
## Chuanhui Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2975463/publications.pdf Version: 2024-02-01



Сниллний Хи

| #  | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A Highâ€Performance, Sensitive, Wearable Multifunctional Sensor Based on Rubber/CNT for Human<br>Motion and Skin Temperature Detection. Advanced Materials, 2022, 34, e2107309.                                                                | 11.1 | 244       |
| 2  | Nanocellulose-A Sustainable and Efficient Nanofiller for Rubber Nanocomposites: From<br>Reinforcement to Smart Soft Materials. Polymer Reviews, 2022, 62, 549-584.                                                                             | 5.3  | 16        |
| 3  | Enhanced, hydrophobic, initial-shape programmable shape-memory composites with a bio-based<br>nano-framework via gradient metal-ligand cross-linking. Composites Science and Technology, 2022,<br>220, 109255.                                 | 3.8  | 8         |
| 4  | Healable, recyclable, and adhesive rubber composites equipped with ester linkages, zinc ionic bonds,<br>and hydrogen bonds. Composites Part A: Applied Science and Manufacturing, 2022, 155, 106816.                                           | 3.8  | 22        |
| 5  | Self-healing epoxidized natural rubber with ionic/coordination crosslinks. Materials Chemistry and Physics, 2022, 285, 126063.                                                                                                                 | 2.0  | 19        |
| 6  | Curcumin-loaded HKUST-1@ carboxymethyl starch-based composites with moisture-responsive release properties and synergistic antibacterial effect for perishable fruits. International Journal of Biological Macromolecules, 2022, 214, 181-191. | 3.6  | 16        |
| 7  | Multifunctional flexible Ag-MOFs@CMFP composite paper for fruit preservation and real-time<br>wireless monitoring of fruit quality during storage and transportation. Food Chemistry, 2022, 395,<br>133614.                                    | 4.2  | 25        |
| 8  | Silicaâ€reinforced ethylene propylene diene monomer/polypropylene thermoplastic vulcanizates with interfacial compatibilized by methylacrylate. Polymer Composites, 2021, 42, 701-713.                                                         | 2.3  | 7         |
| 9  | Study on long-term pest control and stability of double-layer pesticide carrier in indoor and outdoor environment. Chemical Engineering Journal, 2021, 403, 126342.                                                                            | 6.6  | 60        |
| 10 | Curcumin-loaded nanoMOFs@CMFP: A biological preserving paste with antibacterial properties and long-acting, controllable release. Food Chemistry, 2021, 337, 127987.                                                                           | 4.2  | 35        |
| 11 | Strengthened, conductivity-tunable, and low solvent-sensitive flexible conductive rubber films with a Zn2+-crosslinked one-body segregated network. Composites Science and Technology, 2021, 203, 108606.                                      | 3.8  | 12        |
| 12 | Fabrication of high-performance magnetic elastomers by using natural polymer as auxiliary dispersant of Fe3O4 nanoparticles. Composites Part A: Applied Science and Manufacturing, 2021, 140, 106158.                                          | 3.8  | 24        |
| 13 | Conductivity controllable rubber films: response to humidity based on a bio-based continuous segregated cell network. Journal of Materials Chemistry A, 2021, 9, 8749-8760.                                                                    | 5.2  | 10        |
| 14 | A dual stimuli-responsive and safer controlled release platform of pesticide through constructing<br>UiO-66-based alginate hydrogel. Polymer Testing, 2021, 97, 107152.                                                                        | 2.3  | 15        |
| 15 | Mechanical Strong and Recyclable Rubber Nanocomposites with Sustainable Cellulose Nanocrystals and Interfacial Exchangeable Bonds. ACS Sustainable Chemistry and Engineering, 2021, 9, 9409-9417.                                              | 3.2  | 34        |
| 16 | Frame-structured and self-healing ENR-based nanocomposites for strain sensors. European Polymer<br>Journal, 2021, 154, 110569.                                                                                                                 | 2.6  | 9         |
| 17 | Sodium alginate crosslinked oxidized natural rubber supramolecular network with rapid self-healing<br>at room temperature and improved mechanical properties. Composites Part A: Applied Science and<br>Manufacturing, 2021, 150, 106601.      | 3.8  | 27        |
| 18 | Endeavour to balance mechanical properties and self-healing of nature rubber by increasing covalent crosslinks via a controlled vulcanization. European Polymer Journal, 2021, 161, 110823.                                                    | 2.6  | 17        |

