ecological impacts of marine exotic species. <i>Nature Ecology and Evolution</i> , 2019 , 3, 787-800	12.3	68	

704	Impact of elevated UVB radiation on marine biota: a meta-analysis. <i>Global Ecology and Biogeography</i> , 2013 , 22, 131-144	6.1	68
703	Global change and the future ocean: a grand challenge for marine sciences. <i>Frontiers in Marine Science</i> , 2014 , 1,	4.5	68
702	Net ecosystem metabolism in a micro-tidal estuary (Randers Fjord, Denmark): evaluation of methods. <i>Marine Ecology - Progress Series</i> , 2005 , 301, 23-41	2.6	68
701	Testing the predictive power of seagrass depth limit models. <i>Estuaries and Coasts</i> , 2007 , 30, 652-656	2.8	67
700	Patterns of seagrass (Posidonia oceanica) flowering in the Western Mediterranean. <i>Marine Biology</i> , 2006 , 148, 723-742	2.5	67
699	Recolonization dynamics in a mixed seagrass meadow: The role of clonal versus sexual processes. <i>Estuaries and Coasts</i> , 2004 , 27, 770-780		67
698	Evidence for a heterotrophic subtropical northeast Atlantic. <i>Limnology and Oceanography</i> , 2001 , 46, 425	5- 48 8	67
697	Addressing calcium carbonate cycling in blue carbon accounting. <i>Limnology and Oceanography Letters</i> , 2017 , 2, 195-201	7.9	65
696	Aerosol inputs enhance new production in the subtropical northeast Atlantic. <i>Journal of Geophysical Research</i> , 2006 , 111,		65
695	Light absorption by marine macrophytes. <i>Oecologia</i> , 1994 , 98, 121-129	2.9	65
695 694	Light absorption by marine macrophytes. <i>Oecologia</i> , 1994 , 98, 121-129 Reviews and syntheses: ²¹⁰Pb-derived sediment and carbon accumulation rates in vegetated coastal ecosystems Betting the record straight. <i>Biogeosciences</i> , 2018 , 15, 6791-6818	16	65 65
	Reviews and syntheses: ²¹⁰ Pb-derived sediment and carbon accumulation	16	
694	Reviews and syntheses: ²¹⁰Pb-derived sediment and carbon accumulation rates in vegetated coastal ecosystems Betting the record straight. <i>Biogeosciences</i> , 2018 , 15, 6791-6818 Habitat characteristics provide insights of carbon storage in seagrass meadows. <i>Marine Pollution</i>	4.6	65
694 693	Reviews and syntheses: ²¹⁰Pb-derived sediment and carbon accumulation rates in vegetated coastal ecosystems Betting the record straight. <i>Biogeosciences</i> , 2018 , 15, 6791-6818 Habitat characteristics provide insights of carbon storage in seagrass meadows. <i>Marine Pollution Bulletin</i> , 2018 , 134, 106-117 Automatic determination of copper by in-syringe dispersive liquid-liquid microextraction of its	4.6	65 64
694 693 692	Reviews and syntheses: ²¹⁰Pb-derived sediment and carbon accumulation rates in vegetated coastal ecosystems Betting the record straight. <i>Biogeosciences</i> , 2018 , 15, 6791-6818 Habitat characteristics provide insights of carbon storage in seagrass meadows. <i>Marine Pollution Bulletin</i> , 2018 , 134, 106-117 Automatic determination of copper by in-syringe dispersive liquid-liquid microextraction of its bathocuproine-complex using long path-length spectrophotometric detection. <i>Talanta</i> , 2012 , 99, 349-5	4.6 6.7 6.2	656464
694 693 692	Reviews and syntheses: ²¹⁰Pb-derived sediment and carbon accumulation rates in vegetated coastal ecosystems Betting the record straight. <i>Biogeosciences</i> , 2018 , 15, 6791-6818 Habitat characteristics provide insights of carbon storage in seagrass meadows. <i>Marine Pollution Bulletin</i> , 2018 , 134, 106-117 Automatic determination of copper by in-syringe dispersive liquid-liquid microextraction of its bathocuproine-complex using long path-length spectrophotometric detection. <i>Talanta</i> , 2012 , 99, 349-5 Large CO2 disequilibria in tropical lakes. <i>Global Biogeochemical Cycles</i> , 2009 , 23, n/a-n/a Seagrass (Posidonia oceanica) vertical growth as an early indicator of fish farm-derived stress.	4.6 6.7 6.2 5.9	65646464
694693692691690	Reviews and syntheses: ²¹⁰Pb-derived sediment and carbon accumulation rates in vegetated coastal ecosystems Betting the record straight. <i>Biogeosciences</i> , 2018 , 15, 6791-6818 Habitat characteristics provide insights of carbon storage in seagrass meadows. <i>Marine Pollution Bulletin</i> , 2018 , 134, 106-117 Automatic determination of copper by in-syringe dispersive liquid-liquid microextraction of its bathocuproine-complex using long path-length spectrophotometric detection. <i>Talanta</i> , 2012 , 99, 349-5 Large CO2 disequilibria in tropical lakes. <i>Global Biogeochemical Cycles</i> , 2009 , 23, n/a-n/a Seagrass (Posidonia oceanica) vertical growth as an early indicator of fish farm-derived stress. <i>Estuarine</i> , <i>Coastal and Shelf Science</i> , 2006 , 67, 475-483 Toward a Coordinated Global Observing System for Seagrasses and Marine Macroalgae. <i>Frontiers in</i>	4.6 6.7 6.2 5.9 2.9	6564646464

686	Dynamics of a landscape mosaic:size and age distributions, growth and demography of seagrass Cymodocea nodosa patches. <i>Marine Ecology - Progress Series</i> , 1997 , 158, 131-138	2.6	63
685	Spectrum of genetic diversity and networks of clonal organisms. <i>Journal of the Royal Society Interface</i> , 2007 , 4, 1093-1102	4.1	62
684	Herbivory on Posidonia oceanica:magnitude and variability in the Spanish Mediterranean. <i>Marine Ecology - Progress Series</i> , 1996 , 130, 147-155	2.6	62
683	Whole-system metabolism and CO₂ fluxes in a Mediterranean Bay dominated by seagrass beds (Palma Bay, NW Mediterranean). <i>Biogeosciences</i> , 2005 , 2, 43-60	4.6	61
682	Convergence of marine megafauna movement patterns in coastal and open oceans. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 3072-3077	11.5	60
681	Animal-Borne Telemetry: An Integral Component of the Ocean Observing Toolkit. <i>Frontiers in Marine Science</i> , 2019 , 6,	4.5	60
680	Dissolved organic matter release in a Posidonia oceanica meadow. <i>Marine Ecology - Progress Series</i> , 2009 , 374, 75-84	2.6	60
679	Alkaline phosphatase activities in the central Atlantic Ocean indicate large areas with phosphorus deficiency. <i>Marine Ecology - Progress Series</i> , 2003 , 262, 43-53	2.6	60
678	Low Carbon sink capacity of Red Sea mangroves. Scientific Reports, 2017, 7, 9700	4.9	59
677	Impacts of metals and nutrients released from melting multiyear Arctic sea ice. <i>Journal of Geophysical Research</i> , 2010 , 115,		59
676	Deterioration of Sediment Quality in Seagrass Meadows (Posidonia oceanica) Invaded by Macroalgae (Caulerpa sp.). <i>Estuaries and Coasts</i> , 2009 , 32, 456-466	2.8	59
675	Experimental test of bacteria-phytoplankton coupling in the Southern Ocean. <i>Limnology and Oceanography</i> , 2005 , 50, 1844-1854	4.8	59
674	Clonality in seagrasses, emergent properties and seagrass landscapes. <i>Marine Ecology - Progress Series</i> , 2005 , 290, 291-296	2.6	59
673	The impact of ice melting on bacterioplankton in the Arctic Ocean. <i>Polar Biology</i> , 2010 , 33, 1683-1694	2	58
672	The effect of nutrient additions on bacterial activity in seagrass (Posidonia oceanica) sediments. Journal of Experimental Marine Biology and Ecology, 1998 , 224, 155-166	2.1	58
671	Nonlinear processes in seagrass colonisation explained by simple clonal growth rules. <i>Oikos</i> , 2005 , 108, 165-175	4	58
670	Evidence of iron deficiency in seagrasses growing above carbonate sediments. <i>Limnology and Oceanography</i> , 1995 , 40, 1153-1158	4.8	58
669	Light Harvesting Among Photosynthetic Organisms. Functional Ecology, 1994, 8, 273	5.6	58

668	Role of carbonate burial in Blue Carbon budgets. <i>Nature Communications</i> , 2019 , 10, 1106	17.4	57
667	Disentangling the mechanisms shaping the surface ocean microbiota. <i>Microbiome</i> , 2020 , 8, 55	16.6	57
666	Jellyfish body plans provide allometric advantages beyond low carbon content. PLoS ONE, 2013 , 8, e726	5 8.3 7	57
665	Losses of salt marsh in China: Trends, threats and management. <i>Estuarine, Coastal and Shelf Science</i> , 2018 , 214, 98-109	2.9	57
664	Impact of mooring activities on carbon stocks in seagrass meadows. <i>Scientific Reports</i> , 2016 , 6, 23193	4.9	56
663	Epiphyte Accrual on Posidonia oceanica (L.) Delile Leaves: Implications for Light Absorption. <i>Botanica Marina</i> , 1999 , 42,	1.8	56
662	Dissolved organic carbon pools and export from the coastal ocean. <i>Global Biogeochemical Cycles</i> , 2015 , 29, 1725-1738	5.9	55
661	Estimates for energy expenditure in free-living animals using acceleration proxies: A reappraisal. <i>Journal of Animal Ecology</i> , 2020 , 89, 161-172	4.7	55
660	Integrating within-species variation in thermal physiology into climate change ecology. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2019 , 374, 20180550	5.8	54
659	Dramatic loss of seagrass habitat under projected climate change in the Mediterranean Sea. <i>Global Change Biology</i> , 2018 , 24, 4919-4928	11.4	54
658	Unveiling the role and life strategies of viruses from the surface to the dark ocean. <i>Science Advances</i> , 2017 , 3, e1602565	14.3	54
657	Physical Ecosystem Engineers and the Functioning of Estuaries and Coasts 2011 , 53-81		54
656	Benthic primary producersa neglected environmental problem in Mediterranean maricultures?. <i>Marine Pollution Bulletin</i> , 2003 , 46, 1372-6	6.7	54
655	Large-scale ocean connectivity and planktonic body size. <i>Nature Communications</i> , 2018 , 9, 142	17.4	53
654	Important contribution of macroalgae to oceanic carbon sequestration. <i>Nature Geoscience</i> , 2019 , 12, 748-754	18.3	53
653	Oxygen and carbon stable isotopic profiles of the fan mussel, Pinna nobilis, and reconstruction of sea surface temperatures in the Mediterranean. <i>Marine Biology</i> , 2001 , 139, 1115-1124	2.5	53
652	Key biogeochemical factors affecting soil carbon storage in <i>Posidonia</i> meadows. <i>Biogeosciences</i> , 2016 , 13, 4581-4594	4.6	53
651	Spatial and temporal variation in the elemental and stable isotopic content of the seagrasses Posidonia oceanica and Cymodocea nodosa from the Illes Balears, Spain. <i>Marine Biology</i> , 2007 , 151, 219-	- 2 32	52

(1995-2005)

650	Submerged versus air-exposed intertidal macrophyte productivity: from physiological to community-level assessments. <i>Journal of Experimental Marine Biology and Ecology</i> , 2005 , 317, 87-95	2.1	52
649	Resolving the abundance and air-sea fluxes of airborne microorganisms in the North Atlantic Ocean. <i>Frontiers in Microbiology</i> , 2014 , 5, 557	5.7	51
648	Global genetic resources. Marine biodiversity and gene patents. Science, 2011, 331, 1521-2	33.3	51
647	Nitrate uptake and diffusive nitrate supply in the Central Atlantic. <i>Limnology and Oceanography</i> , 1999 , 44, 116-126	4.8	51
646	Migration of large-scale subaqueous bedforms measured with seagrasses (Cymodocea nodosa) as tracers. <i>Limnology and Oceanography</i> , 1994 , 39, 126-133	4.8	51
645	Drivers of pH Variability in Coastal Ecosystems. <i>Environmental Science & Environmental Science & Envi</i>	0-4039	50
644	Mediterranean Seagrass Growth and Demography Responses to Experimental Warming. <i>Estuaries and Coasts</i> , 2012 , 35, 1205-1213	2.8	50
643	Climate change and marine life. <i>Biology Letters</i> , 2012 , 8, 907-9	3.6	50
642	Experimental evaluation of planktonic respiration response to warming in the European Arctic Sector. <i>Polar Biology</i> , 2010 , 33, 1661-1671	2	50
641	GENOMIC DNA ISOLATION FROM GREEN AND BROWN ALGAE (CAULERPALES AND FUCALES) FOR MICROSATELLITE LIBRARY CONSTRUCTION1. <i>Journal of Phycology</i> , 2006 , 42, 741-745	3	49
640	Flowering of Thalassia testudinum banks ex Kīlig in the Mexican Caribbean: age-dependence and interannual variability. <i>Aquatic Botany</i> , 1992 , 43, 249-255	1.8	49
639	Dynamics of ciliate abundance, biomass and community composition in an oligotrophic coastal environment (NW Mediterranean). <i>Aquatic Microbial Ecology</i> , 1997 , 12, 71-83	1.1	49
638	Species composition and plant performance of mixed seagrass beds along a siltation gradient at Cape Bolinao, The Philippines. <i>Marine Ecology - Progress Series</i> , 1998 , 174, 247-256	2.6	49
637	The exposure of the Great Barrier Reef to ocean acidification. <i>Nature Communications</i> , 2016 , 7, 10732	17.4	48
636	Coastal eutrophication research: a new awareness. <i>Hydrobiologia</i> , 2009 , 629, 263-269	2.4	48
635	High atmosphere-ocean exchange of organic carbon in the NE subtropical Atlantic. <i>Geophysical Research Letters</i> , 2005 , 32,	4.9	48
634	Modelling formation of complex topography by the seagrass Posidonia oceanica. <i>Estuarine, Coastal and Shelf Science</i> , 2005 , 65, 717-725	2.9	48
633	Bacterial activity in NW Mediterranean seagrass (Posidonia oceanica) sediments. <i>Journal of Experimental Marine Biology and Ecology</i> , 1995 , 187, 39-49	2.1	48

