Wolfgang Bergmeier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2975219/publications.pdf Version: 2024-02-01

		126907	98798
98	4,650	33	67
papers	citations	h-index	g-index
112	112	112	5029
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Genetic deletion of platelet PAR4 results in reduced thrombosis and impaired hemostatic plug stability. Journal of Thrombosis and Haemostasis, 2022, 20, 422-433.	3.8	9
2	Fibrin(ogen) engagement of S. aureus promotes the host antimicrobial response and suppression of microbe dissemination following peritoneal infection. PLoS Pathogens, 2022, 18, e1010227.	4.7	10
3	Deletion of platelet CLEC-2 decreases GPIba-mediated integrin allbb3 activation and decreases thrombosis in TTP. Blood, 2022, , .	1.4	13
4	Rasa3 deficiency minimally affects thrombopoiesis but promotes severe thrombocytopenia due to integrin-dependent platelet clearance. JCI Insight, 2022, 7, .	5.0	6
5	Hypofibrinogenemia with preserved hemostasis andÂprotection from thrombosis in mice with an <i>Fga</i> Átruncation mutation. Blood, 2022, 139, 1374-1388.	1.4	12
6	Fast clearance of platelets in a commonly used mouse model for GPIbα is impeded by an antiâ€GPIbβ antibody derivative. Journal of Thrombosis and Haemostasis, 2022, 20, 1451-1463.	3.8	3
7	Both G protein–coupled and immunoreceptor tyrosine-based activation motif receptors mediate venous thrombosis in mice. Blood, 2022, 139, 3194-3203.	1.4	13
8	Specifications of the variant curation guidelines for <i>ITGA2B</i> / <i>ITGB3</i> : ClinGen Platelet Disorder Variant Curation Panel. Blood Advances, 2021, 5, 414-431.	5.2	19
9	Heightened activation of embryonic megakaryocytes causes aneurysms in the developing brain of mice lacking podoplanin. Blood, 2021, 137, 2756-2769.	1.4	11
10	The Small Gtpase Rap1 in Platelets Is Critical for Arterial but Not Venous Thrombosis in Mice. Blood, 2021, 138, 2131-2131.	1.4	0
11	Subcellular localization of Rap1 GTPase activator CalDAGâ€GEFI is orchestrated by interaction of its atypical C1 domain with membrane phosphoinositides. Journal of Thrombosis and Haemostasis, 2020, 18, 693-705.	3.8	6
12	Platelet transfusion for patients with platelet dysfunction: effectiveness, mechanisms, and unanswered questions. Current Opinion in Hematology, 2020, 27, 378-385.	2.5	6
13	Megakaryocytes use in vivo podosomeâ€like structures working collectively to penetrate the endothelial barrier of bone marrow sinusoids. Journal of Thrombosis and Haemostasis, 2020, 18, 2987-3001.	3.8	28
14	Development of Optimized Tissue-Factor-Targeted Peptide Amphiphile Nanofibers to Slow Noncompressible Torso Hemorrhage. ACS Nano, 2020, 14, 6649-6662.	14.6	28
15	Talin-1 is the principal platelet Rap1 effector of integrin activation. Blood, 2020, 136, 1180-1190.	1.4	52
16	Novel Mouse Model for Studying Hemostatic Function of Human Platelets. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 1891-1904.	2.4	7
17	Therapeutic strategies for thrombosis: new targets and approaches. Nature Reviews Drug Discovery, 2020, 19, 333-352.	46.4	188
18	Platelets trigger perivascular mast cell degranulation to cause inflammatory responses and tissue injury. Science Advances, 2020, 6, eaay6314.	10.3	32