**CHUANHUI XU** 

| #  | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A super long-acting and anti-photolysis pesticide release platform through self-assembled natural polymer-based polyelectrolyte. Reactive and Functional Polymers, 2020, 146, 104429.                                                           | 2.0 | 16        |
| 20 | Hybridization of carboxymethyl chitosan with MOFs to construct recyclable, long-acting and intelligent antibacterial agent carrier. Carbohydrate Polymers, 2020, 233, 115848.                                                                   | 5.1 | 53        |
| 21 | A novel strategy to construct co-continuous PLA/NBR thermoplastic vulcanizates: Metal-ligand coordination-induced dynamic vulcanization, balanced stiffness-toughness and shape memory effect. Chemical Engineering Journal, 2020, 385, 123828. | 6.6 | 91        |
| 22 | Strengthened, Recyclable, Weldable, and Conducting-Controllable Biobased Rubber Film with a<br>Continuous Water-Soluble Framework Network. ACS Sustainable Chemistry and Engineering, 2020, 8,<br>1285-1294.                                    | 3.2 | 33        |
| 23 | High-efficiency removal of dyes from wastewater by fully recycling litchi peel biochar. Chemosphere,<br>2020, 246, 125734.                                                                                                                      | 4.2 | 136       |
| 24 | Strengthened, Antibacterial, and Conductive Flexible Film for Humidity and Strain Sensors. ACS<br>Applied Materials & Interfaces, 2020, 12, 35482-35492.                                                                                        | 4.0 | 41        |
| 25 | Strengthened, Self-Healing, and Conductive ENR-Based Composites Based on Multiple Hydrogen<br>Bonding Interactions. ACS Sustainable Chemistry and Engineering, 2020, 8, 13724-13733.                                                            | 3.2 | 60        |
| 26 | Antioxidant effects on curing/processing and thermo-oxidative aging of filled nitrile rubber.<br>Materials Chemistry and Physics, 2020, 253, 123403.                                                                                            | 2.0 | 12        |
| 27 | Structure and Performance of Carboxylic Styrene Butadiene Rubber/Citric Acid Composite Films.<br>Industrial & Engineering Chemistry Research, 2020, 59, 13613-13622.                                                                            | 1.8 | 5         |
| 28 | Universal, controllable, large-scale and facile fabrication of nano-MOFs tightly-bonded on flexible substrate. Chemical Engineering Journal, 2020, 395, 125181.                                                                                 | 6.6 | 14        |
| 29 | Self-Healable, Recyclable, and Strengthened Epoxidized Natural Rubber/Carboxymethyl Chitosan<br>Biobased Composites with Hydrogen Bonding Supramolecular Hybrid Networks. ACS Sustainable<br>Chemistry and Engineering, 2019, 7, 15778-15789.   | 3.2 | 79        |
| 30 | Shape memory effect of dynamically vulcanized ethylene-propylene-diene rubber/polypropylene blends<br>realized by in-situ compatibilization of sodium methacrylate. Composites Part B: Engineering, 2019, 179,<br>107532.                       | 5.9 | 20        |
| 31 | Design of healable epoxy composite based on β-hydroxyl esters crosslinked networks by using<br>carboxylated cellulose nanocrystals as crosslinker. Composites Science and Technology, 2019, 181,<br>107677.                                     | 3.8 | 43        |
| 32 | Fabrication of "Zn <sup>2+</sup> Salt-Bondings―Cross-Linked SBS- <i>g</i> -COOH/ZnO Composites:<br>Thiol–Ene Reaction Modification of SBS, Structure, High Modulus, and Shape Memory Properties.<br>Macromolecules, 2019, 52, 4329-4340.        | 2.2 | 73        |
| 33 | Strengthened, recyclable shape memory rubber films with a rigid filler nano-capillary network.<br>Journal of Materials Chemistry A, 2019, 7, 6901-6910.                                                                                         | 5.2 | 60        |
| 34 | Preparation of carboxylic styrene butadiene rubber/chitosan composites with dense supramolecular<br>network via solution mixing process. Composites Part A: Applied Science and Manufacturing, 2019, 117,<br>116-124.                           | 3.8 | 49        |
| 35 | Design of self-healable supramolecular hybrid network based on carboxylated styrene butadiene rubber and nano-chitosan. Carbohydrate Polymers, 2019, 205, 410-419.                                                                              | 5.1 | 74        |
| 36 | Dynamically vulcanized PP/EPDM blends with balanced stiffness and toughness via in-situ<br>compatibilization of MAA and excess ZnO nanoparticles: Preparation, structure and properties.<br>Composites Part B: Engineering, 2019, 160, 147-157. | 5.9 | 74        |