632	Can mud (silt and clay) concentration be used to predict soil organic carbon content within seagrass ecosystems?. <i>Biogeosciences</i> , 2016 , 13, 4915-4926	4.6	48
631	The Colors of the Ocean Plastics. Environmental Science & Technology, 2020, 54, 6594-6601	10.3	47
630	Decadal stability of Red Sea mangroves. Estuarine, Coastal and Shelf Science, 2016, 169, 164-172	2.9	47
629	Assessing the CO2 capture potential of seagrass restoration projects. <i>Journal of Applied Ecology</i> , 2013 , 50, 1341-1349	5.8	47
628	Effect of ice melting on bacterial carbon fluxes channelled by viruses and protists in the Arctic Ocean. <i>Polar Biology</i> , 2010 , 33, 1695-1707	2	47
627	Ecosystem metabolism and carbon fluxes of a tidally-dominated coastal lagoon. <i>Estuaries and Coasts</i> , 2004 , 27, 977-985		47
626	Experimental evaluation of the effects of siltation-derived changes in sediment conditions on the Philippine seagrass Cymodocea rotundata. <i>Journal of Experimental Marine Biology and Ecology</i> , 2002 , 279, 73-87	2.1	47
625	The Response of Experimental Rocky Shore Communities to Nutrient Additions. <i>Ecosystems</i> , 2003 , 6, 577-594	3.9	47
624	Factors Influencing the Abundance of Blue-Green Algae in Florida Lakes. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 1989 , 46, 1232-1237	2.4	47
623	Biomass density and the relationship between submerged macrophyte biomass and plant growth form. <i>Hydrobiologia</i> , 1990 , 196, 17-23	2.4	47
622	Effect of nutrient supply on the biomass structure of planktonic communities: an experimental test on a Mediterranean coastal community. <i>Marine Ecology - Progress Series</i> , 2000 , 206, 87-95	2.6	47
621	Reconsidering Ocean Calamities. <i>BioScience</i> , 2015 , 65, 130-139	5.7	46
620	Fully-automated fluorimetric determination of aluminum in seawater by in-syringe dispersive liquid-liquid microextraction using lumogallion. <i>Analytical Chemistry</i> , 2012 , 84, 9462-9	7.8	46
619	The role of arctic zooplankton in biogeochemical cycles: respiration and excretion of ammonia and phosphate during summer. <i>Polar Biology</i> , 2010 , 33, 1719-1731	2	46
618	High Metabolic Rates in Beach Cast Communities. <i>Ecosystems</i> , 2007 , 10, 1341-1350	3.9	46
617	Algal cell size and the maximum density and biomass of phytoplankton1. <i>Limnology and Oceanography</i> , 1987 , 32, 983-986	4.8	46
616	Phytoplankton lysis predicts dissolved organic carbon release in marine plankton communities. <i>Biogeosciences</i> , 2013 , 10, 1259-1264	4.6	45
615	Taxonomic study of Marinomonas strains isolated from the seagrass Posidonia oceanica, with descriptions of Marinomonas balearica sp. nov. and Marinomonas pollencensis sp. nov. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2010 , 60, 93-98	2.2	45

(2007-2008)

614	Benthic input rates predict seagrass (Posidonia oceanica) fish farm-induced decline. <i>Marine Pollution Bulletin</i> , 2008 , 56, 1332-42	6.7	45
613	Strong seasonality in phytoplankton cell lysis in the NW Mediterranean littoral. <i>Limnology and Oceanography</i> , 2000 , 45, 940-947	4.8	45
612	Invasion is a community affair: Clandestine followers in the bacterial community associated to green algae, Caulerpa racemosa, track the invasion source. <i>PLoS ONE</i> , 2013 , 8, e68429	3.7	45
611	Temperature dependence of CO2-enhanced primary production in the European Arctic Ocean. <i>Nature Climate Change</i> , 2015 , 5, 1079-1082	21.4	44
610	Effects of ultraviolet B radiation on (not so) transparent exopolymer particles. <i>Biogeosciences</i> , 2009 , 6, 3071-3080	4.6	44
609	Uncoupled distributions of transparent exopolymer particles (TEP) and dissolved carbohydrates in the Southern Ocean. <i>Marine Chemistry</i> , 2009 , 115, 59-65	3.7	44
608	Changes in Arctic marine bacterial carbon metabolism in response to increasing temperature. <i>Polar Biology</i> , 2010 , 33, 1673-1682	2	44
607	Sources of organic matter in seagrass-colonized sediments: A stable isotope study of the silt and clay fraction from Posidonia oceanica meadows in the western Mediterranean. <i>Organic Geochemistry</i> , 2005 , 36, 949-961	3.1	44
606	Active mesopelagic prokaryotes support high respiration in the subtropical northeast Atlantic Ocean. <i>Geophysical Research Letters</i> , 2005 , 32,	4.9	44
605	Major role of marine vegetation on the oceanic carbon cycle		44
605 604	Biomineralization changes with food supply confer juvenile scallons (Argonecten purpuratus)	11.4	44
	Biomineralization changes with food supply confer juvenile scallops (Argopecten purpuratus)	11.4 4·5	
604	Biomineralization changes with food supply confer juvenile scallops (Argopecten purpuratus) resistance to ocean acidification. <i>Global Change Biology</i> , 2016 , 22, 2025-37 Collaborative Database to Track Mass Mortality Events in the Mediterranean Sea. <i>Frontiers in Marine Science</i> , 2019 , 6, Adhesion to coral surface as a potential sink for marine microplastics. <i>Environmental Pollution</i> , 2019		44
604	Biomineralization changes with food supply confer juvenile scallops (Argopecten purpuratus) resistance to ocean acidification. <i>Global Change Biology</i> , 2016 , 22, 2025-37 Collaborative Database to Track Mass Mortality Events in the Mediterranean Sea. <i>Frontiers in Marine Science</i> , 2019 , 6, Adhesion to coral surface as a potential sink for marine microplastics. <i>Environmental Pollution</i> , 2019	4.5	44
604 603 602	Biomineralization changes with food supply confer juvenile scallops (Argopecten purpuratus) resistance to ocean acidification. <i>Global Change Biology</i> , 2016 , 22, 2025-37 Collaborative Database to Track Mass Mortality Events in the Mediterranean Sea. <i>Frontiers in Marine Science</i> , 2019 , 6, Adhesion to coral surface as a potential sink for marine microplastics. <i>Environmental Pollution</i> , 2019 , 255, 113281 Significance of bacterial activity for the distribution and dynamics of transparent exopolymer particles in the Mediterranean sea. <i>Microbial Ecology</i> , 2010 , 59, 808-18 Submarine Groundwater Discharge to the Coastal Environment of a Mediterranean Island (Majorca.	4·5 9·3	44 44 43
604 603 602	Biomineralization changes with food supply confer juvenile scallops (Argopecten purpuratus) resistance to ocean acidification. <i>Global Change Biology</i> , 2016 , 22, 2025-37 Collaborative Database to Track Mass Mortality Events in the Mediterranean Sea. <i>Frontiers in Marine Science</i> , 2019 , 6, Adhesion to coral surface as a potential sink for marine microplastics. <i>Environmental Pollution</i> , 2019 , 255, 113281 Significance of bacterial activity for the distribution and dynamics of transparent exopolymer particles in the Mediterranean sea. <i>Microbial Ecology</i> , 2010 , 59, 808-18 Submarine Groundwater Discharge to the Coastal Environment of a Mediterranean Island (Majorca,	4·5 9·3 4·4	44 44 43 43
604 603 602 601	Biomineralization changes with food supply confer juvenile scallops (Argopecten purpuratus) resistance to ocean acidification. <i>Global Change Biology</i> , 2016 , 22, 2025-37 Collaborative Database to Track Mass Mortality Events in the Mediterranean Sea. <i>Frontiers in Marine Science</i> , 2019 , 6, Adhesion to coral surface as a potential sink for marine microplastics. <i>Environmental Pollution</i> , 2019 , 255, 113281 Significance of bacterial activity for the distribution and dynamics of transparent exopolymer particles in the Mediterranean sea. <i>Microbial Ecology</i> , 2010 , 59, 808-18 Submarine Groundwater Discharge to the Coastal Environment of a Mediterranean Island (Majorca, Spain): Ecosystem and Biogeochemical Significance. <i>Ecosystems</i> , 2010 , 13, 629-643	4·5 9·3 4·4 3·9	44 44 43 43

596	Respiration in coastal benthic communities 2005 , 206-224		43
595	The importance of sample size in marine megafauna tagging studies. <i>Ecological Applications</i> , 2019 , 29, e01947	4.9	42
594	Seasonal dynamics of Posidonia oceanica in Magalluf Bay (Mallorca, Spain): Temperature effects on seagrass mortality. <i>Limnology and Oceanography</i> , 2009 , 54, 2170-2182	4.8	42
593	The Effect of Increased Sediment Accretion on the Survival and Growth ofRhizophora apiculataSeedlings. <i>Estuarine, Coastal and Shelf Science</i> , 1997 , 45, 697-701	2.9	42
592	B vitamins as regulators of phytoplankton dynamics. <i>Eos</i> , 2006 , 87, 593	1.5	42
591	Food-web structure and elemental (C, N and P) fluxes in the eastern tropical North Atlantic. <i>Deep-Sea Research Part II: Topical Studies in Oceanography</i> , 2001 , 48, 2295-2321	2.3	42
590	Genetic diversity of a clonal angiosperm near its range limit: the case of Cymodocea nodosa at the Canary Islands. <i>Marine Ecology - Progress Series</i> , 2006 , 309, 117-129	2.6	42
589	Microplastic removal by Red Sea giant clam (Tridacna maxima). Environmental Pollution, 2019 , 252, 125	7-9.366	41
588	Resource translocation within seagrass clones: allometric scaling to plant size and productivity. <i>Oecologia</i> , 2006 , 150, 362-72	2.9	41
587	Iron Additions Reduce Sulfate Reduction Rates and Improve Seagrass Growth on Organic-Enriched Carbonate Sediments. <i>Ecosystems</i> , 2005 , 8, 721-730	3.9	41
586	Wearable multifunctional printed graphene sensors. Npj Flexible Electronics, 2019, 3,	10.7	40
585	Comparing marine primary production estimates through different methods and development of conversion equations. <i>Frontiers in Marine Science</i> , 2014 , 1,	4.5	40
584	Comparative Analysis of Stability@enetic Diversity in Seagrass (Posidonia oceanica) Meadows Yields Unexpected Results. <i>Estuaries and Coasts</i> , 2010 , 33, 878-889	2.8	40
583	Leaf growth response to simulated herbivory: a comparison among seagrass species. <i>Journal of Experimental Marine Biology and Ecology</i> , 1998 , 220, 67-81	2.1	40
582	Residence time and Posidonia oceanica in Cabrera Archipelago National Park, Spain. <i>Continental Shelf Research</i> , 2005 , 25, 1339-1352	2.4	40
581	Seasonality and depth zonation of intertidal Halophila ovalis and Zostera japonica in Ha Long Bay (northern Vietnam). <i>Aquatic Botany</i> , 2003 , 75, 147-157	1.8	40
580	Hydrodynamics and particle transport associated with a submarine canyon off Blanes (Spain), NW Mediterranean Sea. <i>Continental Shelf Research</i> , 1999 , 19, 1249-1263	2.4	40
579	Latitudinal influences on the Depths of Maximum Colonization and Maximum Biomass of Submerged Angiosperms in Lakes. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 1987 , 44, 1759-17	644	40

(2000-2017)

578	Light penetration structures the deep acoustic scattering layers in the global ocean. <i>Science Advances</i> , 2017 , 3, e1602468	14.3	40
577	Effects of seagrass Thalassia testudinum on sediment redox. <i>Marine Ecology - Progress Series</i> , 2001 , 219, 149-158	2.6	40
576	No Evidence for Temperature-Dependence of the COVID-19 Epidemic. <i>Frontiers in Public Health</i> , 2020 , 8, 436	6	40
575	Thresholds of gross primary production for the metabolic balance of marine planktonic communities. <i>Limnology and Oceanography</i> , 2009 , 54, 1015-1022	4.8	39
574	Feed-backs between genetic structure and perturbation-driven decline in seagrass (Posidonia oceanica) meadows. <i>Conservation Genetics</i> , 2007 , 8, 1377-1391	2.6	39
573	Temporal changes in the abundance, leaf growth and photosynthesis of three co-occurring Philippine seagrasses. <i>Journal of Experimental Marine Biology and Ecology</i> , 2001 , 260, 217-239	2.1	39
572	An inshoreBffshore sorting system revealed from global classification of ocean litter. <i>Nature Sustainability</i> , 2021 , 4, 484-493	22.1	39
571	Marked changes in diversity and relative activity of picoeukaryotes with depth in the world ocean. <i>ISME Journal</i> , 2020 , 14, 437-449	11.9	39
570	Global unbalance in seaweed production, research effort and biotechnology markets. <i>Biotechnology Advances</i> , 2014 , 32, 1028-36	17.8	38
569	Experimentally determined temperature thresholds for Arctic plankton community metabolism. <i>Biogeosciences</i> , 2013 , 10, 357-370	4.6	38
568	Rainfall leads to increased <i>p</i>CO₂ in Brazilian coastal lakes. <i>Biogeosciences</i> , 2010 , 7, 1607-1614	4.6	38
567	Control of air-sea CO2 disequilibria in the subtropical NE Atlantic by planktonic metabolism under the ocean skin. <i>Geophysical Research Letters</i> , 2005 , 32,	4.9	38
566	Weight-density relationships in submerged macrophytes: The importance of light and plant geometry. <i>Oecologia</i> , 1987 , 72, 612-617	2.9	38
565	An upper limit to the abundance of aquatic organisms. <i>Oecologia</i> , 1987 , 74, 272-276	2.9	38
564	Current state of seagrass ecosystem services: Research and policy integration. <i>Ocean and Coastal Management</i> , 2017 , 149, 107-115	3.9	37
563	Distribution and photoreactivity of chromophoric dissolved organic matter in the Antarctic Peninsula (Southern Ocean). <i>Marine Chemistry</i> , 2010 , 118, 129-139	3.7	37
562	Coastal Eutrophication Research in Europe: Progress and Imbalances. <i>Marine Pollution Bulletin</i> , 1999 , 38, 851-854	6.7	37
561	Response of Mediterranean Synechococcus growth and loss rates to experimental nutrient inputs. Marine Ecology - Progress Series, 2000, 206, 97-106	2.6	37

560	Light availability in the coastal ocean: impact on the distribution of benthic photosynthetic organisms and contribution to primary production		37
559	Long photoperiods sustain high pH in Arctic kelp forests. <i>Science Advances</i> , 2016 , 2, e1501938	14.3	37
558	Effect of environmental factors (wave exposure and depth) and anthropogenic pressure in the C sink capacity of Posidonia oceanica meadows. <i>Limnology and Oceanography</i> , 2017 , 62, 1436-1450	4.8	36
557	The Pen Shell, Pinna nobilis: A Review of Population Status and Recommended Research Priorities in the Mediterranean Sea. <i>Advances in Marine Biology</i> , 2015 , 71, 109-60	2.1	36
556	Metatranscriptomes reveal functional variation in diatom communities from the Antarctic Peninsula. <i>ISME Journal</i> , 2015 , 9, 2275-89	11.9	36
555	Mesopelagic prokaryotic bulk and single-cell heterotrophic activity and community composition in the NW Africalanary Islands coastal-transition zone. <i>Progress in Oceanography</i> , 2009 , 83, 189-196	3.8	36
554	Marine ecology warms up to theory. <i>Trends in Ecology and Evolution</i> , 2007 , 22, 331-3	10.9	36
553	Effects of dust deposition and river discharges on trace metal composition of Trichodesmium spp. in the tropical and subtropical North Atlantic Ocean. <i>Limnology and Oceanography</i> , 2006 , 51, 1755-1761	4.8	36
552	Controls on planktonic metabolism in the Bay of Blanes, northwestern Mediterranean littoral. Limnology and Oceanography, 2004 , 49, 2162-2170	4.8	36
55 ¹	Comparative functional plant ecology: rationale and potentials. <i>Trends in Ecology and Evolution</i> , 1995 , 10, 418-21	10.9	36
550	Nutrient constraints on establishment from seed and on vegetative expansion of the Mediterranean seagrass Cymodocea nodosa. <i>Aquatic Botany</i> , 1996 , 54, 279-286	1.8	36
549	Flawed citation practices facilitate the unsubstantiated perception of a global trend toward increased jellyfish blooms. <i>Global Ecology and Biogeography</i> , 2016 , 25, 1039-1049	6.1	36
548	Spatial complexities in aboveground carbon stocks of a semi-arid mangrove community: A remote sensing height-biomass-carbon approach. <i>Estuarine, Coastal and Shelf Science</i> , 2018 , 200, 194-201	2.9	36
547	Accumulation of Carbonates Contributes to Coastal Vegetated Ecosystems Keeping Pace With Sea Level Rise in an Arid Region (Arabian Peninsula). <i>Journal of Geophysical Research G: Biogeosciences</i> , 2018 , 123, 1498-1510	3.7	35
546	Nitrogen-fixing bacteria in Mediterranean seagrass (Posidonia oceanica) roots. <i>Aquatic Botany</i> , 2016 , 131, 57-60	1.8	35
545	Effects of Ocean Acidification and Warming on Sperm Activity and Early Life Stages of the Mediterranean Mussel (Mytilus galloprovincialis). <i>Water (Switzerland)</i> , 2013 , 5, 1890-1915	3	35
544	Seagrass ecosystems: their global status and prospects281-294		35
543	Direct and indirect metabolic CO₂ release by humanity. <i>Biogeosciences</i> , 2007 , 4, 215-217	4.6	35