#	Article	IF	CITATIONS
19	Desialylation of <i>O</i> -glycans on glycoprotein Ibα drives receptor signaling and platelet clearance. Haematologica, 2020, 106, 220-229.	3.5	22
20	Thrombo-Inflammation in Cardiovascular Disease: An Expert Consensus Document from the Third Maastricht Consensus Conference on Thrombosis. Thrombosis and Haemostasis, 2020, 120, 538-564.	3.4	64
21	Glanzmann thrombasthenia: genetic basis and clinical correlates. Haematologica, 2020, 105, 888-894.	3.5	75
22	Impact of Platelet Count on Bleeding in the Setting of Anti-Platelet Therapy. Blood, 2020, 136, 18-18.	1.4	0
23	RAP GTPases and platelet integrin signaling. Platelets, 2019, 30, 41-47.	2.3	34
24	Small GTPases in megakaryocyte and platelet biology. Platelets, 2019, 30, 7-8.	2.3	2
25	New insights into cytoskeletal remodeling during platelet production. Journal of Thrombosis and Haemostasis, 2019, 17, 1430-1439.	3.8	26
26	Platelet Signal Transduction. , 2019, , 329-348.		5
27	Red blood cells modulate structure and dynamics of venous clot formation in sickle cell disease. Blood, 2019, 133, 2529-2541.	1.4	51
28	Ether lipid metabolism by AADACL1 regulates platelet function and thrombosis. Blood Advances, 2019, 3, 3818-3828.	5.2	7
29	Impaired hemostatic activity of healthy transfused platelets in inherited and acquired platelet disorders: Mechanisms and implications. Science Translational Medicine, 2019, 11, .	12.4	14
30	Calcium-induced structural rearrangements release autoinhibition in the Rap-GEF CalDAG-GEFI. Journal of Biological Chemistry, 2018, 293, 8521-8529.	3.4	16
31	Anticoagulant Protein S Targets the Factor IXa Heparin-Binding Exosite to Prevent Thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 816-828.	2.4	23
32	Platelets at the vascular interface. Research and Practice in Thrombosis and Haemostasis, 2018, 2, 27-33.	2.3	17
33	Advances in Clinical and Basic Science of Coagulation: Illustrated abstracts of the 9th Chapel Hill Symposium on Hemostasis. Research and Practice in Thrombosis and Haemostasis, 2018, 2, 407-428.	2.3	5
34	Platelet Signaling Pathways and New Inhibitors. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, e28-e35.	2.4	41
35	Marked bleeding diathesis in patients with platelet dysfunction due to a novel mutation in <i>RASGRP2</i> , encoding CalDAG-GEFI (p.Gly305Asp). Platelets, 2018, 29, 84-86.	2.3	20
36	Identification of two novel mutations in <i>RASGRP2</i> affecting platelet CalDAG-GEFI expression and function in patients with bleeding diathesis. Platelets, 2018, 29, 192-195.	2.3	26

WOLFGANG BERGMEIER

#	Article	IF	CITATIONS
37	Two novel, putative mechanisms of action for citalopram-induced platelet inhibition. Scientific Reports, 2018, 8, 16677.	3.3	13
38	RAS P21 Protein Activator 3 (RASA3) Specifically Promotes Pathogenic T Helper 17 Cell Generation by Repressing T-Helper-2-Cell-Biased Programs. Immunity, 2018, 49, 886-898.e5.	14.3	15
39	STIM1 R304W causes muscle degeneration and impaired platelet activation in mice. Cell Calcium, 2018, 76, 87-100.	2.4	21
40	Rap1 binding to the talin 1 F0 domain makes a minimal contribution to murine platelet GPIIb-IIIa activation. Blood Advances, 2018, 2, 2358-2368.	5.2	30
41	Functional redundancy between RAP1 isoforms in murine platelet production and function. Blood, 2018, 132, 1951-1962.	1.4	43
42	Effects of ibrutinib treatment on murine platelet function during inflammation and in primary hemostasis. Haematologica, 2017, 102, e89-e92.	3.5	20
43	The Phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) Binder Rasa3 Regulates Phosphoinositide 3-kinase (PI3K)-dependent Integrin αIIbβ3 Outside-in Signaling. Journal of Biological Chemistry, 2017, 292, 1691-1704.	3.4	36
44	Phenotype analysis and clinical management in a large family with a novel truncating mutation in RASGRP2, the CalDAGâ€GEFI encoding gene. Research and Practice in Thrombosis and Haemostasis, 2017, 1, 128-133.	2.3	14
45	Deletion of the Arp2/3 complex in megakaryocytes leads to microthrombocytopenia in mice. Blood Advances, 2017, 1, 1398-1408.	5.2	33
46	CalDAG-GEFI Deficiency Reduces Atherosclerotic Lesion Development in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 792-799.	2.4	20
47	Acquired platelet disorders. Thrombosis Research, 2016, 141, S73-S75.	1.7	20
48	Synthesis and dephosphorylation of MARCKS in the late stages of megakaryocyte maturation drive proplatelet formation. Blood, 2016, 127, 1468-1480.	1.4	34
49	Novel mutations in RASGRP2, which encodes CalDAG-GEFI, abrogate Rap1 activation, causing platelet dysfunction. Blood, 2016, 128, 1282-1289.	1.4	68
50	Mice Expressing Low Levels of CalDAG-GEFI Exhibit Markedly Impaired Platelet Activation With Minor Impact on Hemostasis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1838-1846.	2.4	18
51	Integrins Form an Expanding Diffusional Barrier that Coordinates Phagocytosis. Cell, 2016, 164, 128-140.	28.9	163
52	RAP1-GTPase signaling and platelet function. Journal of Molecular Medicine, 2016, 94, 13-19.	3.9	69
53	Phenotype Analysis and Clinical Management in a Large Family with a Novel Truncating Mutation in RASGRP2, the Caldag-GEFI Encoding Gene. Blood, 2016, 128, 3713-3713.	1.4	1
54	Rap1 and its effector RIAM are required for lymphocyte trafficking. Blood, 2015, 126, 2695-2703.	1.4	78

