Maurice K C Ho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2974911/publications.pdf

Version: 2024-02-01

759233 677142 22 569 12 22 h-index citations g-index papers 23 23 23 644 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Synthesis and Functional Characterization of Substituted Isoquinolinones as MT2-Selective Melatoninergic Ligands. PLoS ONE, 2014, 9, e113638.	2.5	4
2	Characterization of Substituted Phenylpropylamides as Highly Selective Agonists at the Melatonin MT2 Receptor. Current Medicinal Chemistry, 2013, 20, 289-300.	2.4	8
3	Pharmacokinetics, oral bioavailability and metabolism of a novel isoquinolinone-based melatonin receptor agonist in rats. Xenobiotica, 2012, 42, 1138-1150.	1.1	4
4	Astragaloside IV and Cycloastragenol Stimulate the Phosphorylation of Extracellular Signal-Regulated Protein Kinase in Multiple Cell Types. Planta Medica, 2012, 78, 115-121.	1.3	43
5	3-Methoxylphenylpropyl amides as novel receptor subtype-selective melatoninergic ligands: characterization of physicochemical and pharmacokinetic properties. Xenobiotica, 2011, 41, 35-45.	1.1	10
6	Expression of Gαz in C2C12 cells restrains myogenic differentiation. Cellular Signalling, 2011, 23, 389-397.	3.6	7
7	$Gl\pm 16$ interacts with tetratricopeptide repeat 1 (TPR1) through its l^2 3 region to activate Ras independently of phospholipase Cl^2 signaling. BMC Structural Biology, 2011, 11, 17.	2.3	6
8	In vitro Intestinal Absorption and First-pass Intestinal and Hepatic Metabolism of Cycloastragenol, a Potent Small Molecule Telomerase Activator. Drug Metabolism and Pharmacokinetics, 2010, 25, 477-486.	2.2	28
9	$\widehat{\text{Gl}\pm 16}$ activates Ras by forming a complex with tetratricopeptide repeat 1 (TPR1) and Son of Sevenless (SOS). Cellular Signalling, 2010, 22, 1448-1458.	3.6	16
10	Synthesis of substituted N-[3-(3-methoxyphenyl)propyl] amides as highly potent MT2-selective melatonin ligands. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 2582-2585.	2.2	30
11	Regulation of Transcription Factors by Heterotrimeric G Proteins. Current Molecular Pharmacology, 2009, 2, 19-31.	1.5	59
12	A Hematopoietic Perspective on the Promiscuity and Specificity of Gα ₁₆ Signaling. NeuroSignals, 2009, 17, 71-81.	0.9	16
13	Mutations on the Switch III region and the alpha3 helix of Galpha ₁₆ differentially affect receptor coupling and regulation of downstream effectors. Journal of Molecular Signaling, 2008, 3, 17.	0.5	7
14	In Search of Novel and Therapeutically Significant Melatoninergic Ligands. Recent Patents on CNS Drug Discovery, 2007, 2, 241-245.	0.9	9
15	Replacement of the $\hat{l}\pm 5$ helix of $\hat{Gl}\pm 16$ with $\hat{Gl}\pm s$ -specific sequences enhances promiscuity of $\hat{Gl}\pm 16$ toward Gs-coupled receptors. Cellular Signalling, 2004, 16, 51-62.	3.6	17
16	Identification of a stretch of six divergent amino acids on the alpha5 helix of Galpha16 as a major determinant of the promiscuity and efficiency of receptor coupling. Biochemical Journal, 2004, 380, 361-369.	3.7	11
17	The $\hat{I}^26/\hat{I}\pm 5$ regions of $\hat{GI}\pm i2$ and $\hat{GI}\pm oA$ increase the promiscuity of $\hat{GI}\pm 16$ but are insufficient for pertussis toxin-catalyzed ADP-ribosylation. European Journal of Pharmacology, 2003, 473, 105-115.	3.5	5
18	Gα 16/z Chimeras Efficiently Link a Wide Range of G Protein— Coupled Receptors to Calcium Mobilization. Journal of Biomolecular Screening, 2003, 8, 39-49.	2.6	80

#	Article	IF	CITATION
19	Co-Expressions of Different Opioid Receptor Types Differentially Modulate Their Signaling via G ₁₆ . NeuroSignals, 2002, 11, 115-122.	0.9	14
20	$\widehat{Gl}\pm 14$ links a variety of Gi - and Gs -coupled receptors to the stimulation of phospholipase C . British Journal of Pharmacology, 2001, 132, 1431-1440.	5 . 4	59
21	Gz signaling: emerging divergence from Gi signaling. Oncogene, 2001, 20, 1615-1625.	5.9	76
22	Preactivation Permits Subsequent Stimulation of Phospholipase C by Gi-Coupled Receptors. Molecular Pharmacology, 2000, 57, 700-708.	2.3	60