(1998-2007)

542	Iron Additions Reduce Sulfide Intrusion and Reverse Seagrass (Posidonia oceanica) Decline in Carbonate Sediments. <i>Ecosystems</i> , 2007 , 10, 745-756	3.9	35	
541	Seasonal Dynamics of a Microtidal Pocket Beach with Posidonia oceanica Seabeds (Mallorca, Spain). Journal of Coastal Research, 2004 , 204, 1155-1164	0.6	35	
540	Response of a Mediterranean phytoplankton community to increased nutrient inputs:a mesocosm experiment. <i>Marine Ecology - Progress Series</i> , 2000 , 195, 61-70	2.6	35	
539	Entangled effects of allelic and clonal (genotypic) richness in the resistance and resilience of experimental populations of the seagrass Zostera noltii to diatom invasion. <i>BMC Ecology</i> , 2013 , 13, 39	2.7	34	
538	Surface distribution of dissolved trace metals in the oligotrophic ocean and their influence on phytoplankton biomass and productivity. <i>Global Biogeochemical Cycles</i> , 2015 , 29, 1763-1781	5.9	34	
537	Macroalgae contribute to nested mosaics of pH variability in a subarctic fjord. <i>Biogeosciences</i> , 2015 , 12, 4895-4911	4.6	34	
536	Endophytic bacterial community of a Mediterranean marine angiosperm (Posidonia oceanica). <i>Frontiers in Microbiology</i> , 2012 , 3, 342	5.7	34	
535	Boat anchoring impacts coastal populations of the pen shell, the largest bivalve in the Mediterranean. <i>Biological Conservation</i> , 2013 , 160, 105-113	6.2	34	
534	A miniature and field-applicable multipumping flow analyzer for ammonium monitoring in seawater with fluorescence detection. <i>Talanta</i> , 2011 , 85, 380-5	6.2	34	
533	A comparative study of responses in plankton food web structure and function in contrasting European coastal waters exposed to experimental nutrient addition. <i>Limnology and Oceanography</i> , 2006 , 51, 488-503	4.8	34	
532	Abundance, biomass and growth rates of Synechococcus sp. in a tropical coastal ecosystem (Philippines, South China Sea). <i>Estuarine, Coastal and Shelf Science</i> , 2003 , 56, 493-502	2.9	34	
531	Use of Echosounder Tracings to Estimate the Aboveground Biomass of Submerged Plants in Lakes. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 1987 , 44, 732-735	2.4	34	
530	Impacts of hypoxic events surpass those of future ocean warming and acidification. <i>Nature Ecology and Evolution</i> , 2021 , 5, 311-321	12.3	34	
529	Fingerprinting Blue Carbon: Rationale and Tools to Determine the Source of Organic Carbon in Marine Depositional Environments. <i>Frontiers in Marine Science</i> , 2019 , 6,	4.5	33	
528	Strengthening confidence in climate change impact science. <i>Global Ecology and Biogeography</i> , 2015 , 24, 64-76	6.1	33	
527	Large-Scale Prediction of Seagrass Distribution Integrating Landscape Metrics and Environmental Factors: The Case of Cymodocea nodosa (Mediterranean Atlantic). <i>Estuaries and Coasts</i> , 2016 , 39, 123-1.	3 7 .8	33	
526	Warming Amplifies the Frequency of Harmful Algal Blooms with Eutrophication in Chinese Coastal Waters. <i>Environmental Science & Environmental Science </i>	10.3	33	
525	Mangrove Colonization: Mangrove Progression Over the Growing Pak Phanang (SE Thailand) Mud Flat. <i>Estuarine, Coastal and Shelf Science</i> , 1998 , 47, 51-61	2.9	33	

524	Patch dynamics of the Mediterranean seagrass Posidonia oceanica: Implications for recolonisation process. <i>Aquatic Botany</i> , 2008 , 89, 397-403	1.8	33
523	Respiration in the dark ocean. <i>Geophysical Research Letters</i> , 2003 , 30,	4.9	33
522	Colonization success of common Thai mangrove species as a function of shelter from water movement. <i>Marine Ecology - Progress Series</i> , 2002 , 237, 111-120	2.6	33
521	Interactive effect of temperature and CO2increase in Arctic phytoplankton. <i>Frontiers in Marine Science</i> , 2014 , 1,	4.5	32
520	Global warming enhances sulphide stress in a key seagrass species (NW Mediterranean). <i>Global Change Biology</i> , 2013 , 19, 3629-39	11.4	32
519	Bacterial Community Dynamics in a Seagrass (Posidonia oceanica) Meadow Sediment. <i>Estuaries and Coasts</i> , 2009 , 32, 276-286	2.8	32
518	Modeling nonlinear seagrass clonal growth: Assessing the efficiency of space occupation across the seagrass flora. <i>Estuaries and Coasts</i> , 2006 , 29, 72-80	2.8	32
517	Scientific management of Mediterranean coastal zone: a hybrid ocean forecasting system for oil spill and search and rescue operations. <i>Marine Pollution Bulletin</i> , 2006 , 53, 361-8	6.7	32
516	Phytoplankton trapped within seagrass (Posidonia oceanica) sediments are a nitrogen source: An in situ isotope labeling experiment. <i>Limnology and Oceanography</i> , 2006 , 51, 1648-1653	4.8	32
515	Plant-microbe interactions in seagrass meadows. <i>Coastal and Estuarine Studies</i> , 2005 , 31-60		32
514	Herbivory on the seagrass Cymodocea nodosa (Ucria) Ascherson in contrasting Spanish Mediterranean habitats. <i>Journal of Experimental Marine Biology and Ecology</i> , 1996 , 204, 103-111	2.1	32
513	Vertical growth of Thalassia testudinum: seasonal and interannual variability. <i>Aquatic Botany</i> , 1994 , 47, 1-11	1.8	32
512	Patterns in phytoplankton community structure in Florida lakes. <i>Limnology and Oceanography</i> , 1992 , 37, 155-161	4.8	32
511	Experimental evaluation of the warming effect on viral, bacterial and protistan communities in two contrasting Arctic systems. <i>Aquatic Microbial Ecology</i> , 2013 , 70, 17-32	1.1	32
510	Respiration in the mesopelagic and bathypelagic zones of the oceans 2005 , 181-205		32
509	Comparative infection modeling and control of COVID-19 transmission patterns in China, South Korea, Italy and Iran. <i>Science of the Total Environment</i> , 2020 , 747, 141447	10.2	32
508	Nutrient Limitation in Central Red Sea Mangroves. Frontiers in Marine Science, 2016, 3,	4.5	32
507	Compliant lightweight non-invasive standalone Marine SkinLagging system. <i>Npj Flexible Electronics</i> , 2018 , 2,	10.7	31

506	Flowering Frequency of Philippine Seagrasses. <i>Botanica Marina</i> , 1997 , 40,	1.8	31
505	Plankton metabolism and dissolved organic carbon use in the Bay of Palma, NW Mediterranean Sea. <i>Aquatic Microbial Ecology</i> , 2004 , 37, 47-54	1.1	31
504	Herbivory and Resulting Plant Damage. <i>Oikos</i> , 1994 , 69, 545	4	31
503	Time lags in algal growth: generality, causes and consequences. <i>Journal of Plankton Research</i> , 1990 , 12, 873-883	2.2	31
502	Fairy circle landscapes under the sea. <i>Science Advances</i> , 2017 , 3, e1603262	14.3	31
501	Bacterial activity and diffusive nutrient supply in the oligotrophic Central Atlantic Ocean. <i>Aquatic Microbial Ecology</i> , 2009 , 56, 1-12	1.1	31
500	Evolutionary history of the seagrass genus Posidonia. <i>Marine Ecology - Progress Series</i> , 2011 , 421, 117-1	30 .6	31
499	The Ecology of Human Mobility. <i>Trends in Ecology and Evolution</i> , 2017 , 32, 198-210	10.9	30
498	Noninvasive Featherlight Wearable Compliant "Marine Skin": Standalone Multisensory System for Deep-Sea Environmental Monitoring. <i>Small</i> , 2019 , 15, e1804385	11	30
497	Passive and Active Removal of Marine Microplastics by a Mushroom Coral (Danafungia scruposa). <i>Frontiers in Marine Science</i> , 2020 , 7,	4.5	30
496	Annual variation in leaf photosynthesis and leaf nutrient content of four Mediterranean seagrasses. <i>Botanica Marina</i> , 2004 , 47,	1.8	30
495	Biomass, production and rhizome growth near the northern limit of seagrass (Zostera marina) distribution. <i>Aquatic Botany</i> , 2002 , 72, 183-189	1.8	30
494	Nutrient limitation of the tropical seagrass Enhalus acoroides (L.) Royle in Cape Bolinao, NW Philippines. <i>Aquatic Botany</i> , 1999 , 65, 123-139	1.8	30
493	Effects of sediment sulfides on seagrass Posidonia oceanica meristematic activity. <i>Marine Ecology - Progress Series</i> , 2008 , 372, 1-6	2.6	30
492	Relationship between sediment conditions and mangrove Rhizophora apiculata seedling growth and nutrient status. <i>Marine Ecology - Progress Series</i> , 1998 , 175, 277-283	2.6	30
491	A metagenomic assessment of microbial eukaryotic diversity in the global ocean. <i>Molecular Ecology Resources</i> , 2020 , 20, 718	8.4	29
490	Microplastics in fishes of commercial and ecological importance from the Western Arabian Gulf. <i>Marine Pollution Bulletin</i> , 2020 , 152, 110920	6.7	29
489	Organic carbon sequestration and storage in vegetated coastal habitats along the western coast of the Arabian Gulf. <i>Environmental Research Letters</i> , 2018 , 13, 074007	6.2	29

488	Effects of temperature on the metabolic stoichiometry of Arctic zooplankton. <i>Biogeosciences</i> , 2013 , 10, 689-697	4.6	29
487	Ocean acidification: Separating evidence from judgment IA reply to Dupont et al <i>Estuarine, Coastal and Shelf Science</i> , 2010 , 89, 186-190	2.9	29
486	Allocation of effort and imbalances in biodiversity research. <i>Journal of Experimental Marine Biology and Ecology</i> , 2008 , 360, 15-20	2.1	29
485	New microsatellite markers for the endemic Mediterranean seagrass Posidonia oceanica. <i>Molecular Ecology Notes</i> , 2003 , 3, 253-255		29
484	Methods for the measurement of seagrass abundance and depth distribution 2001, 141-153		29
483	Influence of Lake Morphometry on the Response of Submerged Macrophytes to Sediment Fertilization. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 1988 , 45, 216-221	2.4	29
482	Temperature and phosphorus regulating carbon flux through bacteria in a coastal marine system. <i>Aquatic Microbial Ecology</i> , 2010 , 58, 141-151	1.1	29
481	Blue carbon as a natural climate solution. Nature Reviews Earth & Environment,	30.2	29
480	Phenology and Growth dynamics of Avicennia marina in the Central Red Sea. <i>Scientific Reports</i> , 2016 , 6, 37785	4.9	29
479	Temperature regulation of marine heterotrophic prokaryotes increases latitudinally as a breach between bottom-up and top-down controls. <i>Global Change Biology</i> , 2017 , 23, 3956-3964	11.4	28
478	Synergistic effects of hypoxia and increasing CO2 on benthic invertebrates of the central Chilean coast. <i>Frontiers in Marine Science</i> , 2015 , 2,	4.5	28
477	Seasonal patterns in Arctic planktonic metabolism (Fram Strait ßvalbard region). <i>Biogeosciences</i> , 2013 , 10, 1451-1469	4.6	28
476	Size-Dependent Spatial Distribution of Hake (Merluccius capensis and Merluccius paradoxus) in Namibian Waters. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 1991 , 48, 2095-2099	2.4	28
475	Rate of changes in organic matter and nutrient stocks during seagrass Cymodocea nodosa colonization and stand development. <i>Marine Ecology - Progress Series</i> , 1997 , 159, 29-36	2.6	28
474	Growth and sediment space occupation by seagrass Cymodocea nodosa roots. <i>Marine Ecology - Progress Series</i> , 2001 , 224, 291-298	2.6	28
473	Seagrass sediments reveal the long-term deterioration of an estuarine ecosystem. <i>Global Change Biology</i> , 2016 , 22, 1523-31	11.4	28
472	Golden carbon of Sargassum forests revealed as an opportunity for climate change mitigation. <i>Science of the Total Environment</i> , 2020 , 729, 138745	10.2	28
471	Claims That Anthropogenic Stressors Facilitate Jellyfish Blooms Have Been Amplified Beyond the Available Evidence: A Systematic Review. <i>Frontiers in Marine Science</i> , 2018 , 5,	4.5	28