#	Article	IF	CITATIONS
55	RASA3 is a critical inhibitor of RAP1-dependent platelet activation. Journal of Clinical Investigation, 2015, 125, 1419-1432.	8.2	113
56	Platelet Inhibitors Reduce Rupture in a Mouse Model of Established Abdominal Aortic Aneurysm. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 2032-2041.	2.4	61
57	Platelet signaling - blood's great balancing act. Oncotarget, 2015, 6, 19922-19923.	1.8	2
58	Ibrutinib-Treated Platelets Secure Vascular Integrity in Inflammation. Blood, 2015, 126, 2235-2235.	1.4	0
59	Platelet Immunoreceptor Tyrosine-Based Activation Motif (ITAM) Signaling and Vascular Integrity. Circulation Research, 2014, 114, 1174-1184.	4.5	58
60	Adoptive transfer method to study platelet function in mouse models of disease. Thrombosis Research, 2014, 133, S3-S5.	1.7	13
61	A talin mutant that impairs talin-integrin binding in platelets decelerates αIIbβ3 activation without pathological bleeding. Blood, 2014, 123, 2722-2731.	1.4	40
62	Chemoproteomic Discovery of AADACL1 as a Regulator of Human Platelet Activation. Chemistry and Biology, 2013, 20, 1125-1134.	6.0	19
63	Emerging roles of store-operated Ca ²⁺ entry through STIM and ORAI proteins in immunity, hemostasis and cancer. Channels, 2013, 7, 379-391.	2.8	105
64	Platelet ITAM signaling is critical for vascular integrity in inflammation. Journal of Clinical Investigation, 2013, 123, 908-16.	8.2	194
65	The Parallel Signaling Pathways Of Phosphatidylserine (PS) Exposure Downstream Of Platelet FcγRIIa. Blood, 2013, 122, 3514-3514.	1.4	2
66	Desensitization of the P2Y 1 receptor in platelets. FASEB Journal, 2013, 27, 1172.3.	0.5	0
67	Gamma Prime Fibrinogen Does Not Cause Arterial Thrombosis. Blood, 2013, 122, 1092-1092.	1.4	1
68	Abstract 130: Platelet Rap1 Signaling, Mediated by CalDAG-GEFI and P2Y12, Contributes to Atherosclerotic Lesion Development in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, .	2.4	0
69	Extracellular Matrix Proteins in Hemostasis and Thrombosis. Cold Spring Harbor Perspectives in Biology, 2012, 4, a005132-a005132.	5.5	124
70	Rap1-Rac1 Circuits Potentiate Platelet Activation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 434-441.	2.4	60
71	Abstract 53: Immunoreceptor Tyrosine Activation Motif Signaling in Platelets Is Critical for the Maintenance of Vascular Integrity During Inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, .	2.4	0
72	Identification of AADACL1 As a Novel Regulator of Human Platelets Via Chemoproteomics. Blood, 2012, 120, 381-381.	1.4	0