**CHUANHUI XU** 

| #  | Article                                                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Anisotropic Shape Memory Behaviors of Polylactic Acid/Citric Acid–Bentonite Composite with a<br>Gradient Filler Concentration in Thickness Direction. Industrial & Engineering Chemistry<br>Research, 2018, 57, 6265-6274.                                                                      | 1.8 | 39        |
| 38 | Novel fluorosilicone thermoplastic vulcanizates prepared via coreâ€shell dynamic vulcanization: Effect<br>of fluororubber/silicone rubber ratio on morphology, crystallization behavior, and mechanical<br>properties. Polymers for Advanced Technologies, 2018, 29, 1456-1468.                 | 1.6 | 10        |
| 39 | Self-healing chitosan/vanillin hydrogels based on Schiff-base bond/hydrogen bond hybrid linkages.<br>Polymer Testing, 2018, 66, 155-163.                                                                                                                                                        | 2.3 | 147       |
| 40 | Preparation and characterization of individual chitin nanofibers with high stability from chitin gels by low-intensity ultrasonication for antibacterial finishing. Cellulose, 2018, 25, 999-1010.                                                                                              | 2.4 | 16        |
| 41 | Bio-Based PLA/NR-PMMA/NR Ternary Thermoplastic Vulcanizates with Balanced Stiffness and<br>Toughness: "Soft–Hard―Core–Shell Continuous Rubber Phase, In Situ Compatibilization, and<br>Properties. ACS Sustainable Chemistry and Engineering, 2018, 6, 6488-6496.                               | 3.2 | 105       |
| 42 | Design of shape-memory materials based on sea-island structured EPDM/PP TPVs via in-situ compatibilization of methacrylic acid and excess zinc oxide nanoparticles. Composites Science and Technology, 2018, 167, 431-439.                                                                      | 3.8 | 52        |
| 43 | Adsorption of Cu( <scp>ii</scp> ), Zn( <scp>ii</scp> ), and Pb( <scp>ii</scp> ) from aqueous single and binary metal solutions by regenerated cellulose and sodium alginate chemically modified with polyethyleneimine. RSC Advances, 2018, 8, 18723-18733.                                     | 1.7 | 84        |
| 44 | Recyclable and heat-healable epoxidized natural rubber/bentonite composites. Composites Science and Technology, 2018, 167, 421-430.                                                                                                                                                             | 3.8 | 98        |
| 45 | Novel Composite Microparticles of Alginate Coated with Chitosan for Controlled Release and Protection of Ascorbic Acid. Advances in Polymer Technology, 2017, 36, 58-67.                                                                                                                        | 0.8 | 9         |
| 46 | Poly (vinylidene fluoride)/fluororubber/silicone rubber thermoplastic vulcanizates prepared through<br>core-shell dynamic vulcanization: Formation of different rubber/plastic interfaces via controlling<br>the core from "soft―to "hard― Materials Chemistry and Physics, 2017, 195, 123-131. | 2.0 | 26        |
| 47 | High-performance natural rubber nanocomposites with marine biomass (tunicate cellulose).<br>Cellulose, 2017, 24, 2849-2860.                                                                                                                                                                     | 2.4 | 49        |
| 48 | Fabrication of High Performance Magnetic Rubber from NBR and Fe <sub>3</sub> O <sub>4</sub> via in<br>Situ Compatibilization with Zinc Dimethacrylate. Industrial & Engineering Chemistry Research,<br>2017, 56, 183-190.                                                                       | 1.8 | 39        |
| 49 | Biobased, self-healable, high strength rubber with tunicate cellulose nanocrystals. Nanoscale, 2017, 9,<br>15696-15706.                                                                                                                                                                         | 2.8 | 115       |
| 50 | Self-Healing Natural Rubber with Tailorable Mechanical Properties Based on Ionic Supramolecular<br>Hybrid Network. ACS Applied Materials & Interfaces, 2017, 9, 29363-29373.                                                                                                                    | 4.0 | 89        |
| 51 | A Green Modified Microsphere of Chitosan Encapsulating Dimethyl Fumarate and Cross-Linked by<br>Vanillin and Its Application for Litchi Preservation. Industrial & Engineering Chemistry Research,<br>2016, 55, 4490-4498.                                                                      | 1.8 | 25        |
| 52 | Zinc Dimethacrylate Induced in Situ Interfacial Compatibilization Turns EPDM/PP TPVs into a Shape<br>Memory Material. Industrial & Engineering Chemistry Research, 2016, 55, 4539-4548.                                                                                                         | 1.8 | 64        |
| 53 | Design of "Zn <sup>2+</sup> Salt-Bondings―Cross-Linked Carboxylated Styrene Butadiene Rubber with<br>Reprocessing and Recycling Ability via Rearrangements of Ionic Cross-Linkings. ACS Sustainable<br>Chemistry and Engineering, 2016, 4, 6981-6990.                                           | 3.2 | 85        |
| 54 | Design of Self-Healing Supramolecular Rubbers by Introducing Ionic Cross-Links into Natural Rubber via a Controlled Vulcanization. ACS Applied Materials & Interfaces, 2016, 8, 17728-17737.                                                                                                    | 4.0 | 211       |