470	Trace metals in deep ocean waters: A review. Journal of Marine Systems, 2012, 100-101, 26-33	2.7	27	
469	Low Abundance of Plastic Fragments in the Surface Waters of the Red Sea. <i>Frontiers in Marine Science</i> , 2017 , 4,	4.5	27	
468	Ultra-trace determination of Persistent Organic Pollutants in Arctic ice using stir bar sorptive extraction and gas chromatography coupled to mass spectrometry. <i>Journal of Chromatography A</i> , 2009 , 1216, 8581-9	4.5	27	
467	Phyto- and bacterioplankton abundance and viability and their relationship with phosphorus across the Mediterranean Sea. <i>Aquatic Microbial Ecology</i> , 2010 , 60, 175-191	1.1	27	
466	An experimental test of the occurrence of competitive interactions among SE Asian seagrasses. Marine Ecology - Progress Series, 2000 , 197, 231-240	2.6	27	
465	Oxygen supersaturation protects coastal marine fauna from ocean warming. <i>Science Advances</i> , 2019 , 5, eaax1814	14.3	26	
464	Contribution of Seagrass Blue Carbon Toward Carbon Neutral Policies in a Touristic and Environmentally-Friendly Island. <i>Frontiers in Marine Science</i> , 2020 , 7,	4.5	26	
463	How Big Data Fast Tracked Human Mobility Research and the Lessons for Animal Movement Ecology. <i>Frontiers in Marine Science</i> , 2018 , 5,	4.5	26	
462	Long-term records of trace metal content of western Mediterranean seagrass (Posidonia oceanica) meadows: Natural and anthropogenic contributions. <i>Journal of Geophysical Research</i> , 2010 , 115, n/a-n/a	l	26	
461	Exploring the relationship between active bacterioplankton and phytoplankton in the Southern Ocean. <i>Aquatic Microbial Ecology</i> , 2008 , 52, 99-106	1.1	26	
460	Experimental evidence for apical dominance in the seagrass Cymodocea nodosa. <i>Marine Ecology - Progress Series</i> , 1997 , 148, 263-268	2.6	26	
459	Entangled fates of holobiont genomes during invasion: nested bacterial and host diversities in Caulerpa taxifolia. <i>Molecular Ecology</i> , 2017 , 26, 2379-2391	5.7	25	
458	Overhauling Ocean Spatial Planning to Improve Marine Megafauna Conservation. <i>Frontiers in Marine Science</i> , 2019 , 6,	4.5	25	
457	Reconstruction of centennial-scale fluxes of chemical elements in the Australian coastal environment using seagrass archives. <i>Science of the Total Environment</i> , 2016 , 541, 883-894	10.2	25	
456	Methane Production by Seagrass Ecosystems in the Red Sea. Frontiers in Marine Science, 2017, 4,	4.5	25	
455	Sensitivity and Acclimation of Three Canopy-Forming Seaweeds to UVB Radiation and Warming. <i>PLoS ONE</i> , 2015 , 10, e0143031	3.7	25	
454	Temperature Dependence of Oxygen Dynamics and Community Metabolism in a Shallow Mediterranean Macroalgal Meadow (Caulerpa prolifera). <i>Estuaries and Coasts</i> , 2012 , 35, 1182-1192	2.8	25	
453	Growth and population dynamics of Thalassodendron ciliatum in a Kenyan back-reef lagoon. Aquatic Botany, 1996 , 55, 1-11	1.8	25	

452	Bacteria Drganic Matter Relationship in Sediments: A Case of Spurious Correlation. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 1989 , 46, 904-908	2.4	25
451	Phytoplankton abundance in Florida lakes: Evidence for the frequent lack of nutrient limitation. <i>Limnology and Oceanography</i> , 1990 , 35, 181-187	4.8	25
450	Is the apical growth of Cymodocea nodosa dependent on clonal integration?. <i>Marine Ecology - Progress Series</i> , 1997 , 158, 103-110	2.6	25
449	Functional Pangenome Analysis Shows Key Features of E Protein Are Preserved in SARS and SARS-CoV-2. <i>Frontiers in Cellular and Infection Microbiology</i> , 2020 , 10, 405	5.9	25
448	Light-dependent calcification in Red Sea giant clam <i>Tridacna maxima</i>. <i>Biogeosciences</i> , 2019 , 16, 2635-2650	4.6	24
447	Patterns in planktonic metabolism in the Mediterranean Sea. <i>Biogeosciences</i> , 2009 , 6, 3081-3089	4.6	24
446	Role of experimental approaches in marine microbial ecology. <i>Aquatic Microbial Ecology</i> , 1997 , 13, 101	11.11	24
445	Estimating leaf age of the seagrass Posidonia oceanica (L.) Delile using the plastochrone interval index. <i>Aquatic Botany</i> , 1994 , 49, 59-65	1.8	24
444	Universal scaling in the branching of the tree of life. <i>PLoS ONE</i> , 2008 , 3, e2757	3.7	24
443	Ocean warming compresses the three-dimensional habitat of marine life. <i>Nature Ecology and Evolution</i> , 2020 , 4, 109-114	12.3	24
442	Seagrass (Posidonia oceanica) seedlings in a high-CO world: from physiology to herbivory. <i>Scientific Reports</i> , 2016 , 6, 38017	4.9	24
441	Intervention Options to Accelerate Ecosystem Recovery From Coastal Eutrophication. <i>Frontiers in Marine Science</i> , 2018 , 5,	4.5	24
440	Rapid growth of seaweed biotechnology provides opportunities for developing nations. <i>Nature Biotechnology</i> , 2013 , 31, 591-2	44.5	23
439	Big data analyses reveal patterns and drivers of the movements of southern elephant seals. <i>Scientific Reports</i> , 2017 , 7, 112	4.9	23
438	Determination of ppb-level phenol index using in-syringe dispersive liquid-liquid microextraction and liquid waveguide capillary cell spectrophotometry. <i>Mikrochimica Acta</i> , 2012 , 179, 91-98	5.8	23
437	Evidence for surface organic matter modulation of air-sea CO₂ gas exchange. <i>Biogeosciences</i> , 2009 , 6, 1105-1114	4.6	23
436	Long-Term CO2 Variability in Two Shallow Tropical Lakes Experiencing Episodic Eutrophication and Acidification Events. <i>Ecosystems</i> , 2010 , 13, 382-392	3.9	23
435	Nutrient (N, P and Si) and carbon partitioning in the stratified NW Mediterranean. <i>Journal of Sea Research</i> , 2003 , 49, 157-170	1.9	23

(2020-2005)

434	Nutrient dynamics and ecosystem metabolism in the Bay of Blanes (NW Mediterranean). <i>Biogeochemistry</i> , 2005 , 73, 303-323	3.8	23	
433	The determination of the age and growth of SE Asian mangrove seedlings from internodal counts. <i>Mangroves and Salt Marshes</i> , 1999 , 3, 251-257		23	
432	Latitudinal variability in phosphate uptake in the Central Atlantic. <i>Marine Ecology - Progress Series</i> , 2000 , 194, 283-294	2.6	23	
431	Stable Isotope (🛮 3C, 🗓 5N, ឋ 8O, 🕩) Composition and Nutrient Concentration of Red Sea Primary Producers. <i>Frontiers in Marine Science</i> , 2018 , 5,	4.5	23	
430	Dynamics of carbon sources supporting burial in seagrass sediments under increasing anthropogenic pressure. <i>Limnology and Oceanography</i> , 2017 , 62, 1451-1465	4.8	22	
429	Spatial gradients in trace metal concentrations in the surface microlayer of the Mediterranean Sea. <i>Frontiers in Marine Science</i> , 2014 , 1,	4.5	22	
428	Coupled CO₂ and O₂-driven compromises to marine life in summer along the Chilean sector of the Humboldt Current System. <i>Biogeosciences</i> , 2012 , 9, 1183-	1494	22	
427	Global patterns in oceanic planktonic metabolism. <i>Limnology and Oceanography</i> , 2013 , 58, 977-986	4.8	22	
426	Aquaculture in the Ecosystem 2008,		22	
425	Biomass and leaf dynamics of Cymodocea nodosa in the Ria Formosa lagoon, South Portugal. <i>Botanica Marina</i> , 2007 , 50, 1-7	1.8	22	
424	Population age structure and rhizome growth of Cymodocea nodosa in the Ria Formosa (southern Portugal). <i>Marine Biology</i> , 2005 , 146, 841-847	2.5	22	
423	Nutrient and mass allocation of South-east Asian seagrasses. <i>Aquatic Botany</i> , 1999 , 63, 203-217	1.8	22	
422	Krill excretion boosts microbial activity in the Southern Ocean. PLoS ONE, 2014, 9, e89391	3.7	22	
421	Opportunities for blue carbon strategies in China. Ocean and Coastal Management, 2020, 194, 105241	3.9	22	
420	Projected Changes in Photosynthetic Picoplankton in a Warmer Subtropical Ocean. <i>Frontiers in Marine Science</i> , 2019 , 5,	4.5	22	
419	Carbon stocks and accumulation rates in Red Sea seagrass meadows. <i>Scientific Reports</i> , 2018 , 8, 15037	4.9	22	
418	Silicic acid limitation drives bloom termination and potential carbon sequestration in an Arctic bloom. <i>Scientific Reports</i> , 2019 , 9, 8149	4.9	21	
417	The ocean genome and future prospects for conservation and equity. <i>Nature Sustainability</i> , 2020 , 3, 588	-52.6	21	

416	Red ochre and shells: clues to human evolution. <i>Trends in Ecology and Evolution</i> , 2014 , 29, 560-5	10.9	21
415	Shifts in shell mineralogy and metabolism of Concholepas concholepas juveniles along the Chilean coast. <i>Marine and Freshwater Research</i> , 2015 , 66, 1147	2.2	21
414	Seagrass Meadows Modify Drag Forces on the Shell of the Fan Mussel Pinna nobilis. <i>Estuaries and Coasts</i> , 2011 , 34, 60-67	2.8	21
413	Distribution and Pathogenicity of the Protist Labyrinthula sp. in western Mediterranean Seagrass Meadows. <i>Estuaries and Coasts</i> , 2011 , 34, 1161-1168	2.8	21
412	Scaling of ramet size and spacing in seagrasses: implications for stand development. <i>Aquatic Botany</i> , 2003 , 77, 87-98	1.8	21
411	Light-dependence of the metabolic balance of a highly productive Philippine seagrass community. <i>Journal of Experimental Marine Biology and Ecology</i> , 2005 , 316, 55-67	2.1	21
410	Diet and association of Pontonia pinnophylax occurring in Pinna nobilis: insights from stable isotope analysis. <i>Journal of the Marine Biological Association of the United Kingdom</i> , 2001 , 81, 177-178	1.1	21
409	Architectural and life history constraints to submersed macrophyte community structure: a simulation study. <i>Aquatic Botany</i> , 1991 , 42, 15-29	1.8	21
408	Plasticity and trade-offs in physiological traits of intertidal mussels subjected to freshwater-induced environmental variation. <i>Marine Ecology - Progress Series</i> , 2016 , 553, 93-109	2.6	21
407	Bathymetric distribution, biomass and growth dynamics of intertidal Phyllospadix scouleri and Phyllospadix torreyi in Baja California (Mexico). <i>Marine Ecology - Progress Series</i> , 1998 , 173, 13-23	2.6	21
406	Large deep-sea zooplankton biomass mirrors primary production in the global ocean. <i>Nature Communications</i> , 2020 , 11, 6048	17.4	21
405	Experimental Assessment of Temperature Thresholds for Arctic Phytoplankton Communities. <i>Estuaries and Coasts</i> , 2015 , 38, 873-885	2.8	20
404	Laser-Printed, Flexible Graphene Pressure Sensors. <i>Global Challenges</i> , 2020 , 4, 2000001	4.3	20
403	Topological properties of polar food webs. <i>Marine Ecology - Progress Series</i> , 2013 , 474, 15-26	2.6	20
402	Marinomonas alcarazii sp. nov., M. rhizomae sp. nov., M. foliarum sp. nov., M. posidonica sp. nov. and M. aquiplantarum sp. nov., isolated from the microbiota of the seagrass Posidonia oceanica. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2011 , 61, 2191-2196	2.2	20
401	Antarctic krill as a source of dissolved organic carbon to the Antarctic ecosystem. <i>Limnology and Oceanography</i> , 2011 , 56, 521-528	4.8	20
400	High Organic Carbon Export Precludes Eutrophication Responses in Experimental Rocky Shore Communities. <i>Ecosystems</i> , 2003 , 6, 144-153	3.9	20
399	Global COVID-19 lockdown highlights humans as both threats and custodians of the environment. <i>Biological Conservation</i> , 2021 , 263, 109175	6.2	20

398	Remobilization of Heavy Metals by Mangrove Leaves. Frontiers in Marine Science, 2018, 5,	4.5	20
397	Research Priorities for Achieving Healthy Marine Ecosystems and Human Communities in a Changing Climate. <i>Frontiers in Marine Science</i> , 2020 , 7,	4.5	19
396	New Tools to Identify the Location of Seagrass Meadows: Marine Grazers as Habitat Indicators. <i>Frontiers in Marine Science</i> , 2018 , 5,	4.5	19
395	Plankton metabolism in the Greenland Sea during the polar summer of 2007. <i>Polar Biology</i> , 2010 , 33, 1651-1660	2	19
394	Microbial plankton abundance and heterotrophic activity across the Central Atlantic Ocean. <i>Progress in Oceanography</i> , 2008 , 79, 83-94	3.8	19
393	Biogenic silica production and diatom dynamics in the Svalbard region during spring. <i>Biogeosciences</i> , 2018 , 15, 6503-6517	4.6	19
392	Autochthonous and allochthonous contributions of organic carbon to microbial food webs in Svalbard fjords. <i>Limnology and Oceanography</i> , 2017 , 62, 1307-1323	4.8	18
391	The Red Sea: Environmental Gradients Shape a Natural Laboratory in a Nascent Ocean. <i>Coral Reefs of the World</i> , 2019 , 1-10	2.1	18
390	Warming Reduces Pathogen Pressure on a Climate-Vulnerable Seagrass Species. <i>Estuaries and Coasts</i> , 2015 , 38, 659-667	2.8	18
389	Genetic and oceanographic tools reveal high population connectivity and diversity in the endangered pen shell Pinna nobilis. <i>Scientific Reports</i> , 2018 , 8, 4770	4.9	18
388	Seasonal dynamics of autotrophic and heterotrophic plankton metabolism and PCO2 in a subarctic Greenland fjord. <i>Limnology and Oceanography</i> , 2014 , 59, 1764-1778	4.8	18
387	Ten Thousand Voices on Marine Climate Change in Europe: Different Perceptions among Demographic Groups and Nationalities. <i>Frontiers in Marine Science</i> , 2017 , 4,	4.5	18
386	Viruses and Protists Induced-mortality of Prokaryotes around the Antarctic Peninsula during the Austral Summer. <i>Frontiers in Microbiology</i> , 2017 , 8, 241	5.7	18
385	Air-water exchange and vertical profiles of organic carbon in a subarctic fjord. <i>Limnology and Oceanography</i> , 2010 , 55, 1733-1740	4.8	18
384	Light regulation of benthic sulfate reduction rates mediated by seagrass (Thalassia testudinum) metabolism. <i>Estuaries and Coasts</i> , 2006 , 29, 1255-1264	2.8	18
383	Comparative analysis of food webs based on flow networks: effects of nutrient supply on structure and function of coastal plankton communities. <i>Continental Shelf Research</i> , 2001 , 21, 2043-2053	2.4	18
382	The spatial and temporal structure of hydrographic and phytoplankton biomass heterogeneity along the Catalan coast (NW Mediterranean). <i>Journal of Marine Research</i> , 1989 , 47, 813-827	1.5	18
381	Counting error and the quantitative analysis of phytoplankton communities. <i>Journal of Plankton Research</i> , 1990 , 12, 295-304	2.2	18

