Bichun Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2975788/publications.pdf Version: 2024-02-01

BICHUN LI

#	Article	IF	CITATIONS
1	Crucial Genes and Pathways in Chicken Germ Stem Cell Differentiation. Journal of Biological Chemistry, 2015, 290, 13605-13621.	1.6	43
2	Site-Directed Genome Knockout in Chicken Cell Line and Embryos Can Use CRISPR/Cas Gene Editing Technology. G3: Genes, Genomes, Genetics, 2016, 6, 1787-1792.	0.8	37
3	Efficient generation of transgenic chickens using the spermatogonial stem cells in vivo and ex vivo transfection. Science in China Series C: Life Sciences, 2008, 51, 734-742.	1.3	29
4	Effects of the Transforming Growth Factor Beta Signaling Pathway on the Differentiation of Chicken Embryonic Stem Cells into Male Germ Cells. Cellular Reprogramming, 2016, 18, 401-410.	0.5	28
5	Wnt signaling pathway regulates differentiation of chicken embryonic stem cells into spermatogonial stem cells via Wnt5a. Journal of Cellular Biochemistry, 2018, 119, 1689-1701.	1.2	28
6	CRISPR/Cas9 mediated chicken Stra8 gene knockout and inhibition of male germ cell differentiation. PLoS ONE, 2017, 12, e0172207.	1.1	24
7	NICD-mediated notch transduction regulates the different fate of chicken primordial germ cells and spermatogonial stem cells. Cell and Bioscience, 2018, 8, 40.	2.1	23
8	DNA Methylation and Regulatory Elements during Chicken Germline Stem Cell Differentiation. Stem Cell Reports, 2018, 10, 1793-1806.	2.3	19
9	Interaction of the primordial germ cell-specific protein C2EIP with PTCH2 directs differentiation of embryonic stem cells via HH signaling activation. Cell Death and Disease, 2018, 9, 497.	2.7	18
10	RXRG associated in PPAR signal regulated the differentiation of primordial germ cell. Journal of Cellular Biochemistry, 2018, 119, 6926-6934.	1.2	18
11	Isolation of chicken embryonic stem cell and preparation of chicken chimeric model. Molecular Biology Reports, 2013, 40, 2149-2156.	1.0	14
12	<i>CREPT</i> and <i>p15RS</i> regulate cell proliferation and cycling in chicken DFâ€1 cells through the Wnt/βâ€catenin pathway. Journal of Cellular Biochemistry, 2018, 119, 1083-1092.	1.2	14
13	Distinct roles of retinoic acid and BMP4 pathways in the formation of chicken primordial germ cells and spermatogonial stem cells. Food and Function, 2019, 10, 7152-7163.	2.1	14
14	Narrow H3K4me2 is required for chicken PGC formation. Journal of Cellular Physiology, 2021, 236, 1391-1400.	2.0	14
15	Dynamic expression and regulatory mechanism of TGF-β signaling in chicken embryonic stem cells differentiating into spermatogonial stem cells. Bioscience Reports, 2017, 37, .	1.1	11
16	Regulation of Hedgehog Signaling in Chicken Embryonic Stem Cells Differentiation Into Male Germ Cells (Gallus). Journal of Cellular Biochemistry, 2017, 118, 1379-1386.	1.2	10
17	CYP19A1 (aromatase) dominates female gonadal differentiation in chicken (<i>Gallus gallus</i>) embryos sexual differentiation. Bioscience Reports, 2020, 40, .	1.1	10
18	Functional characterization of the Sox2 , câ€Myc , and Oct4 promoters. Journal of Cellular Biochemistry, 2019, 120, 332-342.	1.2	9