**CHUANHUI XU** 

| #  | Article                                                                                                                                                                                                                                                                                                                              | IF                | CITATIONS          |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|
| 55 | In situ reactive compatibilization of natural rubber/acrylic-bentonite composites via peroxide-induced vulcanization. Materials Chemistry and Physics, 2016, 170, 193-200.                                                                                                                                                           | 2.0               | 6                  |
| 56 | New Approach to Fabricate Novel Fluorosilicone Thermoplastic Vulcanizate with Bicrosslinked<br>Silicone Rubber-Core/Fluororubber-Shell Particles Dispersed in Poly(vinylidene Fluoride): Structure<br>and Property. Industrial & Engineering Chemistry Research, 2016, 55, 1701-1709.                                                | 1.8               | 39                 |
| 57 | Polyvinylidene Fluoride/Acrylonitrile Butadiene Rubber Blends Prepared Via Dynamic Vulcanization.<br>Journal of Macromolecular Science - Physics, 2015, 54, 58-70.                                                                                                                                                                   | 0.4               | 7                  |
| 58 | Cellulose nanocrystals reinforced foamed nitrile rubber nanocomposites. Carbohydrate Polymers, 2015, 130, 149-154.                                                                                                                                                                                                                   | 5.1               | 42                 |
| 59 | Fully Biobased Shape Memory Material Based on Novel Cocontinuous Structure in Poly(Lactic) Tj ETQq1 1 0.7843<br>Interfacial Compatibilization. ACS Sustainable Chemistry and Engineering, 2015, 3, 2856-2865.                                                                                                                        | 14 rgBT /0<br>3.2 | Overlock 10<br>119 |
| 60 | Biobased Heat-Triggered Shape-Memory Polymers Based on Polylactide/Epoxidized Natural Rubber<br>Blend System Fabricated via Peroxide-Induced Dynamic Vulcanization: Co-continuous Phase Structure,<br>Shape Memory Behavior, and Interfacial Compatibilization. Industrial & Engineering Chemistry<br>Research, 2015, 54, 8723-8731. | 1.8               | 74                 |
| 61 | Supertoughened Biobased Poly(lactic acid)–Epoxidized Natural Rubber Thermoplastic Vulcanizates:<br>Fabrication, Co-continuous Phase Structure, Interfacial in Situ Compatibilization, and Toughening<br>Mechanism. Journal of Physical Chemistry B, 2015, 119, 12138-12146.                                                          | 1.2               | 115                |
| 62 | Dynamic rheology studies of carboxylated butadiene-styrene rubber/cellulose nanocrystals<br>nanocomposites: Vulcanization process and network structures. Polymer Composites, 2015, 36,<br>623-629.                                                                                                                                  | 2.3               | 6                  |
| 63 | <i>In situ</i> reactive compatibilized polypropylene/nitrile butadiene rubber blends by zinc dimethacrylate: Preparation, structure, and properties. Polymer Engineering and Science, 2014, 54, 2321-2331.                                                                                                                           | 1.5               | 16                 |
| 64 | Morphology and properties of poly(vinylidene fluoride)/silicone rubber blends. Journal of Applied<br>Polymer Science, 2014, 131, .                                                                                                                                                                                                   | 1.3               | 3                  |
| 65 | Glass fibers reinforced poly(ethylene 2,6â€naphthalate)/ethylene propylene diene monomer composites:<br>Structure, mechanical, and thermal properties. Polymer Composites, 2014, 35, 939-947.                                                                                                                                        | 2.3               | 7                  |
| 66 | Crosslinked bicontinuous biobased polylactide/natural rubber materials: Super toughness,<br>"net-like―structure of NR phase and excellent interfacial adhesion. Polymer Testing, 2014, 38, 73-80.                                                                                                                                    | 2.3               | 78                 |
| 67 | Crosslinked bicontinuous biobased PLA/NR blends via dynamic vulcanization using different curing systems. Carbohydrate Polymers, 2014, 113, 438-445.                                                                                                                                                                                 | 5.1               | 63                 |
| 68 | Dynamically Vulcanized Biobased Polylactide/Natural Rubber Blend Material with Continuous<br>Cross-Linked Rubber Phase. ACS Applied Materials & Interfaces, 2014, 6, 3811-3816.                                                                                                                                                      | 4.0               | 198                |
| 69 | Temperature dependence of the mechanical properties and the inner structures of natural rubber reinforced by <i>in situ</i> polymerization of zinc dimethacrylate. Journal of Applied Polymer Science, 2013, 128, 2350-2357.                                                                                                         | 1.3               | 24                 |
| 70 | In situ reactive compatibilization and reinforcement of peroxide dynamically vulcanized<br>polypropylene/ethyleneâ€propyleneâ€diene monomer tpv by zinc dimethacrylate. Polymer Composites, 2013,<br>34, 1357-1366.                                                                                                                  | 2.3               | 22                 |
| 71 | Study of the Crosslinking Evolution of Styrene-Butadiene Rubber/Zinc Dimethacrylate Based on<br>Dissolution/Swelling Experiments. Journal of Macromolecular Science - Physics, 2013, 52, 319-333.                                                                                                                                    | 0.4               | 9                  |
| 72 | Stress-Strain Behaviors and Crosslinked Networks Studies of Natural Rubber-Zinc Dimethacrylate<br>Composites. Journal of Macromolecular Science - Physics, 2012, 51, 1384-1400.                                                                                                                                                      | 0.4               | 18                 |