380	Meridional and zonal changes in water properties along the continental slope off central and northern Chile. <i>Ciencias Marinas</i> , 2012 , 38, 307-332	1.7	18
379	Implanted Nanosensors in Marine Organisms for Physiological Biologging: Design, Feasibility, and Species Variability. <i>ACS Sensors</i> , 2019 , 4, 32-43	9.2	18
378	Differential thermal tolerance between algae and corals may trigger the proliferation of algae in coral reefs. <i>Global Change Biology</i> , 2020 , 26, 4316-4327	11.4	17
377	Iridocytes Mediate Photonic Cooperation Between Giant Clams (Tridacninae) and Their Photosynthetic Symbionts. <i>Frontiers in Marine Science</i> , 2020 , 7,	4.5	17
376	Give the machine a hand: A Boolean time-based decision-tree template for rapidly finding animal behaviours in multisensor data. <i>Methods in Ecology and Evolution</i> , 2018 , 9, 2206-2215	7.7	17
375	Palaeoclimatic conditions in the Mediterranean explain genetic diversity of Posidonia oceanica seagrass meadows. <i>Scientific Reports</i> , 2017 , 7, 2732	4.9	17
374	Dissolved organic carbon fluxes by seagrass meadows and macroalgal beds. <i>Frontiers in Marine Science</i> , 2014 , 1,	4.5	17
373	Krill excretion and its effect on primary production. <i>Marine Ecology - Progress Series</i> , 2012 , 459, 29-38	2.6	17
372	Compensation irradiance for planktonic community metabolism in the ocean. <i>Global Biogeochemical Cycles</i> , 2010 , 24, n/a-n/a	5.9	17
371	Partitioning particulate light absorption: A budget for a Mediterranean bay. <i>Limnology and Oceanography</i> , 1998 , 43, 236-244	4.8	17
370	Effect of N:P ratios on response of Mediterranean picophytoplankton to experimental nutrient inputs. <i>Aquatic Microbial Ecology</i> , 2004 , 34, 57-67	1.1	17
369	Metabolic Architecture of the Deep Ocean Microbiome		17
368	Operationalizing Ocean Health: Toward Integrated Research on Ocean Health and Recovery to Achieve Ocean Sustainability. <i>One Earth</i> , 2020 , 2, 557-565	8.1	17
367	Deep ocean metagenomes provide insight into the metabolic architecture of bathypelagic microbial communities. <i>Communications Biology</i> , 2021 , 4, 604	6.7	17
366	Functional metagenomic analysis of dust-associated microbiomes above the Red Sea. <i>Scientific Reports</i> , 2019 , 9, 13741	4.9	16
365	Higher contribution of globally rare bacterial taxa reflects environmental transitions across the surface ocean. <i>Molecular Ecology</i> , 2019 , 28, 1930-1945	5.7	16
364	Extreme pH Conditions at a Natural CO2 Vent System (Italy) Affect Growth, and Survival of Juvenile Pen Shells (Pinna nobilis). <i>Estuaries and Coasts</i> , 2015 , 38, 1986-1999	2.8	16
363	Seagrass losses since mid-20th century fuelled CO emissions from soil carbon stocks. <i>Global Change Biology</i> , 2020 , 26, 4772-4784	11.4	16

(2008-2016)

362	CDOM Sources and Photobleaching Control Quantum Yields for Oceanic DMS Photolysis. <i>Environmental Science & Environmental Scie</i>	10.3	16	
361	Disentangling the Influence of Mutation and Migration in Clonal Seagrasses Using the Genetic Diversity Spectrum for Microsatellites. <i>Journal of Heredity</i> , 2014 , 105, 532-541	2.4	16	
360	Ecosystem metabolism in a temporary Mediterranean marsh (Do l ana National Park, SW Spain). <i>Biogeosciences</i> , 2011 , 8, 963-971	4.6	16	
359	Abundance of Antarctic picophytoplankton and their response to light and nutrient manipulation. <i>Aquatic Microbial Ecology</i> , 2002 , 29, 161-172	1.1	16	
358	Genetic recolonization of mangrove: genetic diversity still increasing in the Mekong Delta 30 years after Agent Orange. <i>Marine Ecology - Progress Series</i> , 2009 , 390, 129-135	2.6	16	
357	Thresholds of irradiance for seagrass Posidonia oceanica meadow metabolism. <i>Marine Ecology - Progress Series</i> , 2012 , 466, 69-79	2.6	16	
356	Dissolved organic carbon release by marine macrophytes		16	
355	Gelatinous Zooplankton-Mediated Carbon Flows in the Global Oceans: A Data-Driven Modeling Study. <i>Global Biogeochemical Cycles</i> , 2020 , 34, e2020GB006704	5.9	16	
354	Enabling a large-scale assessment of litter along Saudi Arabian red sea shores by combining drones and machine learning. <i>Environmental Pollution</i> , 2021 , 277, 116730	9.3	16	
353	Seaweed farms provide refugia from ocean acidification. <i>Science of the Total Environment</i> , 2021 , 776, 145192	10.2	16	
352	Losses of Soil Organic Carbon with Deforestation in Mangroves of Madagascar. <i>Ecosystems</i> , 2021 , 24, 1-19	3.9	16	
351	Airborne Prokaryote and Virus Abundance Over the Red Sea. Frontiers in Microbiology, 2019 , 10, 1112	5.7	15	
350	Accelerated burial of petroleum hydrocarbons in Arabian Gulf blue carbon repositories. <i>Science of the Total Environment</i> , 2019 , 669, 205-212	10.2	15	
349	Marine forests of the Mediterranean-Atlantic Cystoseira tamariscifolia complex show a southern Iberian genetic hotspot and no reproductive isolation in parapatry. <i>Scientific Reports</i> , 2018 , 8, 10427	4.9	15	
348	Consequences of UV-enhanced community respiration for plankton metabolic balance. <i>Limnology and Oceanography</i> , 2014 , 59, 223-232	4.8	15	
347	OceanEtmosphere exchange of organic carbon and CO₂ surrounding the Antarctic Peninsula. <i>Biogeosciences</i> , 2014 , 11, 2755-2770	4.6	15	
346	Geographical gradients of dissolved Vitamin B12 in the Mediterranean Sea. <i>Frontiers in Microbiology</i> , 2013 , 4, 126	5.7	15	
345	Sedimentary iron inputs stimulate seagrass (Posidonia oceanica) population growth in carbonate sediments. <i>Estuarine, Coastal and Shelf Science</i> , 2008 , 76, 710-713	2.9	15	

344	Dimethyl sulfoxide (DMSO) reduction potential in Mediterranean seagrass (Posidonia oceanica) sediments. <i>Journal of Sea Research</i> , 2004 , 51, 11-20	1.9	15
343	Size plasticity of freshwater phytoplankton: Implications for community structure. <i>Limnology and Oceanography</i> , 1990 , 35, 1846-1851	4.8	15
342	Microplankton respiration and net community metabolism on the NW Mediterranean coast. <i>Aquatic Microbial Ecology</i> , 1996 , 10, 165-172	1.1	15
341	Response of bacterial grazing rates to experimental manipulation of an Antarctic coastal nanoflagellate community. <i>Aquatic Microbial Ecology</i> , 2004 , 36, 41-52	1.1	15
340	The microcosm of particles within seagrass Posidonia oceanica canopies. <i>Marine Ecology - Progress Series</i> , 1999 , 181, 289-295	2.6	15
339	A standardisation framework for bio-logging data to advance ecological research and conservation. <i>Methods in Ecology and Evolution</i> , 2021 , 12, 996-1007	7.7	15
338	Global Plastic Pollution Observation System to Aid Policy. <i>Environmental Science & Environmental Scie</i>	10.3	15
337	Flexible and Biofouling Independent Salinity Sensor. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1801110	4.6	15
336	Light availability and temperature, not increased CO2, will structure future meadows of Posidonia oceanica. <i>Aquatic Botany</i> , 2017 , 139, 32-36	1.8	14
335	Stimulated Raman microspectroscopy as a new method to classify microfibers from environmental samples. <i>Environmental Pollution</i> , 2020 , 267, 115640	9.3	14
334	Polar marine biology science in Portugal and Spain: Recent advances and future perspectives. Journal of Sea Research, 2013 , 83, 9-29	1.9	14
333	Temperature dependence of planktonic metabolism in the subtropical North Atlantic Ocean. <i>Biogeosciences</i> , 2014 , 11, 4529-4540	4.6	14
332	Warming enhances sulphide stress of Mediterranean seagrass (Posidonia oceanica). <i>Estuarine, Coastal and Shelf Science</i> , 2012 , 113, 240-247	2.9	14
331	Rapid accretion of dissolved organic carbon in the springs of Florida: the most organic-poor natural waters. <i>Biogeosciences</i> , 2010 , 7, 4051-4057	4.6	14
330	Distribution and nutrient limitation of surfgrass, Phyllospadix scouleri and Phyllospadix torreyi, along the Pacific coast of Baja California (M\(\text{Ico}\)). <i>Aquatic Botany</i> , 2002 , 74, 121-131	1.8	14
329	Biomass partitioning in Florida phytoplankton communities. <i>Journal of Plankton Research</i> , 1991 , 13, 23	9- <u>2.4</u> 5	14
328	Seasonal growth of Codium bursa, a slow-growing Mediterranean macroalga:in situ experimental evidence of nutrient limitation. <i>Marine Ecology - Progress Series</i> , 1995 , 123, 185-191	2.6	14
327	Experimental induction of a large phytoplankton bloom in Antarctic coastal waters. <i>Marine Ecology</i> - <i>Progress Series</i> , 2000 , 206, 73-85	2.6	14

(2021-2005)

326	Patterns of publication effort in coastal biogeochemistry: a bibliometric survey (1971 to 2003). Marine Ecology - Progress Series, 2005 , 294, 9-22	2.6	14	
325	No Evidence for Temperature-Dependence of the COVID-19 Epidemic		14	
324	Habitat-forming species trap microplastics into coastal sediment sinks. <i>Science of the Total Environment</i> , 2021 , 772, 145520	10.2	14	
323	Temperature dependence of the relationship between <i>p</i>CO₂ and dissolved organic carbon in lakes. Biogeosciences, 2016 , 13, 865-871	4.6	14	
322	High denitrification and anaerobic ammonium oxidation contributes to net nitrogen loss in a seagrass ecosystem in the central Red Sea. <i>Biogeosciences</i> , 2018 , 15, 7333-7346	4.6	14	
321	Warming and CO Enhance Arctic Heterotrophic Microbial Activity. <i>Frontiers in Microbiology</i> , 2019 , 10, 494	5.7	13	
320	Superhydrophobicity and size reduction enabled Halobates (Insecta: Heteroptera, Gerridae) to colonize the open ocean. <i>Scientific Reports</i> , 2020 , 10, 7785	4.9	13	
319	Role of vegetated coastal ecosystems as nitrogen and phosphorous filters and sinks in the coasts of Saudi Arabia. <i>Environmental Research Letters</i> , 2020 , 15, 034058	6.2	13	
318	Towards informed metrics for examining the role of human-induced animal responses in tag studies on wild animals. <i>Integrative Zoology</i> , 2019 , 14, 17-29	1.9	13	
317	Bacterial production and losses to predators along an open ocean productivity gradient in the Subtropical North East Atlantic Ocean. <i>Journal of Plankton Research</i> , 2014 , 36, 198-213	2.2	13	
316	Distribution and contribution of major phytoplankton groups to carbon cycling across contrasting conditions of the subtropical northeast Atlantic Ocean. <i>Deep-Sea Research Part I: Oceanographic Research Papers</i> , 2011 , 58, 1115-1129	2.5	13	
315	Observations of chromophoric dissolved and detrital organic matter distribution using remote sensing in the Southern Ocean: Validation, dynamics and regulation. <i>Journal of Marine Systems</i> , 2010 , 82, 295-303	2.7	13	
314	ARTIFICIAL NEURAL NETWORK ANALYSIS OF FACTORS CONTROLLING ECOSYSTEM METABOLISM IN COASTAL SYSTEMS 2007 , 17, S185-S196		13	
313	Threshold of gross primary production for planktonic metabolic balance in the Southern Ocean: An experimental test. <i>Limnology and Oceanography</i> , 2005 , 50, 1334-1339	4.8	13	
312	Isolation and characterization of microsatellite markers for the seagrass Cymodocea nodosa. <i>Molecular Ecology Notes</i> , 2003 , 3, 397-399		13	
311	Succession patterns of phytoplankton blooms: directionality and influence of algal cell size. <i>Marine Biology</i> , 1989 , 102, 43-48	2.5	13	
310	A seaweed aquaculture imperative to meet global sustainability targets. Nature Sustainability,	22.1	13	
309	Total alkalinity production in a mangrove ecosystem reveals an overlooked Blue Carbon component. <i>Limnology and Oceanography Letters</i> , 2021 , 6, 61-67	7.9	13	

308	The Potential for Ocean-Based Climate Action: Negative Emissions Technologies and Beyond. <i>Frontiers in Climate</i> , 2021 , 2,	7.1	13
307	Is Climate Change Shifting the Poleward Limit of Mangroves?. <i>Estuaries and Coasts</i> , 2017 , 40, 1215-122	6 2.8	12
306	Carbon and Nitrogen Concentrations, Stocks, and Isotopic Compositions in Red Sea Seagrass and Mangrove Sediments. <i>Frontiers in Marine Science</i> , 2019 , 6,	4.5	12
305	Contrasting Sensitivity of Marine Biota to UV-B Radiation Between Southern and Northern Hemispheres. <i>Estuaries and Coasts</i> , 2015 , 38, 1126-1133	2.8	12
304	Imprint of Climate Change on Pan-Arctic Marine Vegetation. Frontiers in Marine Science, 2020, 7,	4.5	12
303	Tropical seagrass shifts thermal tolerance during Mediterranean invasion. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2020 , 287, 20193001	4.4	12
302	Changes in the C, N, and P cycles by the predicted salps-krill shift in the southern ocean. <i>Frontiers in Marine Science</i> , 2014 , 1,	4.5	12
301	SELECTIVE ELIMINATION OF CHLOROPLASTIDIAL DNA FOR METAGENOMICS OF BACTERIA ASSOCIATED WITH THE GREEN ALGA CAULERPA TAXIFOLIA (BRYOPSIDOPHYCEAE)(1). <i>Journal of Phycology</i> , 2012 , 48, 483-90	3	12
300	Synergistic control of CO2 emissions by fish and nutrients in a humic tropical lake. <i>Oecologia</i> , 2012 , 168, 839-47	2.9	12
299	Functional differences in the allometry of the water, carbon and nitrogen content of gelatinous organisms. <i>Journal of Plankton Research</i> , 2015 , 37, 989-1000	2.2	12
298	Ecosystem thresholds with hypoxia 2009 , 21-29		12
297	Microbial colonization in the seagrass Posidonia spp. roots. <i>Marine Biology Research</i> , 2005 , 1, 388-395	1	12
296	Effect of viruses and protists on bacteria in eddies of the Canary Current region (subtropical northeast Atlantic) 2010 , 55, 885		12
295	Introducing the Mangrove Microbiome Initiative: Identifying Microbial Research Priorities and Approaches To Better Understand, Protect, and Rehabilitate Mangrove Ecosystems. <i>MSystems</i> , 2020 , 5,	7.6	12
294	Stocks and losses of soil organic carbon from Chinese vegetated coastal habitats. <i>Global Change Biology</i> , 2021 , 27, 202-214	11.4	12
293	Expanding Greenland seagrass meadows contribute new sediment carbon sinks. <i>Scientific Reports</i> , 2018 , 8, 14024	4.9	12
292	Imbalanced nutrient recycling in a warmer ocean driven by differential response of extracellular enzymatic activities. <i>Global Change Biology</i> , 2017 , 23, 4084-4093	11.4	11
291	Strong Sensitivity of Red Sea Zooplankton to UV-B Radiation. <i>Estuaries and Coasts</i> , 2015 , 38, 846-853	2.8	11

(2018-2020)