WOLFGANG BERGMEIER

#	Article	IF	CITATIONS
73	The kinetics of αIIbβ3 activation determines the size and stability of thrombi in mice: implications for antiplatelet therapy. Blood, 2011, 117, 1005-1013.	1.4	71
74	Formation of Procoagulant Platelets in Heparin-Induced Thrombocytopenia (HIT) Follows a Unique Signaling Pathway. Blood, 2011, 118, 197-197.	1.4	0
75	Inhibition of Sialic Acid Loss Greatly Improves Survival of Refrigerated Platelets. Blood, 2011, 118, 1133-1133.	1.4	Ο
76	STIM1 Deficiency Results In Impaired Platelet Procoagulant Activity and Protection From Arterial Thrombosis. Blood, 2010, 116, 485-485.	1.4	13
77	Critical Role of CalDAG-GEFI In FCÎ ³ RIIa-Dependent Platelet Activation and Thrombosis. Blood, 2010, 116, 3196-3196.	1.4	0
78	CalDAG-GEFI is at the nexus of calcium-dependent platelet activation. Blood, 2009, 114, 2506-2514.	1.4	134
79	Revised Model for Platelet Adhesion to Collagen Blood, 2009, 114, 2999-2999.	1.4	0
80	Transfection of Human Platelets Down-Regulates Endogenous mRNA Blood, 2009, 114, 4026-4026.	1.4	0
81	The Signaling Molecule CalDAG-GEFI Represents a Novel Target for Antithrombotic Therapy Blood, 2009, 114, 1077-1077.	1.4	0
82	Glycoprotein Ibα and von Willebrand factor in primary platelet adhesion and thrombus formation: Lessons from mutant mice. Thrombosis and Haemostasis, 2008, 99, 264-270.	3.4	75
83	CalDAG-GEFI and protein kinase C represent alternative pathways leading to activation of integrin αIIbβ3 in platelets. Blood, 2008, 112, 1696-1703.	1.4	129
84	Mice lacking the signaling molecule CalDAG-GEFI represent a model for leukocyte adhesion deficiency type III. Journal of Clinical Investigation, 2007, 117, 1699-1707.	8.2	170
85	Metalloproteinase Inhibitors Increase the Survival of Long-Term Refrigerated Platelets in Mice Blood, 2007, 110, 419-419.	1.4	3
86	CalDAG-GEFI and Protein Kinase C (PKC) Represent Alternative Pathways Leading to Activation of Integrin αIIbβ3 in Platelets Blood, 2007, 110, 3646-3646.	1.4	0
87	The role of platelet adhesion receptor GPIb far exceeds that of its main ligand, von Willebrand factor, in arterial thrombosis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16900-16905.	7.1	213
88	The Role of Platelet Adhesion Receptor GPIb α Far Exceeds That of Its Main Ligand von Willebrand Factor in Arterial Thrombosis Blood, 2006, 108, 1797-1797.	1.4	21
89	Mice Lacking the Signaling Molecule, CalDAG-GEFI, Represent a Mouse Model for Leukocyte Adhesion Deficiency Type III Blood, 2006, 108, 674-674.	1.4	0
90	Differential Changes in Platelet VWF Receptor Following Refrigeration for Short or Long Periods Blood, 2005, 106, 3564-3564.	1.4	0

Wolfgang Bergmeier

#	Article	IF	CITATIONS
91	GPVI down-regulation in murine platelets through metalloproteinase-dependent shedding. Thrombosis and Haemostasis, 2004, 91, 951-958.	3.4	79
92	Tumor Necrosis Factor-α–Converting Enzyme (ADAM17) Mediates GPIbα Shedding From Platelets In Vitro and In Vivo. Circulation Research, 2004, 95, 677-683.	4.5	224
93	CalDAC-GEFI integrates signaling for platelet aggregation and thrombus formation. Nature Medicine, 2004, 10, 982-986.	30.7	348
94	GPIbα Is Essential for Platelet Adhesion during Thrombus Formation: Studies with Mutant Mice Deficient in the Extracellular Domain of GPIbα Blood, 2004, 104, 3659-3659.	1.4	0
95	Flow cytometric detection of activated mouse integrin ?IIb?3 with a novel monoclonal antibody. Cytometry, 2002, 48, 80-86.	1.8	136
96	Long-Term Antithrombotic Protection by in Vivo Depletion of Platelet Glycoprotein VI in Mice. Journal of Experimental Medicine, 2001, 193, 459-470.	8.5	321
97	Rhodocytin (Aggretin) Activates Platelets Lacking α2β1 Integrin, Glycoprotein VI, and the Ligand-binding Domain of Glycoprotein Ibα. Journal of Biological Chemistry, 2001, 276, 25121-25126.	3.4	76
98	Identification of critical antigen-specific mechanisms in the development of immune thrombocytopenic purpura in mice. Blood, 2000, 96, 2520-2527.	1.4	258