Сниалниі Хи

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Study of Viscoelastic Properties of EPDM Filled with Zinc Dimethacrylate Prepared In Situ by Using a Rubber Process Analyzer. Journal of Macromolecular Science - Physics, 2012, 51, 1921-1933.                                     | 0.4 | 10        |
| 74 | A study on stress-softening of nitrile butadiene rubber reinforced by in situ zinc dimethacrylate.<br>Journal of Reinforced Plastics and Composites, 2012, 31, 705-716.                                                             | 1.6 | 8         |
| 75 | Viscoelasticity behaviors of lightly cured natural rubber/zinc dimethacrylate composites. Polymer<br>Composites, 2012, 33, 967-975.                                                                                                 | 2.3 | 10        |
| 76 | Dynamic viscoelasticity behaviors of magnesium dimethacrylate/natural rubber composites with different cure extent. Polymer Composites, 2012, 33, 1244-1253.                                                                        | 2.3 | 10        |
| 77 | Structure and properties of peroxide dynamically vulcanized<br>polypropylene/ethylene–propylene–diene/zinc dimethacrylate composites. Polymer Composites, 2012,<br>33, 1206-1214.                                                   | 2.3 | 24        |
| 78 | A study on the crosslink network evolution of magnesium dimethacrylate/natural rubber composite.<br>Journal of Applied Polymer Science, 2012, 125, 2449-2459.                                                                       | 1.3 | 18        |
| 79 | PP/EPDM-based dynamically vulcanized thermoplastic olefin with zinc dimethacrylate: Preparation, rheology, morphology, crystallization and mechanical properties. Polymer Testing, 2012, 31, 728-736.                               | 2.3 | 68        |
| 80 | Stress softening of NR reinforced by <i>in situ</i> prepared zinc dimethacrylate. Journal of Applied Polymer Science, 2012, 123, 833-841.                                                                                           | 1.3 | 26        |
| 81 | Thermal aging on mechanical properties and crosslinked network of natural rubber/zinc<br>Dimethacrylate composites. Journal of Applied Polymer Science, 2012, 124, 2240-2249.                                                       | 1.3 | 17        |
| 82 | Crosslink network evolution of nature rubber/zinc dimethacrylate composite during peroxide vulcanization. Polymer Composites, 2011, 32, 1505-1514.                                                                                  | 2.3 | 67        |
| 83 | Specific nonlinear viscoelasticity behaviors of natural rubber and zinc dimethacrylate composites<br>due to multiâ€crosslinking bond interaction by using rubber process analyzer 2000. Polymer<br>Composites, 2011, 32, 1593-1600. | 2.3 | 33        |
| 84 | A study on the crosslink network evolution of nitrile butadiene rubber reinforced by in situ zinc dimethacrylate. Polymer Composites, 2011, 32, 2084-2092.                                                                          | 2.3 | 14        |