290	Reconciling Tourism Development and Conservation Outcomes Through Marine Spatial Planning for a Saudi Giga-Project in the Red Sea (The Red Sea Project, Vision 2030). <i>Frontiers in Marine Science</i> , 2020 , 7,	4.5	11
289	Major imprint of surface plankton on deep ocean prokaryotic structure and activity. <i>Molecular Ecology</i> , 2020 , 29, 1820-1838	5.7	11
288	A DNA mini-barcode for marine macrophytes. <i>Molecular Ecology Resources</i> , 2020 , 20, 920-935	8.4	11
287	Iron Deficiency in Seagrasses and Macroalgae in the Red Sea Is Unrelated to Latitude and Physiological Performance. <i>Frontiers in Marine Science</i> , 2018 , 5,	4.5	11
286	Seasonality of marine plastic abundance in central Red Sea pelagic waters. <i>Science of the Total Environment</i> , 2019 , 688, 536-541	10.2	11
285	Variability in the abundance of Trichodesmium and nitrogen fixation activities in the subtropical NE Atlantic. <i>Journal of Plankton Research</i> , 2013 , 35, 1126-1140	2.2	11
284	Forcing of dissolved organic carbon release by phytoplankton by anticyclonic mesoscale eddies in the subtropical NE Atlantic Ocean. <i>Biogeosciences</i> , 2013 , 10, 2129-2143	4.6	11
283	Response functions for SIMPLEX optimization of flow-injection analysis and related techniques. <i>TrAC - Trends in Analytical Chemistry</i> , 2010 , 29, 1224-1235	14.6	11
282	Elucidating seagrass population dynamics: Theory, constraints, and practice. <i>Limnology and Oceanography</i> , 2003 , 48, 2070-2074	4.8	11
281	Combined effect of warming and infection by Labyrinthula sp. on the Mediterranean seagrass Cymodocea nodosa. <i>Marine Ecology - Progress Series</i> , 2015 , 532, 101-109	2.6	11
280	Thermal dependence of seagrass ecosystem metabolism in the Red Sea. <i>Marine Ecology - Progress Series</i> , 2019 , 614, 79-90	2.6	11
279	Loss-controlled phytoplankton production in nutrient-poor littoral waters of the NW Mediterranean:in situ experimental evidence. <i>Marine Ecology - Progress Series</i> , 1996 , 130, 213-219	2.6	11
278	WTO must ban harmful fisheries subsidies. <i>Science</i> , 2021 , 374, 544	33.3	11
277	Anthropogenic-induced acceleration of elemental burial rates in blue carbon repositories of the Arabian Gulf. <i>Science of the Total Environment</i> , 2020 , 719, 135177	10.2	11
276	Towards a unifying pan-arctic perspective: A conceptual modelling toolkit. <i>Progress in Oceanography</i> , 2020 , 189, 102455	3.8	11
275	A bibliometric assessment of progress in marine spatial planning. <i>Marine Policy</i> , 2021 , 127, 104329	3.5	11
274	Trace metal partitioning in the top meter of the ocean. Science of the Total Environment, 2019, 652, 907	′- 9 1)42	11
273	Carbon dioxide and methane fluxes at the airBea interface of Red Sea mangroves. <i>Biogeosciences</i> , 2018 , 15, 5365-5375	4.6	11

272	Perspectives on a Global Observing System to Assess Ocean Health. <i>Frontiers in Marine Science</i> , 2018 , 5,	4.5	11
271	Tunable, Flexible Composite Magnets for Marine Monitoring Applications. <i>Advanced Engineering Materials</i> , 2018 , 20, 1800229	3.5	11
270	Patterns and Drivers of UV Absorbing Chromophoric Dissolved Organic Matter in the Euphotic Layer of the Open Ocean. <i>Frontiers in Marine Science</i> , 2019 , 6,	4.5	10
269	Source Apportionment and Elemental Composition of Atmospheric Total Suspended Particulates (TSP) Over the Red Sea Coast of Saudi Arabia. <i>Earth Systems and Environment</i> , 2020 , 4, 777-788	7.5	10
268	Concentration and isotopic composition of dissolved Pb in surface waters of the modern global ocean. <i>Geochimica Et Cosmochimica Acta</i> , 2018 , 235, 41-54	5.5	10
267	Zooplankton Abundance and Diversity in the Tropical and Subtropical Ocean. <i>Diversity</i> , 2019 , 11, 203	2.5	10
266	Ultraviolet radiation enhances Arctic net plankton community production. <i>Geophysical Research Letters</i> , 2014 , 41, 5960-5967	4.9	10
265	Uncertainty analysis along the ecological quality status of water bodies: the response of the Posidonia oceanica multivariate index (POMI) in three Mediterranean regions. <i>Marine Pollution Bulletin</i> , 2012 , 64, 926-31	6.7	10
264	Response to Comment on "Dilution limits dissolved organic carbon utilization in the deep ocean". <i>Science</i> , 2015 , 350, 1483	33.3	10
263	UV sensitivity of planktonic net community production in ocean surface waters. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2014 , 119, 929-936	3.7	10
262	Experimental Evaluation of the Response of Coastal Mediterranean Planktonic and Benthic Metabolism to Warming. <i>Estuaries and Coasts</i> , 2013 , 36, 697-707	2.8	10
261	Sequential injection analysis for automation of the Winkler methodology, with real-time SIMPLEX optimization and shipboard application. <i>Analytica Chimica Acta</i> , 2010 , 658, 147-55	6.6	10
260	Effects of Seagrass Rhizospheres on Sediment Redox Conditions in SE Asian Coastal Ecosystems. <i>Estuaries and Coasts</i> , 2010 , 33, 107-117	2.8	10
259	Recruitment, mortality and growth of mangrove (Rhizophora sp.) seedlings in Ulugan Bay, Palawan, Philippines. <i>Trees - Structure and Function</i> , 2004 , 18, 589	2.6	10
258	Growth and population dynamics during early stages of the mangrove Kandelia candel in Halong Bay, North Viet Nam. <i>Estuarine, Coastal and Shelf Science</i> , 2003 , 58, 435-444	2.9	10
257	MACROPHYTE STANDING CROP AND PRIMARY PRODUCTWITY IN SOME FLORIDA SPRING-RUNS1. Journal of the American Water Resources Association, 1990 , 26, 927-934	2.1	10
256	Ecological effects of non-native species in marine ecosystems relate to co-occurring anthropogenic pressures. <i>Global Change Biology</i> , 2020 , 26, 1248-1258	11.4	10
255	Seagrass Distribution, Composition and Abundance Along the Saudi Arabian Coast of Red Sea. Springer Oceanography, 2019, 367-385	0.5	10

(2007-2019)

254	Night-Time Temperature Reprieves Enhance the Thermal Tolerance of a Symbiotic Cnidarian. <i>Frontiers in Marine Science</i> , 2019 , 6,	4.5	9
253	Additive impacts of deoxygenation and acidification threaten marine biota. <i>Global Change Biology</i> , 2020 , 26, 5602-5612	11.4	9
252	Translational Molecular Ecology in practice: Linking DNA-based methods to actionable marine environmental management. <i>Science of the Total Environment</i> , 2020 , 744, 140780	10.2	9
251	Discovery of Afifi, the shallowest and southernmost brine pool reported in the Red Sea. <i>Scientific Reports</i> , 2020 , 10, 910	4.9	9
250	pH gradients in the diffusive boundary layer of subarctic macrophytes. <i>Polar Biology</i> , 2017 , 40, 2343-23	48	9
249	Experimental assessment of the effect of UVB radiation on plankton community metabolism along the Southeastern Pacific off Chile. <i>Biogeosciences</i> , 2012 , 9, 1267-1276	4.6	9
248	Effect of viruses and protists on bacteria in eddies of the Canary Current region (subtropical northeast Atlantic). <i>Limnology and Oceanography</i> , 2010 , 55, 885-898	4.8	9
247	Growth and grazing losses of prokaryotes in the central Atlantic Ocean. <i>Journal of Plankton Research</i> , 2005 , 27, 1055-1066	2.2	9
246	Fate and Effects of Macro- and Microplastics in Coastal Wetlands <i>Environmental Science & Environmental Science & Technology</i> , 2022 ,	10.3	9
245	Highly polymorphic microsatellite markers for the Mediterranean endemic fan mussel Pinna nobilis. <i>Mediterranean Marine Science</i> , 2015 , 16, 31	2.7	9
244	Nutrient accumulation at different supply rates in experimental Mediterranean planktonic communities. <i>Marine Ecology - Progress Series</i> , 2000 , 207, 1-11	2.6	9
243	Unifying the known and unknown microbial coding sequence space		9
242	Diversity and distribution of marine heterotrophic bacteria from a large culture collection. <i>BMC Microbiology</i> , 2020 , 20, 207	4.5	9
241	Public Perceptions of Mangrove Forests Matter for Their Conservation. <i>Frontiers in Marine Science</i> , 2020 , 7,	4.5	9
240	Beyond Reef Restoration: Next-Generation Techniques for Coral Gardening, Landscaping, and Outreach. <i>Frontiers in Marine Science</i> , 2020 , 7,	4.5	9
239	High summer temperatures amplify functional differences between coral- and algae-dominated reef communities. <i>Ecology</i> , 2021 , 102, e03226	4.6	9
238	Spatial Connectivity and Drivers of Shark Habitat Use Within a Large Marine Protected Area in the Caribbean, The Bahamas Shark Sanctuary. <i>Frontiers in Marine Science</i> , 2021 , 7,	4.5	9
237	Dynamics of Seagrass Stability and Change 2007 , 271-294		9

236	Temperature dependence of plankton community metabolism in the subtropical and tropical oceans. <i>Global Biogeochemical Cycles</i> , 2017 , 31, 1141-1154	5.9	8
235	Juvenile Pen Shells (Pinna nobilis) Tolerate Acidification but Are Vulnerable to Warming. <i>Estuaries and Coasts</i> , 2015 , 38, 1976-1985	2.8	8
234	Picocyanobacteria Community and Cyanophage Infection Responses to Nutrient Enrichment in a Mesocosms Experiment in Oligotrophic Waters. <i>Frontiers in Microbiology</i> , 2020 , 11, 1153	5.7	8
233	Unfamiliar partnerships limit cnidarian holobiont acclimation to warming. <i>Global Change Biology</i> , 2020 , 26, 5539-5553	11.4	8
232	Drivers of the Low Metabolic Rates of Seagrass Meadows in the Red Sea. <i>Frontiers in Marine Science</i> , 2020 , 7,	4.5	8
231	Characterization of the CO2 System in a Coral Reef, a Seagrass Meadow, and a Mangrove Forest in the Central Red Sea. <i>Journal of Geophysical Research: Oceans</i> , 2019 , 124, 7513-7528	3.3	8
230	Biomares, a LIFE project to restore and manage the biodiversity of Prof. Luiz Saldanha Marine Park. Journal of Coastal Conservation, 2014 , 18, 643-655	1.9	8
229	Chip-On-Valve Concept: An Integrated Platform for Multisyringe Flow Injection Analysis: Application to Nitrite and Nitrate Determination in Seawater. <i>Analytical Letters</i> , 2013 , 46, 2345-2358	2.2	8
228	Effects of UVB radiation on net community production in the upper global ocean. <i>Global Ecology and Biogeography</i> , 2017 , 26, 54-64	6.1	8
227	Experimental assessment of cumulative temperature and UV-B radiation effects on Mediterranean plankton metabolism. <i>Frontiers in Marine Science</i> , 2015 , 2,	4.5	8
226	Climate warming and Mediterranean seagrass. <i>Nature Climate Change</i> , 2013 , 3, 3-4	21.4	8
225	Scaling properties of protein family phylogenies. <i>BMC Evolutionary Biology</i> , 2011 , 11, 155	3	8
224	Impact of submarine hydrothermal vents on the metal composition of krill and its excretion products. <i>Marine Chemistry</i> , 2009 , 113, 129-136	3.7	8
223	Response of coastal Antarctic phytoplankton to solar radiation and ammonium manipulation: An in situ mesocosm experiment. <i>Journal of Geophysical Research</i> , 2009 , 114,		8
222	Variance and the Description of Nature 1991 , 301-318		8
221	Genomic Blueprint of Glycine Betaine Metabolism in Coral Metaorganisms and Their Contribution to Reef Nitrogen Budgets. <i>IScience</i> , 2020 , 23, 101120	6.1	8
220	Sequencing effort dictates gene discovery in marine microbial metagenomes. <i>Environmental Microbiology</i> , 2020 , 22, 4589-4603	5.2	8
219	Temporal evolution of temperatures in the Red Sea and the Gulf of Aden based on in situ observations (1958 2 017). <i>Ocean Science</i> , 2020 , 16, 149-166	4	8

218	Century-long records reveal shifting challenges to seagrass recovery. <i>Global Change Biology</i> , 2021 , 27, 563-575	11.4	8	
217	Areal Extent, Species Composition, and Spatial Distribution of Coastal Saltmarshes in China. <i>IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing</i> , 2021 , 14, 7085-7094	4.7	8	
216	HMD-ARG: hierarchical multi-task deep learning for annotating antibiotic resistance genes. <i>Microbiome</i> , 2021 , 9, 40	16.6	8	
215	Use of cavity ring-down spectrometry to quantify 13C-primary productivity in oligotrophic waters. <i>Limnology and Oceanography: Methods</i> , 2019 , 17, 137-144	2.6	7	
214	Seagrass Posidonia oceanica diel pH fluctuations reduce the mortality of epiphytic forams under experimental ocean acidification. <i>Marine Pollution Bulletin</i> , 2019 , 146, 247-254	6.7	7	
213	Warming effect on nitrogen fixation in Mediterranean macrophyte sediments. <i>Biogeosciences</i> , 2019 , 16, 167-175	4.6	7	
212	Multi-model remote sensing assessment of primary production in the subtropical gyres. <i>Journal of Marine Systems</i> , 2019 , 196, 97-106	2.7	7	
211	Impact of seagrass establishment, industrialization and coastal infrastructure on seagrass biogeochemical sinks. <i>Marine Environmental Research</i> , 2020 , 160, 104990	3.3	7	
210	Greenland Tidal Pools as Hot Spots for Ecosystem Metabolism and Calcification. <i>Estuaries and Coasts</i> , 2018 , 41, 1314-1321	2.8	7	
209	Increasing temperature within thermal limits compensates negative ultraviolet-B radiation effects in terrestrial and aquatic organisms. <i>Global Ecology and Biogeography</i> , 2019 , 28, 1695-1711	6.1	7	
208	Tissue-Specific Microbiomes of the Red Sea Giant Clam Highlight Differential Abundance of Endozoicomonadaceae. <i>Frontiers in Microbiology</i> , 2019 , 10, 2661	5.7	7	
207	Zooplankton excretion metabolites stimulate Southern Ocean phytoplankton growth. <i>Polar Biology</i> , 2017 , 40, 2035-2045	2	7	
206	Contrasting Responses of Marine and Freshwater Photosynthetic Organisms to UVB Radiation: A Meta-Analysis. <i>Frontiers in Marine Science</i> , 2017 , 4,	4.5	7	
205	Oligotrophication and Metabolic Slowing-Down of a NW Mediterranean Coastal Ecosystem. <i>Frontiers in Marine Science</i> , 2017 , 4,	4.5	7	
204	Genetic diversity and biogeographical patterns of Caulerpa prolifera across the Mediterranean and Mediterranean/Atlantic transition zone. <i>Marine Biology</i> , 2015 , 162, 557-569	2.5	7	
203	High mortality of Red Sea zooplankton under ambient solar radiation. <i>PLoS ONE</i> , 2014 , 9, e108778	3.7	7	
202	Prevalence of strong vertical CO2 and O2 variability in the top meters of the ocean. <i>Global Biogeochemical Cycles</i> , 2013 , 27, 941-949	5.9	7	
201	Patterns in Biomass and Cover of Aquatic Macrophytes in Lakes: Test with Florida Lakes. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 1988 , 45, 1976-1982	2.4	7	