Вісния Li

#	Article	IF	CITATIONS
19	Analysis of IncRNA Expression Profile during the Formation of Male Germ Cells in Chickens. Animals, 2020, 10, 1850.	1.0	9
20	Regulation of fibroblast growth factor 8 (<i>FGF8</i>) in chicken embryonic stem cells differentiation into spermatogonial stem cells. Journal of Cellular Biochemistry, 2018, 119, 2396-2407.	1.2	7
21	P53 and H3K4me2 activate N6â€methylated <i>LncPGCATâ€1 </i> to regulate primordial germ cell formation via MAPK signaling. Journal of Cellular Physiology, 2020, 235, 9895-9909.	2.0	7
22	Spin1z induces the male pathway in the chicken by down-regulating Tcf4. Gene, 2021, 780, 145521.	1.0	7
23	BMP4 activates the Wnt- <i>Lin28A-Blimp1</i> -Wnt pathway to promote primordial germ cells formation <i>via</i> altering H3K4me2. Journal of Cell Science, 2021, 134, .	1.2	7
24	Retinoic acid promotes formation of chicken (Gallus gallus) spermatogonial stem cells by regulating the ECM-receptor interaction signaling pathway. Gene, 2022, 820, 146227.	1.0	7
25	Regulatory mechanism of protein metabolic pathway during the differentiation process of chicken male germ cell. In Vitro Cellular and Developmental Biology - Animal, 2015, 51, 655-661.	0.7	6
26	CRISPR/Cas9-Mediated Deletion of <i>C1EIS</i> Inhibits Chicken Embryonic Stem Cell Differentiation Into Male Germ Cells (<i>Gallus gallus</i>). Journal of Cellular Biochemistry, 2017, 118, 2380-2386.	1.2	6
27	<i>MAPK8</i> regulates chicken male germ cell differentiation through JNK signaling pathway. Journal of Cellular Biochemistry, 2018, 119, 1548-1557.	1.2	6
28	Role and function of the Hintw in early sex differentiation in chicken (Gallus gallus) embryo. Animal Biotechnology, 2021, , 1-11.	0.7	6
29	Epigenetic modification cooperates with Zeb1 transcription factor to regulate Bmp4 to promote chicken PGCs formation. Gene, 2021, 794, 145760.	1.0	6
30	Selection of the Inducer for the Differentiation of Chicken Embryonic Stem Cells into Male Germ Cells In Vitro. PLoS ONE, 2016, 11, e0164664.	1.1	5
31	Long Noncoding RNA LncPGCR Mediated by TCF7L2 Regulates Primordial Germ Cell Formation in Chickens. Animals, 2021, 11, 292.	1.0	4
32	Characterization of Alternative Splicing (AS) Events during Chicken (Gallus gallus) Male Germ-Line Stem Cell Differentiation with Single-Cell RNA-seq. Animals, 2021, 11, 1469.	1.0	4
33	<i>Hsd3b2</i> associated in modulating steroid hormone synthesis pathway regulates the differentiation of chicken embryonic stem cells into spermatogonial stem cells. Journal of Cellular Biochemistry, 2018, 119, 1111-1121.	1.2	3
34	HMGCS1 Promotes male differentiation of chicken embryos by regulating the generate of cholesterol. International Journal of Transgender Health, 2021, 14, 577-587.	1.1	3
35	H3K4me2 Promotes the Activation of IncCPSET1 by Jun in the Chicken PGC Formation. Animals, 2021, 11, 1572.	1.0	3
36	UBE2I stimulates female gonadal differentiation in chicken (Gallus gallus) embryos. Journal of Integrative Agriculture, 2021, 20, 2986-2994.	1.7	3

Вісним Li

#	Article	IF	CITATIONS
37	Study on the Function and Mechanism of Lin28B in the Formation of Chicken Primordial Germ Cells. Animals, 2021, 11, 43.	1.0	3
38	Research on the appropriate way to transfer exogenous substances into chicken embryos. Journal of Integrative Agriculture, 2017, 16, 2257-2263.	1.7	2
39	Nanos2 promotes differentiation of chicken (Gallus gallus) embryonic stem cells to male germ cells. Journal of Cellular Biochemistry, 2018, 119, 4435-4446.	1.2	2
40	Study on immortal conditions of chicken embryonic stem cells. Journal of Cellular Biochemistry, 2019, 120, 1376-1385.	1.2	2
41	Transcriptome Sequencing and Comparative Analysis of Amphoteric ESCs and PGCs in Chicken (Gallus) Tj ETQq1	1 0,78431 1.0	14 ₂ rgBT /Ove
42	miR-302d Competitively Binding with the IncRNA-341 Targets TLE4 in the Process of SSC Generation. Stem Cells International, 2021, 2021, 1-14.	1.2	2
43	Characteristics of the TDRD1 gene promoter in chickens. Molecular Genetics and Genomics, 2022, , 1.	1.0	2
44	Tle4z1 Facilitate the Male Sexual Differentiation of Chicken Embryos. Frontiers in Physiology, 2022, 13, 856980.	1.3	2
45	<i>Nanos2</i> promotes differentiation of male germ cells basing on the negative regulation of Foxd3 and the treatment of 5â€Azadc and TSA. Journal of Cellular Physiology, 2019, 234, 3762-3774.	2.0	1
46	C1EIP Functions as an Activator of ENO1 to Promote Chicken PGCs Formation via Inhibition of the Notch Signaling Pathway. Frontiers in Genetics, 2020, 11, 751.	1.1	1
47	DHCR24 (24-Dehydrocholesterol Reductase) Associated in Modulating Steroid Biosynthesis Pathway Regulates the Differentiation of Chicken Embryonic Stem Cells into Male Germ Cells. Journal of Biomaterials and Tissue Engineering, 2022, 12, 1550-1557.	0.0	1
48	DNA hypomethylation activation Wnt/TCF7L2/TDRD1 pathway promotes spermatogonial stem cell formation. Journal of Cellular Physiology, 0, , .	2.0	1
49	Cloning, expression pattern analysis, and subcellular localization of Capra hircus SCD1 gene with production of transgenic mice. Journal of Cellular Biochemistry, 2018, 119, 2240-2247.	1.2	0
50	Identification and Generation of Transgenic Mice and Goats with Capra hircus SCD1 Gene. Pakistan Journal of Zoology, 2021, 53, .	0.1	0