200	Assessing the age- and gender-dependence of the severity and case fatality rates of COVID-19 disease in Spain. <i>Wellcome Open Research</i> , 2020 , 5, 117	4.8	7
199	Seagrass as major source of transparent exopolymer particles in the oligotrophic Mediterranean coast. <i>Biogeosciences</i> , 2017 , 14, 5069-5075	4.6	7
198	Hypothesis: Potentially Systemic Impacts of Elevated CO on the Human Proteome and Health. <i>Frontiers in Public Health</i> , 2020 , 8, 543322	6	7
197	Stunted Mangrove Trees in the Oligotrophic Central Red Sea Relate to Nitrogen Limitation. <i>Frontiers in Marine Science</i> , 2020 , 7,	4.5	7
196	Environmental DNA identifies marine macrophyte contributions to Blue Carbon sediments. Limnology and Oceanography, 2020 , 65, 3139-3149	4.8	7
195	A new direction for differentiating animal activity based on measuring angular velocity about the yaw axis. <i>Ecology and Evolution</i> , 2020 , 10, 7872-7886	2.8	7
194	Scaling of species distribution explains the vast potential marine prokaryote diversity. <i>Scientific Reports</i> , 2019 , 9, 18710	4.9	7
193	Seagrass sedimentary deposits as security vaults and time capsules of the human past. <i>Ambio</i> , 2019 , 48, 325-335	6.5	7
192	Accumulation of C-labelled phenanthrene in phytoplankton and transfer to corals resolved using cavity ring-down spectroscopy. <i>Ecotoxicology and Environmental Safety</i> , 2020 , 196, 110511	7	7
191	A prevalent neglect of environmental control in mammalian cell culture calls for best practices. Nature Biomedical Engineering, 2021 , 5, 787-792	19	7
190	Robustness to extinction and plasticity derived from mutualistic bipartite ecological networks. <i>Scientific Reports</i> , 2020 , 10, 9783	4.9	6
189	Development technologies impact in web accessibility 2016,		6
188	Episodic Arctic CO2 Limitation in the West Svalbard Shelf. Frontiers in Marine Science, 2018, 5,	4.5	6
187	Remote sensing mapping of macroalgal farms by modifying thresholds in the classification tree. <i>Geocarto International</i> , 2019 , 34, 1098-1108	2.7	6
186	Status and Future Perspectives of Marine Aquaculture 2008 , 293-319		6
185	Estuaries and Coasts as an Outlet for Research in Coastal Ecosystems: A Bibliometric Study. <i>Estuaries and Coasts</i> , 2008 , 31, 469-476	2.8	6
184	Data variability and uncertainty limits the capacity to identify and predict critical changes in coastal systems [A review of key concepts. <i>Ocean and Coastal Management</i> , 2008 , 51, 671-688	3.9	6
183	The relationship between mesoscale phytoplankton heterogeneity and hydrographic variability. Deep-sea Research Part A, Oceanographic Research Papers, 1992, 39, 45-54		6

(2010-2001)

182	Retrospective estimates of net leaf production in Kandelia candel mangrove forests. <i>Marine Ecology - Progress Series</i> , 2001 , 221, 117-124	2.6	6
181	Photosynthetic activity buffers ocean acidification in seagrass meadows		6
180	Ecosystem metabolism in a temporary Mediterranean marsh (Do l ana National Park, SW Spain)		6
179	Ten new insights in climate science 2021 horizon scan. Global Sustainability,1-39	5.4	6
178	A high-quality genome assembly and annotation of the gray mangrove, Avicennia marina. <i>G3: Genes, Genomes, Genetics</i> , 2021 , 11,	3.2	6
177	Thuwalallenes A-E and Thuwalenynes A-C: New C Acetogenins with Anti-Inflammatory Activity from a Saudi Arabian Red Sea sp. <i>Marine Drugs</i> , 2019 , 17,	6	6
176	Gene pool and connectivity patterns of Pinna nobilis in the Balearic Islands (Spain, Western Mediterranean Sea): Implications for its conservation through restocking. <i>Aquatic Conservation: Marine and Freshwater Ecosystems</i> , 2019 , 29, 175-188	2.6	6
175	Optimal soil carbon sampling designs to achieve cost-effectiveness: a case study in blue carbon ecosystems. <i>Biology Letters</i> , 2018 , 14,	3.6	6
174	Investing in Blue Natural Capital to Secure a Future for the Red Sea Ecosystems. <i>Frontiers in Marine Science</i> , 2021 , 7,	4.5	6
173	Rates and drivers of Red Sea plankton community metabolism. <i>Biogeosciences</i> , 2019 , 16, 2983-2995	4.6	5
172	Leaf Nutrient Resorption and Export Fluxes of Avicennia marina in the Central Red Sea Area. <i>Frontiers in Marine Science</i> , 2018 , 5,	4.5	5
171	Resource (Light and Nitrogen) and Density-Dependence of Seaweed Growth. <i>Frontiers in Marine Science</i> , 2019 , 6,	4.5	5
170	Characterization of polymorphic microsatellite loci in the Antarctic krill Euphausia superba. <i>BMC Research Notes</i> , 2014 , 7, 73	2.3	5
169	Resistance of juveniles of the Mediterranean pen shell, (Pinna nobilis) to hypoxia and interaction with warming. <i>Estuarine, Coastal and Shelf Science</i> , 2015 , 165, 199-203	2.9	5
168	Size-dependence of volatile and semi-volatile organic carbon content in phytoplankton cells. <i>Frontiers in Marine Science</i> , 2014 , 1,	4.5	5
167	Annual benthic metabolism and organic carbon fluxes in a semi-enclosed Mediterranean bay dominated by the macroalgae Caulerpa prolifera. <i>Frontiers in Marine Science</i> , 2014 , 1,	4.5	5
166	Dinucleotide microsatellite markers in the genus Caulerpa. <i>Journal of Applied Phycology</i> , 2011 , 23, 715-7	739	5
165	Improving pressure robustness, reliability, and versatility of solenoid-pump flow systems using a miniature economic control unit including two simple pressure pulse mathematical models. <i>Analytical Chemistry</i> , 2010 , 82, 6983-90	7.8	5

164	Addressing uncertainties in the assessment of phytoplankton lysis rates in the sea. <i>Limnology and Oceanography</i> , 2002 , 47, 921-924	4.8	5
163	Polymorphic microsatellite DNA markers in the mangrove tree Avicennia alba. <i>Molecular Ecology Notes</i> , 2003 , 3, 544-546		5
162	Fauna associated with seagrass systems 2000 , 199-247		5
161	Low water column nitrogen fixation in the Mediterranean Sea: basin-wide experimental evidence. <i>Aquatic Microbial Ecology</i> , 2011 , 64, 135-147	1.1	5
160	Whole-system metabolism and CO ₂ fluxes in a Mediterranean Bay dominated by seagrass beds (Palma Bay, NW Mediterranean)		5
159	Seagrass meadows as a globally significant carbonate reservoir		5
158	Ecogenomics and biogeochemical impacts of uncultivated globally abundant ocean viruses		5
157	Rapid Evolution of Plastic-degrading Enzymes Prevalent in the Global Ocean		5
156	Different processes shape prokaryotic and picoeukaryotic assemblages in the sunlit ocean microbiome		5
155	Seagrass (Halophila stipulacea) invasion enhances carbon sequestration in the Mediterranean Sea. <i>Global Change Biology</i> , 2021 , 27, 2592-2607	11.4	5
154	Diversity and Sources of Airborne Eukaryotic Communities (AEC) in the Global Dust Belt over the Red Sea. <i>Earth Systems and Environment</i> , 2021 , 5, 459	7.5	5
153	Factors Determining Seagrass Blue Carbon Across Bioregions and Geomorphologies. <i>Global Biogeochemical Cycles</i> , 2021 , 35, e2021GB006935	5.9	5
152	Recovery of assessed global fish stocks remains uncertain. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	5
151	Gelatinous Zooplankton in the Surface Layers of the Coastal Central Red Sea. <i>Frontiers in Marine Science</i> , 2019 , 6,	4.5	5
150	Temperature transcends partner specificity in the symbiosis establishment of a cnidarian. <i>ISME Journal</i> , 2021 , 15, 141-153	11.9	5
149	Variable metabolic responses of Skagerrak invertebrates to low O₂ and high CO₂ scenarios. <i>Biogeosciences</i> , 2018 , 15, 3717-3729	4.6	5
148	Dead-reckoning animal movements in R: a reappraisal using Gundog.Tracks. <i>Animal Biotelemetry</i> , 2021 , 9,	2.8	5
147	Projecting coral responses to intensifying marine heatwaves under ocean acidification. <i>Global Change Biology</i> , 2021 ,	11.4	5

146	Global estimates of the extent and production of macroalgal forests. <i>Global Ecology and Biogeography</i> ,	6.1	5
145	Flexible, four-electrode conductivity cell for biologging applications. <i>Results in Materials</i> , 2019 , 1, 1000	02 .3	4
144	A transcriptome resource for Antarctic krill (Euphausia superba Dana) exposed to short-term stress. <i>Marine Genomics</i> , 2015 , 23, 45-7	1.9	4
143	Cellular network Marine Sensor Buoy 2020 ,		4
142	Warming enhances carbon dioxide and methane fluxes from Red Sea seagrass (<i>Halophila stipulacea</i>) sediments. <i>Biogeosciences</i> , 2020 , 17, 1717-1730	4.6	4
141	Arctic (Svalbard islands) active and exported diatom stocks and cell health status. <i>Biogeosciences</i> , 2020 , 17, 35-45	4.6	4
140	Continuous daylight in the high-Arctic summer supports high plankton respiration rates compared to those supported in the dark. <i>Scientific Reports</i> , 2017 , 7, 1247	4.9	4
139	A population genetics toolbox for the threatened canopy-forming brown seaweeds Cystoseira tamariscifolia and C. amentacea (Fucales, Sargassaceae). <i>Journal of Applied Phycology</i> , 2017 , 29, 627-62	9 ^{3.2}	4
138	POPULATION STRUCTURE, DYNAMICS, AND PRODUCTION OF THE MEDITERRANEAN MACROALGA CODIUM BURSA (CHLOROPHYCEAE). <i>Journal of Phycology</i> , 1998 , 34, 918-924	3	4
137	Leaf production and shoot dynamics of Thalassia testudinum by a direct census method. <i>Aquatic Botany</i> , 2005 , 81, 213-224	1.8	4
136	Clone size distributions in networks of genetic similarity. <i>Physica D: Nonlinear Phenomena</i> , 2006 , 224, 166-173	3.3	4
135	Particulate light absorption and the prediction of phytoplankton biomass and planktonic metabolism in northeastern Spanish aquatic ecosystems. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 2000 , 57, 25-33	2.4	4
134	Weak density-dependence and short-term perturbations as determinants of phytoplankton temporal dynamics. <i>Ecoscience</i> , 1996 , 3, 451-460	1.1	4
133	Size-Dependent Density of the Demersal Fish off Namibia: Patterns within and among Species. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 1992 , 49, 1990-1993	2.4	4
132	Key biogeochemical factors affecting soil carbon storage in <i>Posidonia</i> meadows		4
131	Macroalgae contribute to nested mosaics of pH variability in a sub-Arctic fjord		4
130	Carbon fluxes forced by anticyclonic mesoscale eddies generated by islands at the subtropical NE Atlantic Ocean		4
129	Estimating and forecasting COVID-19 attack rates and mortality		4

128	High temperature and crab density reduce atmospheric nitrogen fixation in Red Sea mangrove sediments. <i>Estuarine, Coastal and Shelf Science</i> , 2020 , 232, 106487	2.9	4
127	Aeolian Prokaryotic Communities of the Global Dust Belt Over the Red Sea. <i>Frontiers in Microbiology</i> , 2020 , 11, 538476	5.7	4
126	ENSO feedback drives variations in dieback at a marginal mangrove site. Scientific Reports, 2021, 11, 813	34 .9	4
125	Rise and fall of the global conversation and shifting sentiments during the COVID-19 pandemic. <i>Humanities and Social Sciences Communications</i> , 2021 , 8,	2.8	4
124	Defining CO and O syndromes of marine biomes in the Anthropocene. <i>Global Change Biology</i> , 2020 , 26, 355-363	11.4	4
123	Host-association as major driver of microbiome structure and composition in Red Sea seagrass ecosystems. <i>Environmental Microbiology</i> , 2021 , 23, 2021-2034	5.2	4
122	Flexible Hall sensor made of laser-scribed graphene. Npj Flexible Electronics, 2021, 5,	10.7	4
121	On the Relevance of Comparative Ecology to the Larger Field of Ecology 1991 , 46-63		4
120	Unifying the known and unknown microbial coding sequence space ELife, 2022, 11,	8.9	4
119	Mass, nutrients and dissolved organic carbon (DOC) lateral transports off northwest Africa during fall 2002 and spring 2003. <i>Ocean Science</i> , 2020 , 16, 483-511	4	3
118	A framework for experimental scenarios of global change in marine systems using coral reefs as a case study. <i>Royal Society Open Science</i> , 2020 , 7, 191118	3.3	3
117	An "orientation sphere" visualization for examining animal head movements. <i>Ecology and Evolution</i> , 2020 , 10, 4291-4302	2.8	3
116	Anomalies in the carbonate system of Red Sea coastal habitats. <i>Biogeosciences</i> , 2020 , 17, 423-439	4.6	3
115	Behavioral Biomarkers for Animal Health: A Case Study Using Animal-Attached Technology on Loggerhead Turtles. <i>Frontiers in Ecology and Evolution</i> , 2020 , 7,	3.7	3
114	Relationship Between Carbon- and Oxygen-Based Primary Productivity in the Arctic Ocean, Svalbard Archipelago. <i>Frontiers in Marine Science</i> , 2019 , 6,	4.5	3
113	Investigation of Arctic and Antarctic spatial and depth patterns of sea water in CTD profiles using chemometric data analysis. <i>Polar Science</i> , 2014 , 8, 242-254	2.3	3
112	Corrigendum to "Seasonal patterns in Arctic planktonic metabolism (Fram Strait \(\bar{1}\) Svalbard region)" published in Biogeosciences, 10, 1451\(\bar{1}\) 469, 2013. Biogeosciences, 2013, 10, 2347-2347	4.6	3
111	Invasive Species Unchecked by ClimateResponse. <i>Science</i> , 2012 , 335, 538-539	33.3	3

(2021-2003)

110	14C-UPTAKE BY PHYTOPLANKTON, NOW AND IN THE FUTURE. <i>Limnology and Oceanography Bulletin</i> , 2003 , 12, 1-3	0.9	3
109	The effect of nutrient additions on the partitioning of nutrients in an experimental coastal Mediterranean system. <i>Biogeochemistry</i> , 2004 , 68, 153-167	3.8	3
108	Seagrasses in the human environment 2000 , 248-291		3
107	Seagrasses 2001 , 255-268		3
106	Winners and losers in Framework programme. <i>Nature</i> , 1999 , 400, 14-14	50.4	3
105	Self-regulation, bottom-up, and top-down control of phytoplankton communities: A reply to the comment by Kamenir. <i>Limnology and Oceanography</i> , 1992 , 37, 683-687	4.8	3
104	Underestimated PAH accumulation potential of blue carbon vegetation: Evidence from sedimentary records of saltmarsh and mangrove in Yueqing Bay, China <i>Science of the Total Environment</i> , 2022 , 817, 152887	10.2	3
103	The Small Giant Clam, Tridacna maxima Exhibits Minimal Population Genetic Structure in the Red Sea and Genetic Differentiation From the Gulf of Aden. <i>Frontiers in Marine Science</i> , 2020 , 7,	4.5	3
102	Temperature-dependence of the relationship between <i>p</i> CO ₂ and dissolved organic carbon in lakes		3
101	Rapid carbon cycling in the oligotrophic ocean		3
100	Animal lifestyle affects acceptable mass limits for attached tags. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2021 , 288, 20212005	4.4	3
99	Changes of the Macrobenthos Community with Non-native Mangrove Rehabilitation (Kandelia obovata) and Salt Marsh Invasion (Spartina alterniflora) in Ximen Island, Zhejiang, China. <i>Ocean Science Journal</i> , 2021 , 56, 395	1.1	3
98	Introduction: Understanding Jellyfish Blooms 2014 , 1-5		3
97	Forces experienced by instrumented animals depend on lifestyle		3
96	The restoration imperative to achieve a sustainable ocean economy nobody foretold in 1871. <i>One Earth</i> , 2020 , 3, 669-671	8.1	3
95	Variability in Water-Column Respiration and Its Dependence on Organic Carbon Sources in the Canary Current Upwelling Region. <i>Frontiers in Earth Science</i> , 2020 , 8,	3.5	3
94	Perceptions of Marine Environmental Issues by Saudi Citizens. Frontiers in Marine Science, 2020, 7,	4.5	3
93	Nutrient pollution enhances productivity and framework dissolution in algae- but not in coral-dominated reef communities. <i>Marine Pollution Bulletin</i> , 2021 , 168, 112444	6.7	3

92	Optimising sample sizes for animal distribution analysis using tracking data. <i>Methods in Ecology and Evolution</i> , 2021 , 12, 288-297	7.7	3
91	The global network of ports supporting high seas fishing. Science Advances, 2021, 7,	14.3	3
90	Climate-driven impacts of exotic species on marine ecosystems. <i>Global Ecology and Biogeography</i> , 2021 , 30, 1043-1055	6.1	3
89	Assessment of Red Sea temperatures in CMIP5 models for present and future climate. <i>PLoS ONE</i> , 2021 , 16, e0255505	3.7	3
88	Sustainable and Eco-Friendly Coral Restoration through 3D Printing and Fabrication. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 12634-12645	8.3	3
87	Rapid evolution of SARS-CoV-2 challenges human defenses <i>Scientific Reports</i> , 2022 , 12, 6457	4.9	3
86	Ocean Calamities: Delineating the Boundaries between Scientific Evidence and Belief. <i>BioScience</i> , 2015 , 65, 746-747	5.7	2
85	Giant clams in shallow reefs: UV-resistance mechanisms of Tridacninae in the Red Sea. <i>Coral Reefs</i> , 2020 , 39, 1345-1360	4.2	2
84	Prokaryotic Capability to Use Organic Substrates Across the Global Tropical and Subtropical Ocean. <i>Frontiers in Microbiology</i> , 2020 , 11, 918	5.7	2
83	Dense Mytilus Beds Along Freshwater-Influenced Greenland Shores: Resistance to Corrosive Waters Under High Food Supply. <i>Estuaries and Coasts</i> , 2020 , 43, 387-395	2.8	2
82	Sonification of Animal Tracks as an Alternative Representation of Multi-Dimensional Data: A Northern Elephant Seal Example. <i>Frontiers in Marine Science</i> , 2018 , 5,	4.5	2
81	Flexible and Multi-Functional Graphene Sensor Platform 2019 ,		2
80	Flexible tag design for semi-continuous wireless data acquisition from marine animals. <i>Flexible and Printed Electronics</i> , 2019 , 4, 035006	3.1	2
79	Commentary: Evaluating the Role of Seagrass in Cenozoic CO2 Variations. <i>Frontiers in Environmental Science</i> , 2017 , 5,	4.8	2
78	Multipumping flow systems devoid of computer control for process and environmental monitoring. <i>International Journal of Environmental Analytical Chemistry</i> , 2012 , 92, 344-354	1.8	2
77	Evolutionary and Ecological Trees and Networks. AIP Conference Proceedings, 2007,	Ο	2
76	Taxonomy and distribution 2000 , 1-26		2
75	Seagrass architectural features 2000 , 27-64		2

74	Light, carbon and nutrients 2000 , 99-145		2	
73	INTERDISCIPLINARY CHALLENGES AND BOTTLENECKS IN THE AQUATIC SCIENCES. <i>Limnology and Oceanography Bulletin</i> , 2001 , 10, 57-61	0.9	2	
72	In situ monitoring reveals cellular environmental instabilities in human pluripotent stem cell culture <i>Communications Biology</i> , 2022 , 5, 119	6.7	2	
71	A high-quality genome assembly and annotation of the gray mangrove, Avicennia marina		2	
70	Marked changes in diversity and relative activity of picoeukaryotes with depth in the global ocean		2	
69	Giant clam inspired high-speed photo-conversion for ultraviolet optical wireless communication. <i>Optical Materials Express</i> , 2021 , 11, 1515	2.6	2	
68	Nutrient and temperature constraints on primary production and net phytoplankton growth in a tropical ecosystem. <i>Limnology and Oceanography</i> , 2021 , 66, 2923-2935	4.8	2	
67	Satellite Tracking Reveals Nesting Patterns, Site Fidelity, and Potential Impacts of Warming on Major Green Turtle Rookeries in the Red Sea. <i>Frontiers in Marine Science</i> , 2021 , 8,	4.5	2	
66	Out of Thin Air: Microbial Utilization of Atmospheric Gaseous Organics in the Surface Ocean. <i>Frontiers in Microbiology</i> , 2015 , 6, 1566	5.7	2	
65	Distribution and Characteristics of Halobates germanus Population in the Red Sea. <i>Frontiers in Marine Science</i> , 2019 , 6,	4.5	2	
64	Enhanced Viral Activity in the Surface Microlayer of the Arctic and Antarctic Oceans. <i>Microorganisms</i> , 2021 , 9,	4.9	2	
63	Reply to: Caution over the use of ecological big data for conservation. <i>Nature</i> , 2021 , 595, E20-E28	50.4	2	
62	Reply to: Shark mortality cannot be assessed by fishery overlap alone. <i>Nature</i> , 2021 , 595, E8-E16	50.4	2	
61	Effects of Ecological Restoration Using Non-Native Mangrove Kandelia obovata to Replace Invasive Spartina alterniflora on Intertidal Macrobenthos Community in Maoyan Island (Zhejiang, China). <i>Journal of Marine Science and Engineering</i> , 2021 , 9, 788	2.4	2	
60	Detection of SARS-CoV-2 variants requires urgent global coordination. <i>International Journal of Infectious Diseases</i> , 2021 , 109, 50-53	10.5	2	
59	The conservation and ecological impacts of the COVID-19 pandemic. <i>Biological Conservation</i> , 2021 , 260, 109204	6.2	2	
58	Distribution and temporal trends in the abundance of nesting sea turtles in the Red Sea. <i>Biological Conservation</i> , 2021 , 261, 109235	6.2	2	
57	Integrating environmental variability to broaden the research on coral responses to future ocean conditions. <i>Global Change Biology</i> , 2021 , 27, 5532-5546	11.4	2	

56	Impact of Marine Heatwaves on Seagrass Ecosystems. <i>Ecological Studies</i> , 2021 , 345-364	1.1	2
55	Drivers of the Abundance of Tridacna spp. Giant Clams in the Red Sea. Frontiers in Marine Science,7,	4.5	2
54	Operationalizing marketable blue carbon. <i>One Earth</i> , 2022 , 5, 485-492	8.1	2
53	Combining Semantic Tools for Automatic Evaluation of Alternative Texts 2019,		1
52	Can Fish and Cell Phones Teach Us about Our Health?. ACS Sensors, 2019, 4, 2566-2570	9.2	1
51	Are the ecological effects of the "worst" marine invasive species linked with scientific and media attention?. <i>PLoS ONE</i> , 2019 , 14, e0215691	3.7	1
50	Reply to 'Increased food supply mitigates ocean acidification effects on calcification but exacerbates effects on growth'. <i>Scientific Reports</i> , 2018 , 8, 9799	4.9	1
49	Deep Learning Resolves Representative Movement Patterns in a Marine Predator Species. <i>Applied Sciences (Switzerland)</i> , 2019 , 9, 2935	2.6	1
48	Continuous photoperiod of the Artic summer stimulates the photosynthetic response of some marine macrophytes. <i>Aquatic Botany</i> , 2019 , 158, 103126	1.8	1
47	Meristematic activity of Mediterranean seagrass (Posidonia oceanica) shoots. <i>Aquatic Botany</i> , 2012 , 101, 28-33	1.8	1
46	Microbiota Associated with Posidonia oceanica in Western Mediterranean Sea114-119		1
45	RAMN MARGALEF I LPEZ, 1919-2004. Limnology and Oceanography Bulletin, 2004 , 13, 67-68	0.9	1
44	Population and community dynamics 2000 , 65-98		1
43	Elemental dynamics in seagrass systems 2000 , 146-198		1
42	Decision rules for determining terrestrial movement and the consequences for filtering high-resolution global positioning system tracks: a case study using the African lion () <i>Journal of the Royal Society Interface</i> , 2022 , 19, 20210692	4.1	1
41	Toward Best Practices for Controlling Mammalian Cell Culture Environments Frontiers in Cell and Developmental Biology, 2022 , 10, 788808	5.7	1
40	Variable response of Red Sea coral communities to recent disturbance events along a latitudinal gradient. <i>Marine Biology</i> , 2021 , 168, 1	2.5	1
39	Impact of UV radiation on plankton net community production: responses in Western Australian estuarine and coastal waters. <i>Marine Ecology - Progress Series</i> , 2020 , 651, 45-56	2.6	1

38	CO ₂ -driven compromises to marine life along the Chilean coast		1
37	Temperature thresholds for Arctic plankton community metabolism: an experimental assessment		1
36	Impacts of UV radiation on plankton community metabolism along the Humboldt Current System		1
35	Seasonal patterns in Arctic planktonic metabolism (Fram Strait ßvalbard region)		1
34	Annual plankton community metabolism in estuarine and coastal waters in Perth (Western Australia). <i>PeerJ</i> , 2018 , 6, e5081	3.1	1
33	Predicted regime shift in the seagrass ecosystem of the Gulf of Arguin driven by climate change. <i>Global Ecology and Conservation</i> , 2021 , 32, e01890	2.8	1
32	How often should dead-reckoned animal movement paths be corrected for drift?. <i>Animal Biotelemetry</i> , 2021 , 9, 43	2.8	1
31	Diversity patterns of marine heterotrophic culturable bacteria along vertical and latitudinal gradients		1
30	Coastal eutrophication research: a new awareness 2009 , 263-269		1
29	Evidences of Impacts of Climate Change on Mediterranean Biota. <i>Frontiers in Marine Science</i> , 2016 , 3,	4.5	1
28	Susan Lynn Williams: the Life of an Exceptional Scholar, Leader, and Friend (1951 0 018). <i>Estuaries and Coasts</i> , 2021 , 44, 304-311	2.8	1
27	Predator Avoidance in the European Seabass After Recovery From Short-Term Hypoxia and Different CO2 Conditions. <i>Frontiers in Marine Science</i> , 2018 , 5,	4.5	1
26	Comprehensive analytical approaches reveal species-specific search strategies in sympatric apex predatory sharks. <i>Ecography</i> , 2021 , 44, 1544-1556	6.5	1
25	Trophic Structure of Neuston Across Tropical and Subtropical Oceanic Provinces Assessed With Stable Isotopes. <i>Frontiers in Marine Science</i> , 2021 , 7,	4.5	1
24	Mapping seagrass meadows in coastal China using GEE. <i>Geocarto International</i> ,1-16	2.7	1
23	Decreasing carbonate load of seagrass leaves with increasing latitude. <i>Aquatic Botany</i> , 2019 , 159, 1031	47 .8	О
22	Profiling the cell walls of seagrasses from A (Amphibolis) to Z (Zostera) <i>BMC Plant Biology</i> , 2022 , 22, 63	5.3	0
21	Reef accumulation is decoupled from recent degradation in the central and southern Red Sea. <i>Science of the Total Environment</i> , 2021 , 809, 151176	10.2	O

20	Performance of extraction methods for extracellular DNA from sediments across marine habitats. <i>Environmental DNA</i> , 2020 , 2, 91-98	7.6	0
19	Flexibility in Red Sea -Symbiodiniaceae associations supports environmental niche adaptation. <i>Ecology and Evolution</i> , 2021 , 11, 3393-3406	2.8	O
18	Reimagining aquaculture in the Global South. Science, 2021, 372, 247-248	33.3	0
17	Anthropogenic litter density and composition data acquired flying commercial drones on sandy beaches along the Saudi Arabian Red Sea. <i>Data in Brief</i> , 2021 , 36, 107056	1.2	Ο
16	A prediction and imputation method for marine animal movement data. <i>PeerJ Computer Science</i> , 2021 , 7, e656	2.7	0
15	The Simrad EK60 echosounder dataset from the Malaspina circumnavigation. <i>Scientific Data</i> , 2021 , 8, 259	8.2	O
14	Global collision-risk hotspots of marine traffic and the world's largest fish, the whale shark <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119, e21174401	19 ^{11.5}	0
13	Ocean sediments as the global sink for marine micro- and mesoplastics. <i>Limnology and Oceanography Letters</i> ,	7.9	O
12	In Memoriam, Scott M. Nixon (1943\(\text{\$\text{\$012}} \)). Estuaries and Coasts, 2015 , 38, 1123-1125	2.8	
11	Reply to: Indiscriminate data aggregation in ecological meta-analysis underestimates impacts of invasive species. <i>Nature Ecology and Evolution</i> , 2020 , 4, 315-317	12.3	
10	Weak density-dependence and short-term perturbations as determinants of phytoplankton temporal dynamics. <i>Ecoscience</i> , 1997 , 4, 120-120	1.1	
9	Rejoinder to: Influence of river discharge in the tropical and subtropical North Atlantic Ocean. <i>Limnology and Oceanography</i> , 2009 , 54, 648-652	4.8	
8	THE PILGRIMAGE TO THE ASLO 2005 SUMMER MEETING, JUNE 19-24, 2005, IN SANTIAGO DE COMPOSTELA, SPAIN. <i>Limnology and Oceanography Bulletin</i> , 2004 , 13, 40-41	0.9	
7	ASLO 2005 SUMMER CONFERENCE AND THE SPANISH IDIOSYNCRASY. <i>Limnology and Oceanography Bulletin</i> , 2004 , 13, 62-65	0.9	
6	Seagrasses 2001 , 540-550		
5	Submerged macrophytes and sediment bacteria in the littoral zone of Lake Memphremagog (Canada). <i>Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology</i> , 1988 , 23, 271-281		
4	chapter 6 Ubiquitous Healthy Diatoms in the Deep Sea Confirm Deep Carbon Injection by the Biological Pump 2017 , 123-148		
3	Posidonia oceanica as a Source of Chromophoric Dissolved Organic Matter for the Oligotrophic NW Mediterranean Coast. <i>Journal of Marine Science and Engineering</i> , 2020 , 8, 911	2.4	

2	KAUST Metagenomic Analysis Platform (KMAP), enabling access to massive analytics of
	re-annotated metagenomic data. Scientific Reports. 2021, 11, 11511

4.9

Ontogenetic Changes in Vulnerability of the Prawn Fenneropenaeus indicus to UV-B Radiation Help Explain Ontogenetic Habitat Shifts. *Estuaries and Coasts*, **2016**, 39, 839-845

2.8